first commit

This commit is contained in:
MTFTau-5 2024-10-26 09:56:20 +08:00
commit 2d78b097a3

View File

@ -0,0 +1,101 @@
import torch
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt
device = 'cuda:0'
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(28 * 28, 64)
self.fc2 = torch.nn.Linear(64, 64)
self.fc3 = torch.nn.Linear(64, 64)
self.fc4 = torch.nn.Linear(64, 10)
def forward(self, x):
x = torch.nn.functional.relu(self.fc1(x))
x = torch.nn.functional.relu(self.fc2(x))
x = torch.nn.functional.relu(self.fc3(x))
x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)
return x
def get_data_loader(is_train):
to_tensor = transforms.Compose([transforms.ToTensor()])
data_set = MNIST('', is_train, transform=to_tensor, download=True)
return DataLoader(data_set, batch_size=100, shuffle=True)
def evaluate(test_data, net):
n_correct = 0
n_total = 0
with torch.no_grad():
for (x, y) in test_data:
# 将数据发送到GPU
x = x.view(-1, 28 * 28).to(device)
y = y.to(device)
output = net(x)
_, predicted = torch.max(output, 1)
n_correct += (predicted == y).sum().item()
n_total += y.size(0)
return n_correct / n_total
# def evaluate(test_data, net):
# n_correct = 0
# n_total = 0
# with torch.no_grad():
# for (x, y) in test_data:
# output = net.forward(x.view(-1, 28 * 28))
# for i, output in enumerate(output):
# if torch.argmax(output) == y[i]:
# n_correct += 1
# n_total += 1
# return n_correct / n_total
def main():
train_data = get_data_loader(is_train=True)
test_data = get_data_loader(is_train=False)
net = Net().to(device)
print('initial accuracy', evaluate(test_data, net))
optimizer = torch.optim.Adam(net.parameters())
for epoch in range(3):
for (x, y) in train_data:
# 将数据发送到GPU
x = x.view(-1, 28 * 28).to(device)
y = y.to(device)
net.zero_grad()
output = net(x)
loss = torch.nn.functional.nll_loss(output, y)
loss.backward()
optimizer.step()
print('epoch', epoch, 'accuracy', evaluate(test_data, net))
torch.save(net,'./model.pth')
if __name__ == "__main__":
main()
# def main():
# train_data = get_data_loader(is_train=True)
# test_data = get_data_loader(is_train=False)
# net = Net().to(device)
# print('initial accuracy', evaluate(test_data, net))
# optimizer = torch.optim.Adam(net.parameters())
# for epoch in range(3):
# for (x, y) in train_data:
# net.zero_grad()
# output = net.forward(x.view(-1, 28 * 28))
# loss = torch.nn.functional.nll_loss(output, y)
# loss.backward()
# optimizer.step()
# print('epoch', epoch, 'accuracy', evaluate(test_data, net))
# for (n, (x, _)) in enumerate(test_data):
# if n > 100:
# break
# predict = torch.argmax(net.forward(x[0].view(-1, 28 * 28)))
# plt.figure(n)
# plt.imshow(x[0].view(28, 28))
# plt.title('prediction:' + str(int(predict)))
# plt.show()
if __name__ == "__main__":
main()