first commit
This commit is contained in:
commit
2d78b097a3
101
venv/人工智能/作业/03.py
Normal file
101
venv/人工智能/作业/03.py
Normal file
@ -0,0 +1,101 @@
|
||||
import torch
|
||||
from torchvision import datasets, transforms
|
||||
from torch.utils.data import DataLoader
|
||||
from torchvision.datasets import MNIST
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
device = 'cuda:0'
|
||||
class Net(torch.nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.fc1 = torch.nn.Linear(28 * 28, 64)
|
||||
self.fc2 = torch.nn.Linear(64, 64)
|
||||
self.fc3 = torch.nn.Linear(64, 64)
|
||||
self.fc4 = torch.nn.Linear(64, 10)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.nn.functional.relu(self.fc1(x))
|
||||
x = torch.nn.functional.relu(self.fc2(x))
|
||||
x = torch.nn.functional.relu(self.fc3(x))
|
||||
x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)
|
||||
return x
|
||||
|
||||
|
||||
def get_data_loader(is_train):
|
||||
to_tensor = transforms.Compose([transforms.ToTensor()])
|
||||
data_set = MNIST('', is_train, transform=to_tensor, download=True)
|
||||
return DataLoader(data_set, batch_size=100, shuffle=True)
|
||||
|
||||
def evaluate(test_data, net):
|
||||
n_correct = 0
|
||||
n_total = 0
|
||||
with torch.no_grad():
|
||||
for (x, y) in test_data:
|
||||
# 将数据发送到GPU
|
||||
x = x.view(-1, 28 * 28).to(device)
|
||||
y = y.to(device)
|
||||
output = net(x)
|
||||
_, predicted = torch.max(output, 1)
|
||||
n_correct += (predicted == y).sum().item()
|
||||
n_total += y.size(0)
|
||||
return n_correct / n_total
|
||||
# def evaluate(test_data, net):
|
||||
# n_correct = 0
|
||||
# n_total = 0
|
||||
# with torch.no_grad():
|
||||
# for (x, y) in test_data:
|
||||
# output = net.forward(x.view(-1, 28 * 28))
|
||||
# for i, output in enumerate(output):
|
||||
# if torch.argmax(output) == y[i]:
|
||||
# n_correct += 1
|
||||
# n_total += 1
|
||||
# return n_correct / n_total
|
||||
def main():
|
||||
train_data = get_data_loader(is_train=True)
|
||||
test_data = get_data_loader(is_train=False)
|
||||
net = Net().to(device)
|
||||
print('initial accuracy', evaluate(test_data, net))
|
||||
optimizer = torch.optim.Adam(net.parameters())
|
||||
|
||||
for epoch in range(3):
|
||||
for (x, y) in train_data:
|
||||
# 将数据发送到GPU
|
||||
x = x.view(-1, 28 * 28).to(device)
|
||||
y = y.to(device)
|
||||
net.zero_grad()
|
||||
output = net(x)
|
||||
loss = torch.nn.functional.nll_loss(output, y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
print('epoch', epoch, 'accuracy', evaluate(test_data, net))
|
||||
torch.save(net,'./model.pth')
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
# def main():
|
||||
# train_data = get_data_loader(is_train=True)
|
||||
# test_data = get_data_loader(is_train=False)
|
||||
# net = Net().to(device)
|
||||
# print('initial accuracy', evaluate(test_data, net))
|
||||
# optimizer = torch.optim.Adam(net.parameters())
|
||||
# for epoch in range(3):
|
||||
# for (x, y) in train_data:
|
||||
# net.zero_grad()
|
||||
# output = net.forward(x.view(-1, 28 * 28))
|
||||
# loss = torch.nn.functional.nll_loss(output, y)
|
||||
# loss.backward()
|
||||
# optimizer.step()
|
||||
# print('epoch', epoch, 'accuracy', evaluate(test_data, net))
|
||||
|
||||
# for (n, (x, _)) in enumerate(test_data):
|
||||
# if n > 100:
|
||||
# break
|
||||
# predict = torch.argmax(net.forward(x[0].view(-1, 28 * 28)))
|
||||
# plt.figure(n)
|
||||
# plt.imshow(x[0].view(28, 28))
|
||||
# plt.title('prediction:' + str(int(predict)))
|
||||
# plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
x
Reference in New Issue
Block a user