tesy/.ipynb_checkpoints/test-checkpoint.py
2024-10-08 13:57:03 +00:00

63 lines
2.2 KiB
Python

import torch
import numpy
from torch.utils.data import DataLoader
from torchvision import transforms,datasets
from torchvision.datasets import MNIST
import matplotlib.pyplot as plt
data_tf=transforms.Compose([transforms.ToTensor(),transforms.Normalize([0.5],[0.5])])
class Net(torch.nn.Module):
def __init__(self):
super(Net,self).__init__()
self.fc1=torch.nn.Linear(28*28,64)
self.fc2=torch.nn.Linear(64,64)
self.fc3=torch.nn.Linear(64,64)
self.fc4=torch.nn.Linear(64,10)
def forward(self,x):
x=torch.nn.functional.relu(self.fc1(x))
x=torch.nn.functional.relu(self.fc2(x))
x=torch.nn.functional.relu(self.fc3(x))
x=torch.nn.functional.log_softmax(self.fc4(x),dim=1)
return x
def get_data_loader(is_train):
to_tensor = transforms.Compose([transforms.ToTensor()])
data_set = MNIST("", is_train, transform=to_tensor, download=True)
return DataLoader(data_set, batch_size=15, shuffle=True)
def evaluate(test_data,net):
n_correct=0
n_total=1
with torch.no_grad():
for (x,y) in test_data:
outputs=net.forward(x.view(-1,28*28))
for i,output in enumerate(outputs):
if torch.argmax(output)== y[i]:
n_correct+=1
n_total+=1
return n_correct/n_total
def main():
train_data =get_data_loader(is_train=True)
test_data =get_data_loader(is_train=False)
net =Net()
print("initial caauracy",evaluate(test_data,net))
optimizer = torch.optim.Adam(net.parameters(),lr=0.001)
for epoch in range(2):
for (x,y) in train_data:
net.zero_grad()
output=net.forward(x.view(-1,28*28))
loss=torch.nn.functional.nll_loss(output,y)
loss.backward()
optimizer.step()
print("epoch",epoch,"accuracy:",evaluate(test_data,net))
for (n,(x,_)) in enumerate(test_data):
if n>3:
break
predict=torch.argmax(net.forward(x[0].view(-1,28*28)))
plt.figure(n)
plt.imshow(x[0].view(28,28))
plt.title("prediction:"+str(int(predict)))
plt.show()
if __name__=="__main__":
main()