101 lines
3.3 KiB
Python
101 lines
3.3 KiB
Python
import torch
|
|
from torchvision import datasets, transforms
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.datasets import MNIST
|
|
import matplotlib.pyplot as plt
|
|
|
|
device = 'cuda:0'
|
|
class Net(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.fc1 = torch.nn.Linear(28 * 28, 64)
|
|
self.fc2 = torch.nn.Linear(64, 64)
|
|
self.fc3 = torch.nn.Linear(64, 64)
|
|
self.fc4 = torch.nn.Linear(64, 10)
|
|
|
|
def forward(self, x):
|
|
x = torch.nn.functional.relu(self.fc1(x))
|
|
x = torch.nn.functional.relu(self.fc2(x))
|
|
x = torch.nn.functional.relu(self.fc3(x))
|
|
x = torch.nn.functional.log_softmax(self.fc4(x), dim=1)
|
|
return x
|
|
|
|
|
|
def get_data_loader(is_train):
|
|
to_tensor = transforms.Compose([transforms.ToTensor()])
|
|
data_set = MNIST('', is_train, transform=to_tensor, download=True)
|
|
return DataLoader(data_set, batch_size=100, shuffle=True)
|
|
|
|
def evaluate(test_data, net):
|
|
n_correct = 0
|
|
n_total = 0
|
|
with torch.no_grad():
|
|
for (x, y) in test_data:
|
|
# 将数据发送到GPU
|
|
x = x.view(-1, 28 * 28).to(device)
|
|
y = y.to(device)
|
|
output = net(x)
|
|
_, predicted = torch.max(output, 1)
|
|
n_correct += (predicted == y).sum().item()
|
|
n_total += y.size(0)
|
|
return n_correct / n_total
|
|
# def evaluate(test_data, net):
|
|
# n_correct = 0
|
|
# n_total = 0
|
|
# with torch.no_grad():
|
|
# for (x, y) in test_data:
|
|
# output = net.forward(x.view(-1, 28 * 28))
|
|
# for i, output in enumerate(output):
|
|
# if torch.argmax(output) == y[i]:
|
|
# n_correct += 1
|
|
# n_total += 1
|
|
# return n_correct / n_total
|
|
def main():
|
|
train_data = get_data_loader(is_train=True)
|
|
test_data = get_data_loader(is_train=False)
|
|
net = Net().to(device)
|
|
print('initial accuracy', evaluate(test_data, net))
|
|
optimizer = torch.optim.Adam(net.parameters())
|
|
|
|
for epoch in range(3):
|
|
for (x, y) in train_data:
|
|
# 将数据发送到GPU
|
|
x = x.view(-1, 28 * 28).to(device)
|
|
y = y.to(device)
|
|
net.zero_grad()
|
|
output = net(x)
|
|
loss = torch.nn.functional.nll_loss(output, y)
|
|
loss.backward()
|
|
optimizer.step()
|
|
print('epoch', epoch, 'accuracy', evaluate(test_data, net))
|
|
torch.save(net,'./model.pth')
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
# def main():
|
|
# train_data = get_data_loader(is_train=True)
|
|
# test_data = get_data_loader(is_train=False)
|
|
# net = Net().to(device)
|
|
# print('initial accuracy', evaluate(test_data, net))
|
|
# optimizer = torch.optim.Adam(net.parameters())
|
|
# for epoch in range(3):
|
|
# for (x, y) in train_data:
|
|
# net.zero_grad()
|
|
# output = net.forward(x.view(-1, 28 * 28))
|
|
# loss = torch.nn.functional.nll_loss(output, y)
|
|
# loss.backward()
|
|
# optimizer.step()
|
|
# print('epoch', epoch, 'accuracy', evaluate(test_data, net))
|
|
|
|
# for (n, (x, _)) in enumerate(test_data):
|
|
# if n > 100:
|
|
# break
|
|
# predict = torch.argmax(net.forward(x[0].view(-1, 28 * 28)))
|
|
# plt.figure(n)
|
|
# plt.imshow(x[0].view(28, 28))
|
|
# plt.title('prediction:' + str(int(predict)))
|
|
# plt.show()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |