From 144d3d52c9fbb2b3b2005a52a54c43a001b42057 Mon Sep 17 00:00:00 2001 From: Andrew Gibiansky <andrew.gibiansky@gmail.com> Date: Wed, 22 Jan 2014 21:20:22 -0800 Subject: [PATCH] added gradient descent nb --- notebooks/Gradient Descent.ipynb | 401 ++++++++++++++++++++++++++ notebooks/Test.ipynb | 109 ++----- notebooks/imgs/gradient-descent-1.png | Bin 0 -> 32754 bytes 3 files changed, 430 insertions(+), 80 deletions(-) create mode 100644 notebooks/Gradient Descent.ipynb create mode 100644 notebooks/imgs/gradient-descent-1.png diff --git a/notebooks/Gradient Descent.ipynb b/notebooks/Gradient Descent.ipynb new file mode 100644 index 00000000..9dcd2314 --- /dev/null +++ b/notebooks/Gradient Descent.ipynb @@ -0,0 +1,401 @@ +{ + "metadata": { + "language": "haskell", + "name": "" + }, + "nbformat": 3, + "nbformat_minor": 0, + "worksheets": [ + { + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In supervised learning algorithms, we generally have some model (such as a neural network) with a set of parameters (the weights), a data set, and an error function which measures how well our parameters and model fit the data. With many models, the way to train the model and fit the parameters is through an iterative minimization procedure which uses the gradient of the error to find the local minimum in parameter space. This notebook will not go into the details of neural networks or how to compute the derivatives of error functions, but instead focuses on some of the simple minimization methods one can employ. The goal of this notebook is to develop a simple yet flexible framework in Haskell in which we can develop gradient descent methods.\n", + "\n", + "Although you should keep in mind that the goal of these algorithms (for our purposes) is to train neural networks, for now we will just discuss some abstract function $f(\\vec x)$ for which we can compute all partial derivatives.\n", + "$\n", + "% Latex Setup and definitions\n", + "\\newcommand\\vector[1]{\\langle #1 \\rangle}\n", + "\\newcommand\\p[2]{\\frac{\\partial #1}{\\partial #2}}\n", + "$\n", + "\n", + "Gradient Descent\n", + "---\n", + "The simplest algorithm for iterative minimization of differentiable functions is known as just **gradient descent**.\n", + "Recall that the gradient of a function is defined as the vector of partial derivatives:\n", + "\n", + "$$\\nabla f(x) = \\vector{\\p{f}{x_1}, \\p{f}{x_2}, \\ldots, \\p{f}{x_n}}$$\n", + "\n", + "and that the gradient of a function always points towards the direction of maximal increase at that point.\n", + "\n", + "Equivalently, it points *away* from the direction of maximum decrease - thus, if we start at any point, and keep moving in the direction of the negative gradient, we will eventually reach a local minimum.\n", + "\n", + "This simple insight leads to the Gradient Descent algorithm. Outlined algorithmically, it looks like this:\n", + "\n", + "1. Pick a point $x_0$ as your initial guess.\n", + "2. Compute the gradient at your current guess:\n", + "$v_i = \\nabla f(x_i)$\n", + "3. Move by $\\alpha$ (your step size) in the direction of that gradient:\n", + "$x_{i+1} = x_i + \\alpha v_i$\n", + "4. Repeat steps 1-3 until your function is close enough to zero (until $f(x_i) < \\varepsilon$ for some small tolerance $\\varepsilon$)\n", + "\n", + "Note that the step size, $\\alpha$, is simply a parameter of the algorithm and has to be fixed in advance. \n", + "\n", + "Though this algorithm is simple, it will be a bit of a challenge to formalize it into executable Haskell code that we can later extend to other algorithms. First, note that gradient descent requires two things:\n", + "\n", + "- Something to optimize (a function)\n", + "- What to optimize over (the parameters)\n", + "- A way to compute partials of the function\n", + "\n", + "Note that we don't actually need to *call* the function itself - only the partial derivatives are necessary.\n", + "\n", + "We're going to define a single class for things on which we can run gradient descent. Although later we may want to modify this class, this serves as a beginning:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + ":set -XTypeFamilies\n", + "class GradientDescent a where\n", + " -- Type to represent the parameter space.\n", + " data Params a :: *\n", + " \n", + " -- Compute the gradient at a location in parameter space.\n", + " grad :: a -> Params a -> Params a\n", + " \n", + " -- Move in parameter space.\n", + " paramMove :: Double -- Scaling factor.\n", + " -> Params a -- Direction vector.\n", + " -> Params a -- Original location.\n", + " -> Params a -- New location." + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 1 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to use some type `a` with our gradient descent, we require that it is an instance of `GradientDescent`. This class requires a few things.\n", + "\n", + "First off, we use type families in order to define a representation for the parameter space. We want to be able to operate on points in the parameter space of our function; however, while something like a list of values might be nice and simple in one case, it is inappropriate and inefficient when storing the weights of a neural network. Thus, we let each class instance decide how to store its parameters by defining an associated type instance. (We will see an instance of this later!)\n", + "\n", + "Next, `GradientDescent` requires a single function called `grad`, which takes the thing of type `a` and the current point in parameter space (via a `Param a`) and outputs a set of partial derivatives. The partial derivatives have the same form and dimension as the point in parameter space, so they are also a `Param a`. \n", + "\n", + "Finally, we must be able to move around in parameter space, so `GradientDescent` defines a function `paramMove` which does exactly that - it takes a parameter vector and an amount by which to move and uses these to generate a new position from an old one.\n", + "\n", + "Let's go ahead and create the simplest instantiation of this class and type family: a single-argument function. Note that this is just for demo purposes, and we're going to use numerical differentiation to compute the derivative." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "-- We need flexible instances for declarations like these.\n", + ":set -XFlexibleInstances\n", + "\n", + "instance Floating a => GradientDescent (a -> a) where\n", + " -- The parameter for a function is just its argument.\n", + " data Params (a -> a) = Arg { unArg :: a }\n", + "\n", + " -- Use numeric differentiation for taking the gradient.\n", + " grad f (Arg value) = Arg $ (f value - f (value - epsilon)) / epsilon\n", + " where epsilon = 0.0001\n", + " \n", + " paramMove scale (Arg vec) (Arg old) = Arg $ old + fromRational (toRational scale) * vec" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 2 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We're getting closer to implementing the actual algorithm. However, we have yet to define when the algorithm *stops* - and, in order to give maximum flexibility to the user, we'll let the stopping condition be an argument. This lets the user specify an error tolerance, as well as how they want to derive this error:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "-- Define a way to decide when to stop.\n", + "-- This lets the user specify an error tolerance easily.\n", + "-- The function takes the previous two sets of parameters and returns\n", + "-- `True` to continue the descent and `False` to stop.\n", + "newtype StopCondition a = StopWhen (Params a -> Params a -> Bool)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 3 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With a single instance of our class, we can now implement our gradient descent algorithm:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "gradientDescent :: GradientDescent a => a -- What to optimize.\n", + " -> StopCondition a -- When to stop.\n", + " -> Double -- Step size (alpha).\n", + " -> Params a -- Initial point (x0).\n", + " -> Params a -- Return: Location of minimum.\n", + "gradientDescent function (StopWhen stop) alpha x0 =\n", + " let iterations = iterate takeStep x0\n", + " iterationPairs = zip iterations $ tail iterations\n", + " in\n", + " -- Drop all elements where the resulting parameters (and previous parameters)\n", + " -- do not meet the stop condition. Then, return just the last parameter set.\n", + " snd . head $ dropWhile (not . uncurry stop) iterationPairs\n", + " where\n", + " -- For each step...\n", + " takeStep params = \n", + " -- Compute the gradient.\n", + " let gradients = grad function params in\n", + " -- And move against the gradient with a step size alpha.\n", + " paramMove (-alpha) gradients params" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 4 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's go ahead and try this for some simple functions. First, we need to create a stopping condition. In this case, we're going to stop when successive updates to the parameters do not affect the outcome very much - namely, when the difference between the function value at successive parameters is below some $\\varepsilon$-tolerance. In other scenarios, we may want to use a more complicated stopping criterion." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "-- Create a stop condition that respects a given error tolerance.\n", + "stopCondition :: (Double -> Double) -> Double -> StopCondition (Double -> Double)\n", + "stopCondition f tolerance = StopWhen stop\n", + " where stop (Arg prev) (Arg cur) =\n", + " abs (f prev - f cur) < tolerance " + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 5 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's finally try to minimize something, such as the relatively trivial function $f(x) = x^2 + 3x$. It's graph looks like this:\n", + "\n", + "<center>\n", + "<img src=\"files/imgs/gradient-descent-1.png\" width=400/>\n", + "</center>\n", + "\n", + "This function has a minimum at $x = -\\frac{3}{2}$." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "-- A demo function with minimum at -3/2\n", + "function x = x^2 + 3 * x" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 6 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Finally, let's take the minimum. We're going to use a step size of $\\alpha = 0.1$, start at $x_0 = 12$, and stop with a tolerance of $1\\times 10^{-4}$:" + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "let alpha = 1e-1\n", + "let tolerance = 1e-4\n", + "let initValue = 12.0\n", + "unArg $ gradientDescent function (stopCondition function tolerance) alpha (Arg initValue)" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "text": [ + "-1.4892542376755242" + ] + } + ], + "prompt_number": 7 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Monadic Gradient Descent\n", + "---\n", + "\n", + "Although the above implementation of gradient descent works, we're going to run into problems when our functions are more complicated. For instance, suppose that computing the gradient required a lot of computation, and the computation required communicating with a distributed network of processing nodes. Or suppose that there were some regimes in which the function was non-differentiable, and we wanted to use the `Maybe` type to represent this. In order to support this, we can try to rewrite our class with *monadic* variants of its operations." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import Control.Monad.Identity\n", + "\n", + ":set -XMultiParamTypeClasses\n", + "class Monad m => GradientDescent m a where\n", + " -- Type to represent the parameter space.\n", + " data Params a :: *\n", + " \n", + " -- Compute the gradient at a location in parameter space.\n", + " grad :: a -> Params a -> m (Params a)\n", + " \n", + " -- Move in parameter space.\n", + " paramMove :: Double -- Scaling factor.\n", + " -> Params a -- Direction vector.\n", + " -> Params a -- Original location.\n", + " -> m (Params a) -- New location.\n", + " \n", + " \n", + "-- Since we've redefined GradientDescent, we need to redefine StopCondition.\n", + "newtype StopCondition a = StopWhen (Params a -> Params a -> Bool)" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 8 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In order to utilize this, we're going to have to rewrite our instance to run all computations in a monad. The implementation will look quite familiar, but we won't be able to use as many built-in functions, as they do not have monadic variants in the base packages." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "gradientDescent :: (GradientDescent m a) => \n", + " a -- What to optimize.\n", + " -> StopCondition a -- When to stop.\n", + " -> Double -- Step size (alpha).\n", + " -> Params a -- Initial point (x0).\n", + " -> m (Params a) -- Return: Location of minimum.\n", + "gradientDescent function (StopWhen stop) alpha x0 = do\n", + " -- Take the next step.\n", + " next <- takeStep x0\n", + " \n", + " -- If we stop, do so, otherwise recurse.\n", + " if stop x0 next\n", + " then return next\n", + " else gradientDescent function (StopWhen stop) alpha next\n", + " where\n", + " takeStep params = do\n", + " gradients <- grad function params\n", + " paramMove (-alpha) gradients params" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 9 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's try this for something simple. Suppose we're using our old $f(x) = x^2 + 3x$, but for some reason, we are incapable of differentiating if the function value is below zero. We'll use the `Maybe` monad to represent this - if the parameter to a function is negative, we return `Nothing`, otherwise, we return `Just` the derivative." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "instance (Ord a, Floating a) => GradientDescent Maybe (a -> a) where\n", + " -- The parameter for a function is just its argument.\n", + " data Params (a -> a) = Arg { unArg :: a }\n", + "\n", + " -- Use numeric differentiation for taking the gradient.\n", + " grad f (Arg value) = \n", + " if value > 0\n", + " then Just $ Arg $ (f value - f (value - epsilon)) / epsilon\n", + " else Nothing\n", + " where epsilon = 0.0001\n", + " \n", + " paramMove scale (Arg vec) (Arg old) = Just $ Arg $ old + fromRational (toRational scale) * vec" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 10 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Let's go ahead and try this with the same example as before." + ] + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "stopCondition f tolerance = StopWhen stop\n", + " where stop (Arg prev) (Arg cur) =\n", + " abs (f prev - f cur) < tolerance \n", + " \n", + "let x0 = Arg initValue\n", + "let stopper = stopCondition function tolerance\n", + "case gradientDescent function stopper alpha x0 of\n", + " Just x -> print $ unArg x\n", + " Nothing -> putStrLn \"Nothing!\"" + ], + "language": "python", + "metadata": {}, + "outputs": [ + { + "metadata": {}, + "output_type": "display_data", + "text": [ + "Nothing!" + ] + } + ], + "prompt_number": 11 + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We saw in the original example that the minimum is at $-\\frac{3}{2}$, so this gradient descent tries to go into the $x < 0$ region - at which point the differentiation returns `Nothing`, and the gradient descent implicitly stops! This monadic gradient descent can be used to implement things such as bounded optimization, optimization that keeps track of the states it went through, optimization that uses networked IO to do its computation, and so on.\n", + "\n", + "That's it for now. In the next notebook, I'm going to try implementing conjugate gradient in this same framework." + ] + } + ], + "metadata": {} + } + ] +} \ No newline at end of file diff --git a/notebooks/Test.ipynb b/notebooks/Test.ipynb index 9cd1ec67..b4351c9f 100644 --- a/notebooks/Test.ipynb +++ b/notebooks/Test.ipynb @@ -12,106 +12,55 @@ "cell_type": "code", "collapsed": false, "input": [ - "do\n", - " return 3\n", - " \n", - "a <- return 3" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "html": [ - " <div class=\"suggestion-name\" style=\"clear:both;\"> Redundant do</div> <div class=\"suggestion-row\" style=\"float: left;\"> <div class=\"suggestion-error\">Found:</div> <div class=\"highlight-code\" id=\"haskell\">return 3\n", - "</div> </div> <div class=\"suggestion-row\" style=\"float: left;\"> <div class=\"suggestion-error\">Why Not:</div> <div class=\"highlight-code\" id=\"haskell\"> return 3\n", - "</div> </div> <div class=\"suggestion-name\" style=\"clear:both;\"> Use let</div> <div class=\"suggestion-row\" style=\"float: left;\"> <div class=\"suggestion-warning\">Found:</div> <div class=\"highlight-code\" id=\"haskell\">a <- return 3\n", - "\n", - "</div> </div> <div class=\"suggestion-row\" style=\"float: left;\"> <div class=\"suggestion-warning\">Why Not:</div> <div class=\"highlight-code\" id=\"haskell\">let a = 3\n", - "\n", - "</div> </div> " - ], - "metadata": {}, - "output_type": "display_data", - "text": [ - "Line 1: Redundant do\n", - "Found:\n", - "return 3\n", - "\n", - "Why not:\n", - " return 3\n", - "Line 4: Use let\n", - "Found:\n", - "a <- return 3\n", - "\n", - "\n", - "Why not:\n", - "let a = 3" - ] - }, - { - "metadata": {}, - "output_type": "display_data", - "text": [ - "3" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "return 3" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "metadata": {}, - "output_type": "display_data", - "text": [ - "3" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "data X = X" + "class A a where\n", + " f :: a -> Bool" ], "language": "python", "metadata": {}, "outputs": [], - "prompt_number": 3 + "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ - "f X" + "instance A Bool where\n", + " f b = b" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 13 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "import Control.Monad.Identity" + ], + "language": "python", + "metadata": {}, + "outputs": [], + "prompt_number": 14 + }, + { + "cell_type": "code", + "collapsed": false, + "input": [ + "f True" ], "language": "python", "metadata": {}, "outputs": [ { - "html": [ - "<span class='err-msg'>Couldn't match expected type `main:X' with actual type `X'<br/>In the first argument of `f', namely `X'<br/>In the expression: f X<br/>In an equation for `it': it = f X</span>" - ], "metadata": {}, "output_type": "display_data", "text": [ - "Couldn't match expected type `main:X' with actual type `X'\n", - "In the first argument of `f', namely `X'\n", - "In the expression: f X\n", - "In an equation for `it': it = f X" + "True" ] } ], - "prompt_number": 4 + "prompt_number": 15 }, { "cell_type": "code", diff --git a/notebooks/imgs/gradient-descent-1.png b/notebooks/imgs/gradient-descent-1.png new file mode 100644 index 0000000000000000000000000000000000000000..10b8b6f2fb0ea124e39808c6951301ca31e9a200 GIT binary patch literal 32754 zcmZ_01yqx5+&Bz~f~bU)G{S=dN{Do;gwm4I4UUw~ffE&Jr<8=CNJvUET2UA+j2fvj zIz~6_yZ1b@?S0?>=Q*A;?%mgQ{kpG3=xC{4qF|;VA|kr<;J%VB5fP~@5fRB7auVQ4 zX^$B-5z)oFpnLap9^AXfspIMH0CKS>BD#O6$jI-J-Z0C_>V1-{=eengnXH8#?!-5o zJ^Su1+w*^33)_&B((m#XS+V6wKGCn>w;6Og`-xI%obHD!o3a3fngFF)-ciq`7J2X} zCS*6D2j)JBmYD)Kq2C92Qa;ToQWWg{QAxC6_abudmDS0o0a5vB_AiPo$yP+IB-RjF zUO~ZgC!2v@XM{Wa2cePM8EzQ2p9~Qfo)bM{6>)q;@jQSWb5YUrxu^0~q9UeshT9Y~ zbgN2_j3A_3N6>G^{2Ho@cO-0yO!I>;Pv0Y&w;*!52~mWeZ9cCo+jKwq#h)ii<TC9_ zx=i1ksdpIFNMB8x-SgMCnDl-wMngIl-SngVfQ5lv<fSbIsd0-xC!-T@-V3!0DA+UO zd=5;nppa3-Vs>qpPVXCDuIWB=#z9xTo~_3e<<#<=oypWuUnsw+X6v_}sWJE%t#LPb z!<~`gd8P>o)$d`hJC8-bsSru(y?aY1`l{$G#dG}=|1TB7{2tWTZ{)O5wYHVp!)WvN zA%A{({qra9s+pi5xw@ik|5HatwU#Vu6*R?^`OOC!cdjgaUyAzFPD?$@Id1m)ts*G% zj~QR$bDjDQ)eq6RqNZGpxAkbWW?lu88(I+G&EI<t)5#1>l>ak9!4m;}rD_{-1u7|e z(R$0w=FOu-(Y)~2@C#v|CF4U&WsSs|pjscz(pc`S&yu5gdDX5k2j%EM@2}^%eUEYZ zD(Te7)%{&Bz?#*7R;^d&6@;4ntUT|-&Zi5nFZB<t*1ByuH(#bC(NSc0_0{7w6EpN< z8C)lW=*QZ1_-pO2Yc*C01{alIVMMzqqkW!hBvjrP<050vx{iXr{G_m;-kK>-Eyma% zwZ+cdHq6@pfGR7zpL^lAciq)<&+q#PI#Iknxxg6XViTWEvR(FpwefqFTux;ldw(%v z6jXhc=|o4FsmnXX8)|d^>l4)a&)AQb^p&IeuZ0y~<>+Vr?0Y@zfx;&a(Di^%S0&%L z@xJ90A)1+u9r>{MFh8MXv~j>QZ}nbCywk~)Co4*7hjsT3J<~no4-!)P5uqykHqd9} z0m>M}+r30dr8FL`%X1M~N^ENpv`TV)cUiO6GH0I{_>{fOU?|CdOxbZq8a1syJutK7 zF+cpInB=<-MV{Z&+0YOE4p&n`sYT4?)vtEHq1y=i$$xWJwf%XP>biManmKWvSo#LB z{|~*Q!7J!*jDk%x&2@A|!~>okx%EV(3`DBzXP!(2|GsJQQQL{9xwP|c_Q%J~ai82o zx3oV*G+sO-Onl*svJ~to+1_2w=U*jXy->RU;&a~OW%#{($7a??<UBg(ZdePrJTLmf z=GzkYgnIE8Z`$+QPiO>Nd}_jGRmfz+*!|Cdue`h^EZ+L#qOe{Ug;%qguuvDrg%+DH z{x|8>+scHQa=y=6MU{#avW~rSZOJdq_`*H%U|DwP<wPsHmHCMJ@)@mPH_aF&T8q|i z)iAO@SDlX7qm#YR+ZMIXv*#HsXYm64!+HJfp7N3OWUN9<(0NW#a&~JK$;%c><TUD^ zXx=@4maH0onO=#$H14q?`hdSr%bOPcK)Ri0{}Xpg2Gs5{-#?q}0VokqZdhs|PilJs z>P%Vqk%lcI`Z1*_hY6kQWq~O1FvGhAnJb^za?(|%w8&O2rEAUgxz4|zAJfQoL^vXn z`Xms$2$lucE!8cHb79uaPptNC*)Wl)T+Mo33MozUc;@k<@2h`q&IgD5*^dmxi8<Hw zOg|ZZs8U_28Ktkh?gU;mSu|XfUo2hZ+BROiG2oXck!Puk)<N4k-F8h5=~8kK_qysO z=f$xpx+%Ds@bcwL*vslxrAwb%Nn*B{$wYfVvOoQM`>m1XcOShqRvYph5;Wvq5?`WE z?XGelD?^ODSe{vS+Tq&)@5oRl-A<wXLE|y&#V=Kvb|Y;rWiiDt<xYy8Sd`ceQ7Vu{ z|MHOTaM=(=-{r^Mi2MQRk3M<@MyUlWg=_`sxeXdYaXSGkT5K<4E47ki?>k2H_@?Vg z$JLMyKV$hu@5$)p_e9%E#(SYwy!K%&vev#<VX<m)XMSNGw!pL0Jy0+plQZ1I?LSn{ zYa!@<7R`x1hi)OCrn$rYojWmhMB-1!tLg*p?K9gy4zdppw@a2ng@3U;XF^>m6v?|? z<9MHWltoK4&AR5tT7~uQ{RwCz_X}=yRd&|>R2nxscRF{`vBz}}qaK!&MtD3g9rq7g z=bLt;eg7cyK~+2R+v#iOIc9pHdY>1V5wtnl`+-NCA%dZDP4A{`9qbrDIih0@Lrz1E zZnp338sWiB`*Ig@UL+~!{9ul{7R9cv*SVhPb<_D~Xt{3nM%kN3Mdi}Y+e4$R(mxJZ zmZX=oSiq^gsWz$1sdZH@V?<-YWBg;zzTPrIb*y#WzDX+{L4H9I;Ot`_vhlAicNV`O zKe*Dl#_#eX^YR}`uo=hRiB*mji=|T8RB4O05Cu%%=B-5A{?<ZfFW)Z5>wdXrxolc~ zX+CLfQbL|?PeK-K&|Kc1y<xK*zL)&c(I)7FZ{1%tm#coPB+3kf>klPXHCHoaW##DD z4`pj*1>_KN5&@H2{o9e7CbK?0sk3a$a#M$SyFnaO8Fw?n<U{wR4`%mP*H>7bZyU<` zwvDKU%!ZIOxrVHq1Y^80=;N_7T_mK$2E<fn1W1%2GG{VKk!S4zRS0BXrYj_uXFU@C ze%;RPzAY~eGmQ!JD02>NB3;$3<&c^He?xywf9>Z%-<Myt-Z!!HM&-j(AGSXHmbaMq z-sAoBY^-yvgYtDH_vnx-wj5cnKv&}8I3z;0_v&a1ufeYk{J86)zq~jS<RR{{@6n|3 zNjp0Ak<_|Jz1LCNUita)=b-aJmnZ)@cfI(2{ad@#PZ~~YLmKbX%+im<c|@~iv%&qz z54^6MYlvwi<P7EB>VJdq&Djp2-x(Y&k-k=^E%+|jHnKbZonDW&SXzqA_K0XV=ou)y zAGE-?5Y(?gVRP2t*<^HHv?i0>H|pQgzi&Uxd>oUfzI<JfQK5aS^JedI*G8vF`XJBw z*ZTKsv#<8Y^fMx%NYnDE+3&N<9Sgmh?GqWfiAnGMlybN`p<>z+@8rD#Q^)UEaJl#H zwp*r7WxX<7zS&HXLpQ*<__5n7s^4(Ga^ns(^r3xU9aH;l%I<;pe5pv0&XA#gW9`V6 zsL*819)=#b6kBn}-)UrCVY6<j;oY6d!=h6*CvW!IE^sj{Tfohd%h!gLwW2y08!Xbw zYOEvH-<(xv2eYmFXr9kidg!^yGUZ+sq8@VNxXS1AQvW4&g``L|p?IkTgLtsnH8bDe zGIQvm(BURouYe_rIC@jVexnY<$w%~Gocv(E0UrBVgVRRC#lK7V%r^s9Dk|r0jPq9& z+ZO8;J6m#;H-?1Gyi8z`cZ+waw_q}Zg}&{}$xfYgV{mOO<9X8ASk!9TSrxKpad2GZ zN;BqEP*}iUg{Wq94Xx)6XhU+;hvZFyYRX;aa?Q)kSL&wyB#eR#jnKD7%Ringc{t>~ zl3u^N5%)o12<<gq?W*7&iX@iIlwI4(-O6xdjg}wrhA;hW%qR+(^iB?{sbDBbHyG2q z{@J-iyU1NeWc9vYn0w1_OBGDnQXaCe!#1$Zkkygh(z70;v>q|35@5UAUidaHB}Z&R zN^D`EayFv7C^t(xLxwhFb^w`Ke!XWuT_$jH?g)Cpf^ktW(5%qa!(HmA;IJgzRL;a% zD8M4WX&DUr;Oa8AeuLOZ%i>Z);H=3&Wz_I>Gxs{E_w-PAyTq7#gqzP~Ps8z_>W@<g zt2b-Z>r4Z+mn?pOvkncK#*Q1CCbEu4!hVtoP|>na2K*DewH)_MLEiUfKv#&_`uD8| zKDp|1eZ_0Vo!U)-qw5+cg(Y<;?G*(HxoYsqrX?h_a!X@z!T*DQAI1}TBh0AIqOQSh zF=nX&a}BLIHP-KU4(;2t8yLECuOs|A__n-=d@;su_w#SBt+~46fa7CN$lc7*3)FdS zw{H_$tddyeer#y5C%WeNt1Ek>`CLx~xoud?M+}6l$3C8T<*Jntr(!?J(`1#W0(r() zyYBiq9j0F)uPIo1a_^!Ky<Kf>9#N}qW>I_H$%#=bQS`Z|+L0$Gjort`8NQhf2d+<B zk09mjGn(mFn<O%IIyFf#9>-MZ@1Q~7!)*|dRGfcu-`I<Yh=B+DpZJ09KWjup#P31+ zkGvmgYDn9<y9!#{x!c$a`nx^>-X<cF^_K=dy4rhNbNaiwxOqwY%W?hthBWXQ`&fvJ z^WRszo#nV5Y3gv^bN9686cZE`6y}nr;N;|#^|W)4)>TsZyBzpSj_a|v_Y-L$AwNGq zLBHFA?w*c9x1^+`goH(eL_`FDHw3%_+`O&*1>C&2|J&qrA0>M)TTjpvZ;-niCw5<J z8+RXXIW8{jLAZba!D;Ug!k^^k^%pGwK_TonLbn8kg>ZWVOJ%W7rFB65_AZZ<K(6*~ zUcedhw}d4{W&d69f4;&WNwCxyzf@dIl5i!#H-A^k3SluI!0116{reQ4mpp~65RUfp z6wEc%G(<#-L=Tki==&2dPmtBq4I;^`YBRZ>SrN1BytMiH=2avQ^YJq=2AdZnI{F%- zYNXDE50zrhUidy~Ba!%>IpziRg;FJ+RuTq%eSK=dNwi!cGs@yuVnbbdUGLEvdJ_3g zYEIUXuMXX#vAMXo=%Cq@_T<}f-~AGcPNmhF=@iYWOa^jlPQ|B0#3ZET)Opp4o3q`v z8Q<zv^Md9~2EclzmvLWmDrT;cbYIvMT>QZ}6;+xJ-pPUvo0U7-t;(6ne!*|T`I?3} zAu(Fxxf{VV9W|073Iwup*n*$g<nae_sJ7g;Au2AUBKXsb|IYsJoK1!&TAlS^S@pjV z0Z)N6l0qNU9^)A&Hxxl8F?DqJlbSlz(P9$-_`gNjg2Jw9(N-JLzEHNYUJS<$BInbJ zX{CFH$jOa#<?L+lSvBqRIAHWYDc+f~ac$hEfCRVmXe&4FjDCU}7%u2Sm(OY9j?Mf{ zqSqP|o4yO1--J&L2lIJq%zcHn92PO`x7gbp`6J~OVq{UHjE-`ZeyC}V*vRFH>`Zqu zhsw#<Iv~)i6!0l<0F=DRijY-=$f3VmgIGgL(Ebb+SNNqdhn-y6Yp0awRJ5`nF(_#* zKdi8j+nD1pRNYy5<HQ%1>KC<q+gim0u^qbowt7`sW=OVd3j#eXN$PQcg+5t=PkD2& z?0=(KQtoN2(e7MkW~U`&m=*~ph}JN-d$Y8UQs&d{i(#|3lVh4`$&KN|l}lXvl3#3b zWTEEugM41-T07sZ6)}z)L$v4}+f`N~nl1gWn{yPp563Qq8+Tp?$G*a#ry5tP6(pR8 zih?ry>wV`ar%KvS&dgQVg~o2Z#xYY-`2yXC{{CX~0|xV{MrV~tZ^R}vjLhAz@2%Au zj&-Dq*Mw)by?G{8Q?jMo{RZFagBD<>`5CfTFvm|oGNv&+jdOI`lOAmy&@i;wdN_;2 z!S#eh4ehud8a$pl&(+i^!Aa(U-^0K=u&ZUE7z-$ybVa8e51#APc?Ox_-Agv$3<qr$ zt<*~8Lx%;~L`OI9KgU~djSHM2@*nwOUQa0%`|r;{%LV^2?DT~hz?@$V2G`a~o0k-> zMX9O(?ykI#6OgBha-@-lpoNiJg9cUOp4o7PW0090=7eP^Yg(KK$5$N)2^#{&yCgcs zzw!COJ?=x_2L|!I78*%ZOO<z}n|O@E-bs2m$u3GSso6}caL~rJx%ir(e$pdg!qXg$ zH#}8J8leR<zLBa^0zdNef`?DiFh-zvdf$8TBqX;}%M9?CQr1jfGk$WB)!!7QDY3$a zta7cbN+wV)2<*JZ$=tmE;?v(8Dyx&W!KmbHGF3`+wTa!J>9A^*#mOxEdd7&zMq4U7 z(|*`Yrs<!y&q*r``x6H6{!Li9apWQU)$Qr<D78*1xg#Y4LbQ@bnt|FuY5srCtXr*A z)~T%4I@jj^kF)p5^|O~=YQBHd_<5jodU^ZJ{<1_|u7SxcWSS3ac}|%*Aow~$t@B1n zFm;2>!lx!Bi%@VAJW&AbUbJ(*JP|Kki1T?BqUlB41k$ckMWS2>sKCd9l18PYngQJf zlD;_EH^m`ewuf%?HbUA6j?piC>TYeYJisFPuie9*4(X?cD`oSjR?fYboBm2~B+K%- zUzb^kqv0PMFMn>4@C#_V7oH`6nEC4K4-x__?)7FzDN>uMdtwe<GV292(`7esI}?-G zb75by=W@D200YW^^WIzqsui$_ORZrnZvKL0MkV$e(vQfvaVIKfZjtJnsJZuSCF5~d zK5tjtUp8oX;|Hl($o_3;NrO0_XM#bk{y_Ydn*^tpU&yQID*k<o;L$tU#}?-1=`bxZ zXWvc%A*B+Fko^`ot@ik}Fu4I9JX$l?f7S<VUeO<#<j$*zpSscg3eTeW1jX4NQ2WBk z6sCxVsu(t#0Yx|L2B37+1>OXy5%>$8hXA?g#U{?-jX8jhNT8NF<woR<ezEV3dp3cn zhpO9xa^`Y)OQ@qu(gWiAywGoqhljN6>gxry&g&V$^lFEzLAEHL;T3x1hkJD{H4A5P z_(4SI;07j6l!Z0Jv|d{3-Att~aa1FMTs&`A+yBN(dUw3-&z)SY3o7hS6iY7tUZB9Q z-?;olOFf`Fw+|<e)SNohkjr@$8h~!;5bD;_vtN&&<91iH2jo$ID40b6w;3@>0L|ls zq%6^eJGDMb)NN>FxihL^w~-mPR4kWLp-gri&t*;-l4AD6bl6W?0+gL-cp+XUo(&;0 z2~>Z+KDd6&vvII=s9fc;z-H8=f~PY)?x~l_#`HWdfo$o=E1pk7yh)84G_vGkzgek& z2v=oi;(!5~F!%lq!He;wPu(9StfQEjaezZSsd?W41~sTxE~qu^MzO!RZgw`S#nV<i zyjCFqXE$j#WO0j#NtEe%OaCfDe*VF=kmG3%^!JjFi=Z?dm53nM7_l#Du6`g`NGfto z#|BV@t)0;u=}6C(OTDUYU%rYkaSyT)P-BBHv;U2@W*ZkC3QjZ$k1?p-Tw*!Dpp~?3 zsU(yRw$YKksWttS07JVwirG9D$}_15o^=^y2Ke}Fn`LzE&{j{$3rb7+E<cAOw8jL- z(g$Vmr}A)O)nMNKKQ(ApS7pRI6#X*A2k!wA1Esx3a_nZ{?GZQ-oBUH2w5tWn{f7WQ zd+yABU2#1SCmw(fz0Bvmpmt68B?(zZs!9LpY50eG)q=goBK-Kn&(Z+GcqduxE`g;D zI3K?zB>;;U0p(Wy`N|$-#v*0?%@I0L>jVEE&W`sC@mxjx*MFEvaDYHO8F=>rd3t+0 za4Xqg7}TExZDTE0cFV@wH^oc~5}22X)2i;cOm$wxKpKrRUhS#juNB|vo8)NhOY7{8 zF4e*xX8Fb~_uK!zcx#D3g><Q(Y=6;B<^dCI%V|quuM2AbY!SGiw{CT?^$x1aS_*2- z^9jd^hT_m!eUmczdk3ln*q%Gvk>9`3e%<oydgI~bm4I%sAZ6d>5y7zeTD<$=Oa){S zna0>aC>aP6djnAWgSac})&4(=&6nU|l%tY}BWe8Zoa(?b<CII_t9XIRR3h#8(!cSQ zOpgSU)Kt&2@scHk2DbL?LOk4i{u-W=HWYakbb6L!c!rY4=P5E7nt0y!7&4Cg9>$a8 z!U3BKVTqsLnit2fyNg|?YidfkE<zD$Xfg@jMI?W0p{$eJXl2=r?K0Oc)R^rS#uHx@ z@>EToHdC5Vu4V*(=9`h#Z1qRA{v5IlU4YlE2J!(xa$w?;RZJ9~vP>5$c&AI5@Cpw2 zBTk(vK;vd-6)^jf>_-Q~yGoP(wzZDxsp9sgW*wJ|@z&+>7r?qOYdEUn1(THDD6^}R z@<!p8M_nt61w!lr=!O!N)%s171eq}vEgS<gNzbMsbf3M=>BJ+<{~)sqEBP}8B_UU+ zUQ&WNMf@DpI}<014Ej6AAK}z%@!GGn#9Aq2Bn}VYL;3mmeL(u5#Z@NKx%NnVM7k+^ z@LDB2<HWmiT<;D3RY>%Oy+r-i>-Tr@B-F1}RK}V_)LcdeHB|`au#LN<F|ZfTAdvDu zP2zI^;rfgCg@6liheS%|^5piHI|AbL;oca$jh%%9ncJ)OKQ(>o0%}oU3Uh@jzo5Vo zQ`#Jtj?lGw(oGntDnKamD^ONDNXG_$VNcX;D8ImVQ0Yj@DeRddq>-jZpFxHFx`^-0 z1T+`<N5{k6M10a8wnsmFDasO?KOJ@abeYHN9x;g+DgUab`X%BU1kl4P6n~@xc*l&t z6BstTEgmv%_jX1^PMJU#GRpwv;}1HCd4CGVQ^nb{{9Brx4yi@dO^rvMfk(_TI}>{e z`|tYi;DMs&*ZJUX!tY&mDHXr)Jca%|z@(ty)#|Bpx9p89_FYg1OG4()5V-_$&|#^V zoqaSnLXP7&d3=SUauWz?6GcBgY-HK}%CcAfQ0s_)0X7hTKhmC0r_bG_!&BuFUNRKl zo&WbpW0$^<0kR{0Q`_9CaqP6P-!D5+|HIkYDFLp4oAv_>ULMH@1b=C&m&=0<qb*@U zRg&e|J4q3h`0pdH17EK%S8Cv-`l%utDgQxQVw(2qdx1lA#wzkpSE6*igA3kHXJ!Jn z<?PJR6`bl5lWfzk<;<9ta!i)btT<+X>l)*$2m*jiKGJ#+h{B+a&}zB^anODupdXzf zhcm0ljkrg307|nlNC*LYALjv<;oi(L-m*PayaQ~uPh5W6G^F`A8J>1b)N46BXWnLB zz@tarW!@|$pz!70@q2+R6{+$WGRctBP#lnZIv|n%_{BLM$6X>wErmZqH)>!uwS>AU zM>CbC>3zWL%AP@|iXmRidG#QBCw;8y9%PG}>K@0Hc$4t7IhYi%2^Vzgi=rzJSE}!z z=KB`95@W<YdlOAE3vni#R~-VBD>P!%vw8FoA8r!@%=b&PGmUEsv)q-4=947=R*Bf% zB=S`W2#+x7tPo&DV9YZ;F33=fw?k*%LtCzNq=?Z?ZG3?DSOh@wT9%I$!McsBz#+kO z5@Rke_O`c&4c3<ya;G9KH<4cv1fZY{no|?&J*5fRypOG41S>fzl=JxYCdNouxXB;- z<Fp&dGLC>i5!KrdC1fE90QutcML>*hAz$HWtw>AmkLV}OqkKRhdnZ`(UGGHqxGd0{ z#xZZl-FK`SINzg!2a8!Cv%mlGT{1jn6f^nG)`LEWuR5gq#97{U=!*W&dgQnD5G1OK znRiGgD@0#)YvK1Ir&9yOWBYYaI<gFKXW!)k6>%wx2&x)5^D_tc+CE*fI8Us2fJz-a zcBONlV~1a0KNu;=Kp_1AjJ$Iab^&c2Y{FX35oDo9wzV%GtyVB>CtmyL`{<PN5R<bx z(JX9B|F`C1?DcMIv88ll3j#`Ab(Cce_^!gnt#1Di#Fy}{U;A`DF$q0C5Nn|$dVx5y znHUf(vj(92Gx^FFM~uhGih~8EQ_YoBua+^^K6X=rwA^i?Xoi4chTHuq#a<`eO~;o% zlOUXDUOAw1cuRrh->+%-;jNT@N^_d~H-6WnOYH9G$s6ArjV$HFH%i-1Xkq)apcs6< ztw>9ukxoaJ@pCyIu33v31#w_ZU01gDUikHIe?Ra|-waNuVynw>HPo1Mh>OFhxdO;k zG9fGpkhunMGVi>?T62soCQ2}ntIQ9*)l;b)H5()SF&z(5m$_BPlJ<|caiUAq$epon zAY7kw19Nd4`D((BwX?Iw9R~dI;uil7Fc?|ayjw0MMI1Ali%z`Q`buUQHSShtz~ZAM zgHNcF>l6=H7nrNSDRN9wu0swhso9&4-ov(`TL^83A}4QDagyn#@ZjJ=p#2L=eG>}z zVr4w+q>EPpPEZxXTmyeWSbpf`rtj#WhD=N7kog9kFjp5joNz#1Uhp=%wPT)(G=yqv zGBYEq)eTUNLOGq`+a_1jr`{BN)ku>RWA{lvR<p4TWp`$HoZiSIiq3vSp8(rd%eHqD z8N$QN`T9Jd&9WNz;@H)HJgoIY(*^8K2&t~td&SAJ4qwGnp^NW}S>Y9NUwss@Y6jcB za-8>Ef_8BopJ$!mLdLFv`vfb}bw9qOtA<-HWcmdDyTu`Wx2#!ieXl6NFVd_S460|- z0Y$Wz;q3_LYjen~@nNHh@8{X!a*4@3UU8|Nks$7prbbJ<v8tlE>bG-vo{8#b@|#Pz zY{YN5_r$U_)j6vdkrk-THRxBS7#Mv{@fj>N1RbXMB#!&El<lzJ$<7`!t|Sa_3dsR8 z5^zmReqYGrdxFs_E3#y&HbB0%1#g8Ps{y3Q8Srr-;7W%+-~oGS4|`-XT4|^hj&|Tn z#p;e#H|y6(0^C}D<LM(B14s#?Mw%bTCm?FXT9$thK|9C==8-6YDjn2QVixfSER<?E z1I0N7c)ooGA6bGk`4s_I|KQqw3suvrY04|FSMLUH5B?j-7e6rZ)WN^GPpboJ&&cM+ zqrj<i3)oLna*)w{%Z^pfPoeKln7He=L{_{-Rg?z`BpV;*2`el5$=GOFYY)|~H$4xO z3+|x+3bDiX{#=l-4x%Ke@p=He$845M5Fkkp<eB{_1dw$1s<3c`9@(Qx+jc-3JE8<> z!Utg4rG#=0!euvq=09t*$ozmVZIkZn7YgwJqh!#*%&;zzD26=OZoHiEf*}mq3Z&dP zlLXY&)3AYZCbHq=VD4k~uqB3f<2!9NpH4vvJ~`3h05ZA()y^uM*#$l%^8o&hq=DKO zX<zjCvt<+D;#k~21$L_4@DbD*BV65qt*Oi)5q@}b({logpJ{EZRL4c_0A4&De!F+P zG1JvK8s~zVk4Qa%Q^)gbYinmao)rNm>PqEHyp&Kseud2rJ`Vi?pP(^AufXp0>o4G; z$4kfX${~}oud3zTI2u86sCnJYvu9uFn>eLBx`z{)r;0DJKJ9sX4d%osYw&RO&=2*B zMuy=7SqeTF(n)=KSTT@e!-m@q_%O={AP}%2+WmISrCg15?_en-iuLw2^9O}M9W5n? zPnDnwyMe`jpHGwskN*rH&brU{U6CRUMy$eCE$~jE&})G0Bu8XEIDHFpnMMc12aV|0 zJbgk;lE4pygnbSn<=uv_EIlqQKVlC(Qdlo|Y~Ck~gAQ`>f<NNT@Af`1{5sMUF|Uk7 zt|p4sSg=IklgWTMRSWR;dnoL-MdY|ZH_nLZe*$pTM^&(h;<h6uiJ=A3>ehX+K=k&o zrF3i`P`!uxO>BFjdSprl=d+}7EF*$!VCx3^UD;3qnNtUZ$Iiy2Ee<1ju)btD#TGE( zbIiqP_C@nrU=A%#q!RuCD5{p?YKy0wBBwSW?E%la+N^tIH-AfNBne(nrM&XRTAp%& zK<EB5_cv4Vi6f^X=XIcD^TFubrw5iw?gzU~Ql0~Oa$GWg7QFY45%i~ofp{_kB;I8b zmp^?1pq+xX8RvCa{NPaTjMy{52MYsm+qe}(O&F3O)sO>Je-UD@N3f6_MQQ?pr!)(N zlv;QL8nMJZ6}<TtzB(aeU-b3>FLjw#BmxveZwO_X^CuBNB~hXx>bj!^?dgy2fG}NV zqp;kUSLy92PFwT*ftU1;)QRvE2ZDP>faJ&B6lHC(GQ~72<AF<2&|W!-tDX}+b@ZR? zV{n`RlF;Hwk-ED;@o8CsVcDbDe6E7-qS-wh2S~|9m4J}z(!(1g@^SLg@}sq@wV^7p ztT0o%Zoh`JOVN0UJ1jVz=PHi2OG?6FYU;?QwTlGJ7Z6bUjc-0;3!HcD>ooT@zTuhb zYRCs+U*b9yDn$^5U2eaKZEF|jco3R}%fLi!bMVtJ9uj_)=D`*<t9&xb@qYpXMnP1{ zZjJkqP}k9ln~)IvK17h06yqU>O*X>`h9)-w{rM2NLs-D(1jOg8wVN5YT;NT5vPS_k zJ<#e2aY0X@x+uQ-dIw+kef<z3)VL=d=sV%lt8C%_I~K@|nbP?ua7n>`5~V9r@*G>u zIgoz*a|J51{3X!taOXn22HFRorYKI3dWt1ZHq^Dvb_$N&0)TS!tRmPa^FGNcLieA& zm*O(Pd()-Psp6lNd`GMmoaU_w5~)lE$e+pF8LZ!uzjWn^7m5Q@<7kJi9OqY%KEp?P zM37~muw&=v=CpzYT#oH=<6(|W7*JVvgQ^R{?iZPw;3N3VMv@;z6=@!=Eq%Xv5+6wd zy{b!1=z6uzT{?E0lu&cNRwg#0>ikpKm8H!lQx)YHda~)mr5YQ2&2!|7>uhO5F5U*) zSy~<K#bvz(vSnY?_AtgKma?Fti}(*=!KRD{(8QwsJX?3)De%h324fSDHXI#Jai|p6 zF8=WuA9ldAz3kePg=}r*q@6MMFu3oENpGKALZX!75n<=63Q)W<F%F+)&9SP52}jIH z1D6o&pN1Q9m?O5Onv!k;=v05TU&pYdw@-YSaa1tP8jAf~G0<Vdb1H>^78wI3w!K3` zG?PQ&c)_W3xTw1E%KjF@UD>UE-Sd)UtT}!+It#1T=y!edKNvA`o@>7*p#r8u7J8q- zuD^o{34>4a0c;*{LmgCzEeUvU{k#`SCuQ?}ic4a|Y5{IoWTIk%-_*|dSJl`F{e-D6 zQkffg;az~YLAE`+<a<Ja*#o5bM@E>+j#bMgL|y;5%z(l%UxVp{ZJZBtfJPn8cvC-? zhG;9KGm|x)9E7S^c=z>ey57&WZ&VV;SrEYACzEs+6cj`u8>=?|S;NL+P)ckprf}lX z3s+`zP0F>Exp+z;#cXm>_xC+1#W2*ac?)b#o<S3}D(639y>M|QKnN(q@2nFxeUuph zYq~*-s@@+rC~i7%QeoX0Zkm*BBJ&eHHItAsMxafyVQTb_Z3SBZ3}KbsTLl8au^XPh zUoa+v!%R2|{x6dN|5MndWN}c6Zd_{f*g?*{gs1zO-1f{)ke-`?Qxa4^)=3!6*6djA znx9%geLk0>O!PsZ`g(2x@&5T7AgAUl)4h9hlSMn|CTmgf?-vW^%UHkP$YO%``@-SP zQzttak2aBx3zPzYvLCSa_8h7vBnBM%<GX=G5H7&n(FKsCeB2+G83y7mKFX8%tZDA* z5t|=5kKwoQad(#yR)R{qIZoE}fymB{23cl*>~wv5Oq!W+gh4U$H2~p@0YM#80h3RM z$&}1n({O}#sN{yKf{9?6CJTb?A_I<|&nU1Kzi%?~hHs>qdxP7h$EMlY#E*UP(VJrC z6B7AAp)?<esflBHao-=O0s-~_gr<<vYPoi8R21HrC|Z+V)7BcM07^Y`+(IzBq;nGa z{ry(bG6bGgha56HI5_y?u_}x5Wq-^uU*86VZ1S>{(*Qd(T}DX%Q{!VCaX6Pqx>Iw@ zvo^Qcf2Vn|$7Ic{^7zkxNEP*81A^Ebf&h(}<OMY#JI_7)#%eY?9J8ok`JL{ebq0Nh zS!ZzO0Z9ip%ASdlkdGv0_v(^^4qJ=~d46~?D(Vmae{2WH%w1l_h8W8un~C|B$)G9f z{f$lzrQ*`o%gX2kN}NQ*7c`$`l%=`Hf(^r32OfFK^9#%zNZ%4XB{8;z3TX5-S}C-3 zh3lBKxa8ii7;Z0gpx1DF57^OT@-PsG@l(Z#v+O}G!7fKLNeJ%hsgUhjv}ByX|LHYH z3IRJFN%20Ss+tU(dAzhUhN0j86;`6`R=1LW*4Z5IlxGBl!3SMee*Iunpbt1&H&v;6 z3|&3w-vf#R>n~&RiNRAK=Lg!-SKWpv(`CZ!e`a#1wqZ-$p4d>)WmqtM-3BibKd(Sc z-2$%qTG}TFLgj*dUAsQaju>UzQ&KAsu==$Cki@xks}cv6A1neYuvF6Ijj9|zxxLYR zMuK0lE(K>+c#R<1^85TReG!_U`#l%3>t?~pK;U-WM-fj%(ha_!^}swsMw?gRWtzRc zX`!rKGFHH|*(YWDwWteJ-jCQam%wRDikg+%?t1EO-OKWxz<;DG=0C1*dF`I-a>oEE z*V4jcoK%pKql|&5CE%PuLW@Av$lbod2|vs08*kM6D=W06?8kH$>O*iyiGFUbU*a#9 zI39I=`=<>EvaWB8I`5_&f0mUu1hsSL+#|^UUWWqcAEhS#r145f1n)LnJvchrq~!|Q zSvI_TJZx}^8N}v%@TR7;#7X@odz|cirnlH=PTgUKntG{&aUB7a0}p_(QcGi|_F<~H zfbHXO_Jb_=1)*ROPZWHD%d~3CP5jDD-0NQSHFNKireQ-xh^Fh+6TX8mx1_l1M`NNK zk+F9O(wDc`Q3NK}1y=vfZlhN{lL2#0T<Aub2HQ!XNvD>37>G-cb#x%T@~I3f=01bT z@Xek>W8zUm5Fb(5HM}#Teq5utS!)>v`yDe<PDeT!66ERa^)pk3OEqScyG$?lton!P z1Dq><EdiPBPHiilJ^oL*T|I{>WRBK2=89He9Dv(d6@QNxI7QAgfK6jcety%(8U@eI zl6iX#%(Oo?<(80Lyl?^MZr)z#s_WmtswvgWOF^6)aiQb4|JCq-j1)1w{|oNZf^f0% z;+wnUK;7Ne>~O_T54G8={c0ImZfYDmkcmTWQE;tWVz6|5?RT6iyC?h_^abD=0`q{5 z{A(P^Ny+W71&S<My+XH2K+RLwMS0E7{;A(QVF(yBP>6FG<eyj?z_}WocO*a#q<c}; z$Q&8ClyD&$Q0V{NZvo<{f(#>NSMbq#XzcpVe5t-&Q^=Cxz{sUjg8}R!R>HoskgFHQ z<=3<MiUvHrzR~H&FC43;4*4oZSXe(MT{H)M-k&T8xinhqO*$Eb-ke{)8h*t0uK*>P zc|zd<Q&+{rzr<%hojSCaD)M2CN0xBw8@oB|bb6XBN%EFks^*D|70%XY1k7^ZYNccw zRbdZ&T<iAeH)BHLw^U~+KCOTRlE;q>wm3Cz7PLLutN?i&>cEGRO!x;4e8*f@{*_zp zkV^_0SKBPglYY3$4QJfk`jDexJw)fX{KIu(nQ^%3jj2!<dNrV0xBcV?+hP4&ws0?l zQRW-d3~&f$yJUB|t<-iZrv6}2&M`Fq0mtx`5eTIFgm5q+vy_C#5CmF&vSJwuk=tEn zl38iOXl_ppvg3Hh!zb)DE76Dk-NF&aDk+@a28?{wrdpOVBqZ9jJ0}s~BMm6ZK*Z-a z5>6Af_7^epSrSq8CkOxB0tXt{rHWg~K4>}REUyAYX4RkXTqV}x9BvtZo<E}x;ya+5 z$M1G3umA5SDR(nrb*U0(onh>oS#gcgAGXn<UMQZV<;%z-({N9=LXT4;!>_~X7Z=|t z7{uQi^79UhBR2bDdPhEiv#UV3<_j31QS-v|@aArbChFc;rcEuB)ZEdOY}FRsDIAKQ z$?Nz21oaL23@tEA`7Cb1t6ZZ3+!K)#`X&y;YxwaUB1qSH(e@(o{2a{)h+(A@2eRsc z2|UeK+2`@FdC+%%bQ5L@icS4IqXZ0(EUY?E?dvt>ZL!d6n4m;mu<+9E28wBcc?Fns z43+mPpQ;6?fSY#JefpcwesYeOvE!U<1>(sA&WY~NW1i+*bC}wFUu{h1>*fkR5W8cA zdQ;NUnyJD)x#5J?3j>Zj2=o@8o^F-<RMons%w3wZ4n0TLOgQ9^*3pNr)0x$a)%gXc zv}4F{>;_cyp;aRXL^H~w>0m7edZxOTdn3A6&n-TZ*X!m2cxOsb5^#9jCC4W)nmFxO zZK_*ZQ!(Z7K;8Y*{94QKdv@61-~_iqz}_o(tN<ct;%iut>U+-)OKypj?PoO$d0~In z!^f7{rA|gemDxjVN2|lBEbo38NaUMVQBC^W8PM4M&V~qhf?5kHP(FF`pyX{ISqAm~ zzIdu?W2kFw<9MK>1ubmMsq)C0W=X)9A+L9Nt`(ZUv}?Jx1TVK#^BJb4oRaZ`?e*$9 zkxZ-PPAxEkCvSLmC#^;;%kKSwhio1-$hscQkK{}UE@($<TO@BwD9e_`rzpxfg!WI_ zJUMh}Fh*4h^)S!HCbeR&je9)#6uQ}cnXj~FrOKmkx+k5n!==f<L_|hRT7|$<Tuye+ z=5hV<-N{+Cc>LzzquDC`hV423#XjZ!>!Ls*opz{tRXZ+8;b;hc#sR$ghjuuV_cKrT zh|^LDEo^6PYah9+jxB7*{Tl^Hg|9FK*eqRz4%WFcN`ZcF8F&6soy-_AOB{Nnrjofh zIKS9jsW(`G2_J-l>olTS5%s1hbJMQ-&b24#xL8ohB#Sepf8bmAV&{RfxaseSS3bod zQl8Za2{q@N*<3okNcSNZlj!B*uTe^rEAfrzkH6V}KIhD*3^A*;8*)E(;4sXc>NLM5 zz={lBw}vVdv$GqkZx`~XBmH|I0NEU(vU^7bvUzo;kWH9=RompSjQgRgW{A}y_|>AM zxcZ%pg#@qVz>^=07kSEqkJgj=hL?(i1UEiL`9>ZcqsvDE5)yCrM9QCPD&R@h8k#Zk zg2y3)R2-i!N&A{hd3MV$yj$RNGELljP$(CI!K62SQL0`A)vcOy_g9AB<hlNnzuRFr z!6<Hda=Fx`E);&1rR{)CLeo)<HSmaH${o=-ma?!8-%=iKFXtCvYYOcNi@u<tSuXVf z$p=mKZr}DX>=vLmOKn)wk`DUdK8)#h982hT{*}pySVH}}&=_mB{Clf?X)P))wgQlG zz>tpajoCbvd7q&In_gd-Y|nk4!tWx(Cc;^!nzVmHPityi#w9$RMU{2KnFCV}M~5us zngnJzP^mU%ge*yzu99(N8vRJAduh%D`!Vymr)n3n@YY0~k7B@Yr&@A$?~22iJEpH% zN!G$`Xo_Y<#%|_4d$#0-AB&p-bJ<f(GU$3kRKL2ANugU;^#sG_#J6(<noG_5QL!L` z7EwLuY;2Odcz;+B)~koe<=eC{0q^=A9(JFE+&gfY?YGY20*~&<sjIMSq^8MhV(grx z6+X=N*P7=(LS|1F#_2RpphCqekkyvneOsfCwzG}6Eo*{Y0v8zzlq$>vC*bnVhXVpo zJJ)x+%b~|6wb#11yQP&vB$gIh2H)3Z+bo5xPqC^O4BGs7ErZB)>qPtC5A<B2p$YHx zom4jgwZBvham0irwSKZ*Nj^zyI*OO$o`Q+Yj7H_AjLi+IDxLhw+TTO!%0k-T_D}73 z?T0lXovF-|YOCglFiTcr_J7uWopaHe14r+Fd<sVx{5Uy8Yy~x;BQY_u5+|Dzk;ddq z(MLTYV@UTOVhep&(BKI~#+fX`qg8aw#mn=$mmqEIhuVcfyA!=!+R}VrNB&M=_&3o} zbqW{EkW)V%T1<P}d;X<wRCmZw`@o~yK7Fp-+ETuC@PiPoogwpkHYIh#Y8kMLmO@4a z5#fm!&ujS4zMStyQq^<px3ps<hi;C}jlgXWi?8fYh^*9+c^xS<NbkrCg3pBxbb?Y3 z(HK8eTwOMEC$~_KYl(lqt|(-`E2LzyuUx)+GP<kV5*T3aT<#q|xWDMpO=WW}JH=^= z4N+~SkOpm}4Mh`2srt%@nM)J~<`smWz4tOvw)bSK#Kr|265rT0X+LEA#QfYvb!W;4 zyDkA>wfu^jXdO;Fs|QV~8B9J8QD-u8R*!zUAIBl44jZbDj069?@Minqo&-XF4?DEf z2xWFTnW){u<a;ZG%T-B>l#TH%+#c0)4-(kuQ7w*<-FUXuy+@<!!nB~bs|as?GmON1 z^`DH)(2^5Q2kuoC<*FV?Oi}rZ9JMf7ehS>f=6(Si?F%J4Lq(<zHBFzLfjBjTa{^yR z)LHnqVzOlQTHaAEC>_it5jq<Sk8wC$vjZx$Hlsc(%u9|y>sV?nmWNyQlBPk*=V?Ul z7ww*Tdf0?4I+umzQ5moB%Def&M3(HM&BDW#V2S;Ox2b?K%z1TN$O?WO<EV}t-(RYj zJqojoJVG8Xh^>8F+X_g{_9pGW?iiLT#DSa}JFL)%ZOav(;wl>sx8<&0dedXy(H(NQ zD-_ojWtJ%KjM;fFJ1rE|)=g!`>ABc)s2Z}H0`NZi!hrh@V}^%ibnf=XG`GTMc4nl< z=oHs5X!kKH3nsP>*S$<ai;i>?M<+Vv(>hEfWG}^UN$g2S$ub2@6(X0V1&%?&9%`F# zhm72gqdC|ndy`tI>P0h!^l9(bP`ygmteN0h_KVr&1GYPQ3B}GyqU%{yT4IAd;nA<g z-C$eQm?<}~pl8uU|J0!cG2}Ip$M44%v)x$vz;dYrWPQMaoJI96x!3aObA@~$e=WX; zuV-=o^oJPwNPREZwY;2qJo`h2ySMf_IHj!BjYYXC!-r#>yS9ift~zkG1nTGFt!OtY zxEh%v?-VhUw}*~ll6TH{@z4e;|F918Y>RDPwf~Y)%EYF|0iADkOkz}F;8GRbt#gWX zza#n~G|Nr9JajmE%XN0*ToX$GLZLfIIDY)itl!9pD3GOseNl{Z4&d033C(r?I%B`d zyucgXhkoUu9<uD~UnimWR6=QBs0-Rk7J;n+P~hhWbad6hjtYa5ZL!R(0pCAoaR)UV z>Y$o)5zB{ZV$^D&g;9yX!#{bdT-x$M-l)jw{-cxG1Qu>YHD8JtOQ`mNS4ei0UtHS3 zlP381fdfK5vMp-s0qiBSI&b{AZZ9&_C3ma3nV8%0ILaLbM~4Uf6mb7Ot?ycGXJ9p6 zv-{CG6muBLjoE9HD<ADPImqtUy%1?YV2tflGqr$Df<ZRAq}nN=L&N~#Aou?GU>wO5 z^B!f)*}YxZ9*5Kpf1jvj8zJ+n=isVbq5b~eu{T-rz1TqEjpVE#RkxboWtA?D1`mMY z`c33D?FW96tI2ily|Q(3_MZ7YV$K=z*6s==N$s+6f7+wT2fTI)ay}t5MgxbIZ<N~G zU1k}L8F$foCzk57S2Xq0VL9mmad}2NsQq59Lsv4BDw8m$K|7_aFxWBQ4^8hRR}74X z+Lsb^p@~U0FX!oH+gp&Wu|h^kv3)JW4D7X_ELAiO61e$MF?kx%bL#j*`mzw)$CLit z=DX+$L{+LPng0J{{2xf+>Y^$GXe2kgyy;V3FsO+o0zKdE&RcA_Y3s~Y68EO`9w}BJ zIiy;Pyb;2V%<lZQIb#05tF})SSAdMSvhGnTBZN<{F?M>n+OoDabam{lb785HMeH(u zBzKbmJ~1e7WQ%l2HL#gx^E30BtovRL^i{gMJyi=}jl$03x!J-!CIsnpCWK`5(@#ao zx<Tbk@ZnjT@;hN6tncdHjL;h`GsKxzIvFQTxZ*laKdm5j=n$!$<Jr_jcq4c?Z`cDn z=!Y~&NKCmlgsX%BrT?qgUfpAnj=CH7UXC-KG4mM|gkndf0;q=OPaTjl-M__~?UQ5o zSk_xMZSa{Sw0_%3P2eN84=w~DClLg5UNUzkl!0CBbMvpS4byu~M>7IYQ<qX3lxL@p zOFskK>3BAf26L;((wylvzfrg<mUz=tDwn6TJj<OxWJSHSq8RVoISY(>W<N$_r$*}M zKc;id`3kH(^HsO~`zEA}+JB=R(<&(lLw$x96pzZ4X{H{SR}M-EKpY6@_f+v1+xS%w zGL_Kf^ov<*I@#Wq>|yi!l;4SMYQk+t(@>Uj-#OWZ(AZFajITX{#a&-D7w<Ujla! zHkRjEP7^TT-EMu8dU6W>*N2IyTWu~hMU>3mL8!RU`e4+bC?Qr5?(E0O%`-^~v@(GH zh(MPL5tY_t?aLPY0`Jn9+3-F`k@I{_VDj*tKGI^CgG<FRwj}c2qjg7lDg5PWi7fl( z>%-xJ^Vi2Y!fJptnw!zWA99WgKG^bqCT4-cljmIHJa<Wc3KLjzt=W`&7wLEm7pOM- zJm1iNiUg2FcBSoWdT(RLk3FZrh^Cx_EzojP4sZ#?erNmbDM5fivWoz8k6vEO>aXq3 zH>g!uat}dV-`JbRu)@BcQ&$x%yFYdxSJY{)KU-Yuq~Y=f7#3C$Z)_DoS4AEc7KGCe zTP_jsw@VdBem99Xysb%3*20@q?`43+#XRA!y{U}wTaA+fUF#Nq{$29~fVbT2e#;|n zZY;yj4PGXTKkRK!OLAC@{sAP}pUv*B70?Oji#y(J;`8iE_TviLR@?Qe#EE>DpfEVF z_GED(R{^loG^r}H1+5}MH;jXp(-I52U!CAy1mb_}So_h_7OEfgSAcoc`DUb}0<%=0 z_kpiNoo^Ah01g)^h`JD%pS>P)5)Xf?b?{))7#RKa(<Q@q78Em&fT7op&{%c1=W`jD z>Up5Ta+@no#;x<sQWNE=|4X_13y_poE$@L_lh7=c6?WjxNl5V(@gR4D|CQAfllWZL z0ez-@8$-b-?BkSQdJ)?({2h+@w`CyTe`*NxG$18S#gP!ID^Ju>U&-9*kafEhno3Zh z<09+t<KxqvaMpBs(fVxG5cR2008GCG^vJN63Mn{+-Nu9ZIwG#iUy*XsuYL0<oYM8e z&thB!(U^9xh2w<X`~dZ~ge#nKqV_@ETw3C_8J{NvjOow=q)~RR(nZCmoo7J}#S#2d z--t_yh4;)~73t9B+?{v}5KcW>5Qr3%89<}x_dr8==0ZEZpa;ajCfEt1ZJ#X_3XKf; z+p$l6K^9Dy{vGQ~G%W@?_BaiG4Tg-%EgkF%ZEfotn3Q2gf8Ha2M+C^yyyW_?0t4O^ zAcRN=vxr>*eClX+68>JUPQ`bz!U}guRHv9E$$UrSVv%ZGHrGUX57?w*+sDle$9U2X zYyrn!1ezcm{V=QbyRc=Dt1gPk(Z%xoJ#m%)&dek^`#v<}ZuEg)Q;?(xfZq#7i%cs@ zU_j)54!7`f0O)PJ>n!7VU|>-DX5>ToBm-=-M~(~VDO8qmR1*I!X(w<C`z%IZStcg? zbmQeE_Hh}{te8ZBwKW41ii^ck1bB7;S5dNA9ZEm8uFa-qeD{x&UMvO%9Q<O;Y$A5( zd91$thlV1IBF%4d`c}nwwR)^vmG;Azz)dtd-xyp49hl4=1sq$pTqyn6A#m+Qu=ND6 za<l=fFomctFuzVI=efTlxA7ItBc*5+Ot1736u7Xl^U4gkd#lU@Ra1XBB8IC=19xoy zofp_SGH^jR?dM3hhV1>WR&^`y?tsFUA`EW6g8Wqo9{#mKBShBRzhz#JHeetSd-H%R z7U+b$+DpOr@)a}n0qs)rncb2h#a?cJw@|8YCq@ZP@|2lYQ$kN$XMnj&^Xkd!8w7^% zRZkX;QW+b@_yv?RNZ1I=Z>Lw_{3#)0ZY+$>?1A$!K>2f=Ph{8l2W#s7Y0dOC9|SwH zaqzZILVY#TdS$dyFp$c?BvSsYG+~cs0VqSpPo^!bvyuQc7d0DI4zM5UC5s>}47iBb zQyRl@YTS`Ddq<m~zIViD+#-%v+^eIpHEosJ-2OMvh@Y1T_^O6&E5tjfTh3iw11^vJ zL55M*iftTi`b95KHXvlHc2BE>nU6@YK3!9&DYy-LC8g%kL|&zNLZXRrA%SIj+FTFx z*Jrb*VQ*;nHZv?^<mZa710!B_t<#ADrt#yv-hZo!K+6Yv=i{YsuUv_eMeuqLw8*5g zYrqQVm86(=q$`_wfvt!3cFnBQDo@Q1Kv%^x0Be}Z9jk9%U=2OW$O^hqGA@OkLnt3N z0RMG={7S!8s;{@*C%Xhx_dZ7H#@N5JXXySl0$e2c`k;^Cq9AFRATV06&D7s?jvPCs zGg1(WN#zD^H%p7i49mMWKUw~JG9Zc3Ot-Tz;p~B?*r6qQSPNx=qp#Bc^}2O{Xd}~E z<eWb>E1axrvHmVBXOF4>6PcmvJO5K0XGnQJHDkvBQi3qY-r6udEo9YeO^Hl_gv4{1 zNPIh$2%-jz7k%C`QbfjK`qeWcZ#5q8<U(^ZP7q}rC8rvUq)9#w;xMv!*SK2>=Q74j zhO4RjS||h(Qmq}BxQy@8UwGU?nxEglEq#u%Ue5Dy#VBeVl<Pf6dFmiD7f9s~T})VI z{R9xSS|j}IC3SAqInIJ{s{g0CrNakcnjnIpm+v{B7qQe$M06_?`&$6C@)sbGGl=cJ zUWL#$?C6p~O~miN3aEKq*bWZ%SOem{D*-^gTEhHZfI^v?`s4#P{PYhn1BRWc!bpjK zL!Vs*>dEVStt=UFtWuuCaB)`?FsAUdo(pNcFzz#~?(sTkHGpU1Pn2J*%V56!G?nQW z;NB-)v<bckN=hCd2TWCB=gI~i{)*Q-xokRH{3c}JVZ%~Q5^msQlfnORrM>iP<{dvJ z3-5>dr8mpFK5kC(g!SfE*getpjvxqN3W1)z9r)#z5Sqj?L`p7J%Br~=8g|Z=d4HNi zhyxd`iE02HdvD8{dsLdkd=mk4-l{dgjk^ZxaQ*`zWc&ZK6_P?ELQO|^Sm*Yp5n=-+ z^&4~8&Ukzhw+#7zZdC_Fl4Q2Adu8K$gdUf+oX^-B_C_`J2ih4ur@kMEwRKnl5AdhP zS&W+mdvzvI1ba;o+qkofV(7lzFLBx>C=(L)U9RhEzug=BkI3#s%s9PT`P3$CTjzg| zCo5VN13dT2URUBF2RfEM7dPj#(2?U-VfI|RlR*t?S88tkwem4^d&}h@kLM@Hi0%8@ zlGX)q;L7U|+}6R`4=9UvJ(DL0i*#&&O?kwvYsctFIKW%>tiH`pO}Tm{r*om$L`P2) zmHgMUAjz>RZ+mm1&My+^lg4y9m|=6A-}*+m=v+Ey(8I!)mH6AbK$KYvNd16vyEy&T zHPl;7j0Z56MGG~ufCZuMUZ{+yI0eFiv1Vs9v^B0*cGDNNKerp>f-DQ>C+-2g0~Zrq z?FEcaI(BC7yIocX%@v@@aAld%QX`I4+Iy*ksRsHN^-X&JlYMXZYCWxeXA~S-r|i30 z|1)@(zvvR+Qk)yNP8)ZCQHN*%@Y&fgdvnQ<AaaeA9Vw;fwV^?)FfEktSW#m7>caWI z?56v-J3cChjl9DzB1Jrpx03|bv{Pyy0wD~8Z!m#5@6Z9v`NivlubGAZ9nQJ)?{Ll( z=EM;Sm`d1sxDV;yKmtXIZI>Jz6<AKNy{nr$4moty@yyB#3O6uWbhB3{*poc?MrQw? zY%Krd<izFQ*P-6za+lO_nP0WT&fF{wz5na+Iv)Po=*)<)ZovL3MS0KY)iPk-e@61B zd)ude-PX6xgiUwR1VAJ8+NIr)<YwM|Z*L_=&?>|oO`xlQD1hXl_!&{^zi=8tax+41 z3}pnl)rOm{$}j>yj!@tOG$etzLaQ8vZ+VlF)7=MfSNxg6XAa5Ff7iFq9b0qT6QNnB zy0cX6wm_-c`=4`!>{A5q{bnrfzC)H>SC-~$a`66#iL-#zR6~dD86ap%R?Q;x;D7H! zJzAj9NQsyCklOpDpiIe9<zv_TenQPpGVpJ-G61A*FMnj-SzuxKH$!C)D%4v_{QnBO z?s%%(zh5WHxQ$4PjK~gUXP!Hv$X?l%tPt5F<23A%>@Biq_C6}vA<ACi*z<&Ad#>+s zcXxVzzvuPzhnLQa@AtYs*XR1|_ZzAj%<t)&^;P~#et|BV-vk$vwb5}7O$j9e7rw1} zVpOJ4(V1cuSHb)NO874G@$?oIm+g;N%8dh3+l(Hcn4E<aGB`lrZACFDtiYo0y+>{> znDt`e4Z;~;^8OdgZEc9n{4UK7nvMI5AMMwJakKK4_OM@-2==H3<Iv#H4Bnchc@W0+ zVmQu&^zWggY5lU&MPbqM!P!&?hN?ffL;fp{#gd1UTTn6Y-}Dqn4#1?)KfhP(2uxbQ zP%K55vBl5cO~LL`pwDc^L?+=7j;2XH2B{;6C}OVtD7mogI(xv4POx|K>#z$>*ZH3N z^%KI9fqd}j6DT(ru*!y5Bo$b?{U0co&(6B?Rv#UHH*4YPgdIDqc|A=wwRkj)ulEXO zyWi?H*JFzZmic8ej{x*VVB+5irvMg^!f6UfILw_2J9T;^Kp)Jsd|tR~Fq|mLQJ#QB zz|=2W?YYzr4b7k6tqm_=>#JByn9VI+9uTxHd5CFoSW(L61`(~0@$PT)lkySR3Qnt! zB*I>><>5@OfCRg?@~~!lcjaj!uB+#vPVTQ17vvXbnUnmK3W{!KLe-Uy+rF8KN@Wqs z85t$&k9mxcQJr<J?{s!CvcopXN|8}XHJkp=)`kU9TT+oxcJZoHzlE=23XG|V&|4pM zbA+b0q7f?{G?X+V{16((a;a^AdD>IC@su8q1%RQ3hEqo&!Og+$yy)Wg9s`}?5^SBn zW036KVgygr6Q`q5zRf9@QuD&GFps!82uZ{LA4r<ciG0_Xg$0MY;*VgW@0D=>zf-!v zUv84GJ+PH1vI4_6uqvAmGb<x}&s=sh=0W(q8u`y0BO;Hmc4vm|YdVznqHBNd%9dO9 zi>fE;KdoU-m5R0&u28C@Qm(}WdN3u&2?!M1L_3g_{x=qqy~xJ;L-D?=-ELcG#i8mM zwY&iNFG<sVfJs8J$qmP#@m=l~w_Hu-dz(s$M|0(xwQhA=^JU+W^E*G2GnK`_Fzx1P zy4HW7Wbi|LFw++4D^0qiKHY$j3K)6zlL|e4_wNvqo#eE%#8W<A7pmML2+nl{vXDz- zHf1e26$PPIb^Bk!AP7$JFfB%oRR16|>`P}g%VeoE1i?8-Fsf}!{PLy@L%_*xF^Ox$ z9%+Fgk`nba<8;oot>I+Z{!no~kDRA7vBPrEylcAXg@fZ%#pJSzrXYXQ({HNIw*cor zPuSk-c<v=xt;hmeAy;`(woK#Z)s-Q&#fF?7S6<D0)9;!&rUs6AnnRwQq6#IZptiWH z^Lw@zxFc7PTXZNi+vCw(UEAoLZ=**Z9T<mIiB&kv7u&uFHT`EOH|08PHsPoF(&5gm z5omtPS4XyvtVmNRYi_6ZsQutQ@d+0idKu^=iE0TMLX>F4W$Nd9XdwBlE0~w0p(DPk z^0Ow*Q9S0K01V+q3`Vgl2WD4ljQsaMF*t>E3>oMwNW5bm0}vvA1l@0d?+Jw6IS?Z@ z>j-895hi%<N`Fne$Y1X-zTRlf*C#f5d>>F8Ya{lQ5ASCt?e@3m2b*N4pXca$JL9MU z2Fp+m*KpK<QyTaUzL`PxKu%x^R)*G`WqE}LA62z@Z0R7gBzlf{R@luDn6W)^ALoGw z6>_9>)sEBEi%wj#Cube4{_iL9Gp+#&fLpwzH>Q<Ae0U%NU~p7?-Mj|J9tL%seRnh< zDsDlPR$*exrCK|G6*4jdv<g9qERNS;=RH{w#9p`~5ce0c1E?x&tbjUnp!iITJ9CZG zGI`ZxK;W%k7pjRsLtDFf1-WNX{cskzwu{+KJr}z2mWP=v>3SG&c23a213(jlg5s<y zj0ib;S7zPnrQ%Fx-a3bVXqHzyrCjj12n;-XPHs~00}0GXBLI|norj=sc9+b<LtAff zD=OvTlzZ^nlz}++XTJH#%TBa$^_t!6l3L||`zDr;4nk%i{vs0J8t_WhrZ(Egw2WY= zMV&SdUim0T$SZtWUcymG_-8PWr~znhT-NdJ`fpqm-9XIAgNhMz=nd1rNoNHztZ?A| z1VIc(Pd7H8SX3M{;y{lD5QWv7Rm2~sVz@=o5}=Myp)~g#Vx-QUOl)cE!WyYq9z8^B z!fCSBbo_dnD{F&h>c+?yWQV<ZBO=Ah$&oY;SH!*mbQNEwU-GXM8wyLW83A9uLow(L zzl=BL<s~n`Z#!WfChcQ&5mYkU&!s-F#zvWlHxyZ*c6uPOJ6FTpuajvx4bW#%-w2Aw z2KCd^O?mBSC;Rk`Vg$K~dV{oZ4xO?48hE}>)nFhzoFIr6V|Yo}S>k;l&kzSaZ{0?! zV$Yiw*tiqXa}J6~=eA+Qr2&^j*5uM}_}#?}-QbQ*qEEyXz%Rau9CHMip8kH}XtQ66 z+7%33%J2Xf9ToS(V|J^F8stR=x4F%R%C(Oh9xw5!txmD70@?kqiOhe2@Cq6eABmIw zl8{h-YL-;x@u)qjAVD=XJR8e1(any~cSIGpCxxWxKYO}MdULjuSa8A5DXGR=zJ0`6 z{NF|cq#sovD(=8<dJOw~ejD@~<~|lZAd`VS0-y6yRF#25-N3<jNvyuLARC}*y%$L? zlSWK(L36ZK`{+dUco1_Z0H5;F`uH9v4##O*Ry>F|M-!}W0sI6MZMVNTGrO`^qaiK{ zQi;HC)L)JT`H^rRgG`n&2A4s5x|Pj_auDz)d=xbLz@1&Hu{KRBilgZyRG_e#m2g0C zPG#a}SLQ8CUpgoEX`Y%5zY*8jGNOU{jAIr3fhV~;*KTe#(J;(JCMn{9yq}w|#iRd| zYW$77!e=DjiC>ur_;D3zXmmGz@C7^!t5Bs0xfPcjzh$gf0>csT?=ts^pKX5M5Sjbo zJASt6i%@oTF{uB{ATP=#WCD?jyNcsnq!XaMrTe|SM-+xv%w9D8W;spIEV0aEy3o^6 zc{(+)JaFkNvw>#EalJrZ`~FOaP3li+-;A2@{5q#ycg5gz2eT3mx3N?X(uIF=v15_8 zL__2~Eb}6GM4W3-5pVfm#hL6@$c6XD)5YyhSIx-;j@vnCHrw6#d7IM0`Z%apF6D1E z*kiW1^E1CI3^Y*~xQG8qp0MY2KgwG^kQ#=dIPbFdp+6OaC1Jo$zh(D6XA!42fcy)h zjk0nfXQN`Eq$|UQe7at&r~#%_%`>wIOi#@25N<I~1}f$`Ogh9j9N`tzZ6&XNN(&7M zt(|!8;MxA1xO`{4mmWK%gSblsutZ#63jwOsE6@PwX+3-;Cnk2u3g1yaJ^eZBunNx2 z2YZ)SsJ}wz3mE=7#a7qnJ~a9#%K;>!GBeaYo0haVc30n6*Op3bniu#xT|}Vippd1$ zd}(W1U2QyY&P*wmI2}oZ8dUh$y!g!vHcm9X!Xj>UuR40|CULsGuFqeC0i?$|AJG7D z1s&{c7OsYfPX#SA_un)2zq_eo2Kq;*aZQJc4S0iF_#grvg<pSI%~>t%vStvrnBUKh zjz*5Kx6}0rL!Kau96?Aa85l<II-M9MNB3O}%9ylU1{5q~pzK;wTU)zdU#AF|rvF5o z9oMS>{SBxZJ$6`M`?TseVqH<j>^$=HOP;gt5wx6?yZB@7yat14KW4RHRLTpr11|{8 z)%!l`QxQ0P(h~E(aIWdOd*A>YCgPY?L=a?>F%-chG!YBj*s46R(}tBZWmxhYDqg?= zME&5Jxk}Fajm3WcVjH8#qder*|3<^3q01-2Q7yxm3@b6pM@_sC4w2qteJbfehozZ$ zOc^77BhkQhIxKq#`H9q0W(8ni%dE`}W<dPTC(I)Ho2<thz6DgNSW3?AHX|A6;!4~I zvHPYvf5<IIA6pQD+?nB;{!vMKJYDU{e$Aw<|NUfET9511I`>SZ<<_`VqP7JG6*v^N zSdIgnk}0D!ET8WiwZUb0N-JKJLAmjzy#)J1UbHr{S`2g_qr&2?iuM0#A_y2l?ZoE4 zLvG9@wHVe#`D++k)aEb);Gj27&gu=09Q2G(gI|SVicD*(US1cPCAJ2n<e<D2A~YGj z!hM4s(kBg{hJGXM&v1LeC{U~WJoVv)aBk4s=pXEW{lzEz@ok)=5h#Nac49F}L=X|= ziZ+&BQqud0Z+^38?l*ML4%*VJfX<sS7Y4C36p&oBGs5D{=$-YGTShWB*BjLAfD2&} zHW9@oBv}VC4UjtH22b&WL9jzzDTq1`^eUCHn$5H&ho!Ah;e_#<c~TlktT&!v)+@i; z@6?va7VEChnbzGE2Oj&MIVh+?pPIISMKZ2+@Y^(B0~MtoE#pU$qwOXD^`rf<AsAbF zr(wiScK3q@-npI6)bnFkGZUjagP~#VlO1Xc;K}KdFLsr21|iP^#R%{&xC0wJ=Q8Op zoMt?mh;f;&nmxSA=bV3FwWU>vRr`C`C|N+_>Evt}WNyKfa6S_^3St(Z|7m^>N3iF> z*m!!%2n{nx1brDinMHSerS>K48vW|S6nN{*w`%gSj!fkQND~jw=htox$%R$fGY*$o z8hASis@?_~b@Q?1Z_=a_2tEk-8}2Xg7i@<LLMBgnYa8BRMLQ#hc_6O6=?X$QC@4Ts zP>AeIJIEETPf3M<0pLVz3z%X7S<q(ymb9W(j-#dC4HYn+&53kS2IGbeTUY4j<ttH7 z+BmI!@CpD+s$;5gTzsvigWWp}FURaa(Dnnqa^t;mH%mJ}l;SQ^ZvM3vCTrt2NMRn9 zzcNRH<4Ey5*+Ce};I{350zm@<T^j?Z!QS-_Fcr90kyY^xUi=(5921t;HM1Tood!1b zJ9mPXmr9(m4IvXjr5D+XjLv{E&&)2eB5skmL^l0DryW2V^0I^$Ax~MkTJIq79%6>$ zbGAN&3e+^u*Ma{@S;CGFH@VEjhRP_#ZQKHlw|DMiH4F-j8ZDCx52*OQ`rtTKxFpb9 zboTr`yf(v$Fu5_m>oWyc>}O)<ODZ(A4QiL<tRWt^EIg<Zb-hDf`M`4eTQ)zFvKaSh zX09SFbv%g=kuInZm=}{o9(z;h{vw`%9Bf*l=P7~4>jrh@I;ylU9#cCJ>Yfy#P}GPY zJP!FF6+;lgWYV;QMk+agfK|))`m;Tu9ISS1zpaoC9-uK4M9YgKURMB(YCV-IO%D3E zvq|yfr=)hKkuszgi%p=`kzVXMSwJg*prDEo;!dnV508&ARJAaHfk3Emt6#@Le~%L? zD#F-CU*kAH^E_Y<jPaM1Q$FGYxabS=3w+b{Eoq@+S0ThumMtZe2Lg*(zx&wD0bMzD zcxe#AeK*q&vq4qCuqb%|_RF3g6n4VNM`+jqfdQCGIm>vhreS-Xp*ghqlD#t2YQ9vp zT%Ozc4-w|;v&U##yQTLS*@9BF*%oLJdq&bI^h^{H)G}G4_Wsp$fG%1$Ik+P}S%bbO z087i5=U(r<BM3(h(N179u3sqESJW-v?}dn?JI&qdHlsqsmx>su0Hm*@5^VKPLN4-_ zRPfn(vs=l4`l(@W)r<Z>YIjb<W@oUg&u_%CP{Z*(6x6}r<FP94GR1WQWI>HH#$^O~ z<nwtU$cZ0nJgpP<NZ{<f80`JcXPvKXFcZeL^=6|c_S0lan^9kcm7Sklyw;HEW^(Pl z4|t?M;r^`D`~q+|iq#D51vOiKBlcZMEJCM8xuGL@P*;XCLj%`=IzOKUXz&nuM9;Pc zOXqY~+#UkNR$#L)ef6DpVmxM!O&fs_@E%)>?BK}U7er^J2?a0pnx&&JCWQ$=lq=z1 zMSt@HoP?o3Jy@;Y-trM1A2aCY^rrE$CD?jFRrT0Sms|iI(38WaqKrrwndG+arM1bx zBYM|`>|t35!{QllTgnF^J*Qd)|HX9zb&Zn;T9*BYF8T!G253{6HpSU@x?V+tD#R6Z z5Px~-(l?6_$2BwH1>-E6n*Ls?!$h`}bR8mFOri}+L2dhG05r#tH81opEf07u8gLlC zVUUvp{uNLJcEMKb_fP|i02}WII-KftA@{L!A1#E?@QS#|YHc&Kk=H>QAe7K(?i_6K z0Rj||`67v9ur(lkc!fOiS2FxMKE3C5u(@ZW9~(rAEQ+nnoBEbQ7wQc~jHsjR2IgHj z{eFEvTjEBz%Sb_@CBLWg<llApcA(E$qxt^^SHL7-z3rtZ14U<;$i!`@T9zw}xRXh+ z6h&=H6XDAB0oUoAN0OPfb<!24!JHIuj~lKI*Y43k1RJvJgRwaFr47_gvO8RbAH!lP zT`;4{Y097^Y4a#qlIzwXI+|9tb2+|jJpyV$Qn9b~>4h7A18TP0Yv)U+6*^*;yvf!5 z;dQ(cIH!3lI^5?LgH(uPI9u=<ES()B&%LR`$b)5%ut45=+v%sx))xme6x*?9$Eh=s z9z7QN<7le_BS-Hv5Xw|BXc{Sh`uY|tI64cad%igI4S-t&jJdcv1qZ|Zu~Qmuo-?sv z+8mmU;qTnGc;rjE%mfY2WC<YLS3OvKo_(h3k^w=EB2=5n6~LR~hS*d-WC`L%aXZkJ z=+dVlMDS6zjJjd~0cT?+=*w@m*mv$ATb_)HMhxC2f#@9t@l88!3(gYrxG<q#QTH6= zDS=*F3o2^yg2m--2M`-5nk}~AC`Lp+c-x>-KH@Ap8v<~*2>S5bP4|W&cfZes#XlLU zOE_%~mHM^~@Atgpom>Zrt*q00vC8y%bLJvDl;ZZ>OvwgYj?*1j$1%0+(!hN2C1^-9 zfeDhML(IDiL)~xZ>GAcRRH;oP&OA8>oIoH}y7C4Suc%p@$RTQ-u$tv^CkQVVwVSem zoCZ;g{FAm{-FK|BnS_AHUZfj9SKSDo9qyD49DY+jqKU0Z1Fj{b<~&qpstYlOuE!&} zi9S7}piX_~Q7OnVEVe*Y9%7@t;s4K#Yk*bNRPL{b9{D)|T;V9!?z?ccx^yrALo`AO zkqf3gfc0j4@uTaKz^r3ANYPMPOW&?_3k+H~QUG!;p?L8$gGbF<`7<@`00y+DwcKlI z^+XTw1Vn%R10WCsCWB0r&Pq{&zf1;$`1dvd5}zReBz2oi_S&NyRfsuY#Hg6AfspKa z&qx`$w*J%iF8hl{nPMts7W@@m^;~#O*A_2dGZ~p1a7zyCv9!Pl8U<X!0qba|*H|Sd z%hKCfi@I|jmIoctAK7X=TII2?U(nEf^BSjh4@%#VDWZ-JCM0hu03IT9b)J-V3;w9T z;AniTu0cy@?CGUU=K%QIQaH!WK$X{GBIT`$RUO{y2^U5Btsg|g%O9Q6DUPYKQW%*j zuDV;Icg3_lfih-JruK)-{g%e}jEt}VZsDqPMEU98dwSYEj}A>5Dql*wD~<n5S`FWx zT6X7I{pmS&Dr5CXysK9e&|IoV<Xz^*qk$3N$=vVFIJMAviY!mHGjWd)mFP@Lc6)qI zc7#BnHm$&uW!VjtVEm;`r%FpfCnBOS!LFrA{>y@Wxo5E#inq+ndfc_GFr@73)!g&x z9IM<Tc_ZZw^>1yTr1jVpoE|1%^gaRm^`(J|FyVk@DIlpcoE&}vkwUcnObod<nz%4w z<5}|e4X;CW`Q+eCucMW}mqiY4o<O`LciDehlUw)jRj|aGSF{h=Y9hH==biE@xOLSS zTE%xSQg~*!M(^NJ%kAN@t$L5u`&!8*NBxU}CWx(PWeRfcmFXzzA>p&KGmkv>?Zx-Q zE|Dd^3;nekXkD)>VH&y=m?8Taf|qKH5)!v&Q9sx6bT<pisjuF9t6ypR#%|#oLLP{T zk(?GpZ@P4I+Q{O_dz@TSYM_i`W#Z(-#zKNnAWX<9)s?@MAFNbW^nKY=QLNvoNVGL} z!CzBXwyS)%Rcd2=Cx7aOU=%5x)kb>&)r*M0q`H-Tw$r<8oZN_daR<_qct9loe90<Z zy9ngdP1F%{{obsQZAw03q9mYhuVAz$PIxuE?VCn!Yd0i8bAs(%Rpj<(-MXEPc_;0? zW~rotX`>`_bKg}7vIF;QrG;qTXb$&*hZr;6WkPF5TC;Jwn4SlPXpMGe1JMDIC@(3K z<O<S?(xvL#0_Nj6dn=lTn7OpJDE~$twD>s6-p^p$*1qJ6_W3>8be64|OJ{MH$wYoX zF^Ztbg%d{5SO`~COcXu(nLIp1AQ#%l?zQ&9qV3~HD;5&)8|HOzgT&ER&*`w>HWJz` zj)U>ouW5Vc@jmcj!liyaZh1}>r5%^VD0%CnEAytPN@F4A(IEXj0eVTRw4B}2jw|H{ zU4f-_sTheihR(Uds|F=%u5Ke&QRKAeem*r$jN+%*_y4VB;5+^ICnBS`GA8}Ov7JXy z8<m#5q~<NJdHeaZafJO$kQyr+8;1qZ1Nb`_3rq9no4r+|{HvU8s$=${!J=~`H>B@K zGt$5!Z4Py8_R4%iI96#?bM}>ua?`~%#AODHy!`p{C+?t-LU%QlVk%W!4dapeQhhw- z7neIbZkmRwTU^J7H0HPFlZS!z_*J^_!3bW;rQ~(Y=&q~sNK&_9kT#f9G`iYn_R0-P zJaWG{xO(`Pw;L5mYfT=#a>c6qAMjA67DCz=NDvnY1qP1VIdgj>Mr)Gwc&m1&)Geyq z#0>w~I3X8k7d_yWU<)|`W1SF;LbZ?gY*8v(sdgqGaRAm5_qsPeka*Z_H?l^DJtt1a z2X_y9V0048wF~W8?~DE<_hKS<23KNo<;~XzI2uWA?sbxrd)bR*?j+V?jMo!wPJ`!Z z#)jJmqus}AbYc@n@7$3F8mv|5sZ0R;Ju<?1+`5F+^9ONSWQPPho~}7wR_V(bH9Mw1 zBqIi%`@Ur6HaID27zs)6!mM%VV8F*NDWrOp`PWCN>DE&b0(j)N1rS3+y`rcy4EmW@ zIc~h&{~DUXb%wNb^PV}uOJ(3_w+lGTUg9c&Ds@T^h2uj~a0=^OMV9@lj)$32WvV>V zzFTUZm>Mm|){fGP>p%<0pCB9;ts>XKScD_$-JMr$Hl9Cw+cq{dz{M^iQn4Uhj6~J` zzMSN6#sDCpRKIpTW^cF%-ogTy*$5R!``Ar2d9>Mh4foY0iF{qD?Eyb{7v@Wr{B2%* zf6dLrb;nn}urTC87<ESPv_5%d5KxKsi8b;+6vg%_5C^sM177f{ttx_BkJRD_G|4hH zz86ySBxEh`@8<<dCMSYLKST6pT6Z>>w3l;6^Li=lr1J)=b|y)v#lCry_wMp*5y-C1 z>e^@E3cK4Bd^!~LMi|)E#<S*DRz0nfo8O#JZ&++N&A!lN?4zTbIr;fwbZ-A8fHw)h zzo?a)c(~gy^gP`NxzdJDoaZ!DVrB-!(s&L8(J}prC9=Ov7G#aI2tmw7#lQ=F7{XAo z^XhQzj9%-5W>UR=l-T%#C)XvZ3GlR2ii@=pe<DkU%jx>IKE4W%pkzJA4vqny{;CW2 z{J<WeTkO~B0#uICmgD4+=e{)A;K;)|cW2dI%v7x2lG?*1IYuGamoHyLyY0J{H4f*M zk5oGoZphqlULk1<q3eY-#}-KR83pe7oj~~EXO+s_Z6bzN-A<ektJk6B4$3#&ZDK3; zpS*96UuTDXr5LEGxM_1R@nSKeelnoY*63agUA{EBo}jS`EK3CG?ZAL*42PtF61r#E z-vzpQ;pEJDg&2h|{-<wGG!n-50wz5nE@7*I-2EnD$?V!qE!yTu=diNBrB5INiS!p% z{X$7<<`f<l@!vSzJVB0oV%`m!#3~k5k3|jrfNW$~ZB3W0<MpmeA#>4s<1~d!{e^mu zY#K|>!Y5#WW>$1rulk#8*v{1lfR{>R7_xQ-)sG<I+OoicEUGA2l3x5F;siE$I!c_> z6Y@N%+!OYJ2M4Rejwt}YponVpe<gp^>EYy*Y3}Tekz*8qWhy21Rf!*z9$34fTdmt# z!_TnKb{@RsW1FRc%sdknxNzAQy5w+l;v^pU(?mZ&M+Zhw8V^?t_8|6ZrPw=vNX)yW z)(M=Oj=s27Y~*)UU^x)>_%t*$n^VNRwQ2k9Mpm9hs%hv5!`zOpt{x%qcwJ_YXb8I1 zp2w9sg$9uNb3+#;+LL(CSyfcm!>Tv7r<`V8HWx4v$w&KsQJ1nGtuSBirqF88_Ptk< zAp`T;pJFu`uh&wI6<+Oa`}>6*q$K8CKufGyTK8~_wl^FG6#7m|;FoMBZ+I<1M5JbJ zu4KhPwPX5Fl3=@5LgiwCYTJ`hzDNN)ioZb+g>j4vq_)v8ee{lVwyR>HZSJcF^lU#L zpfBcG=p@{OCAR}Fyo_u}pa;&g2JY$_tn|U`f;)<ec9GA1h8#8OtoJ=#j!Y|+{1o>U zSbe}(siP{n*{S56j0{t2Kub6kQJ<=MTPd;^&e#AhHSF2bxj$SEo+c2CO5tB1j5>+O zL%w#gDT-$_N6yf#wJ&?S!|XK2Y{&Z?g=9$su=q)Zl=`tg1D&!q$*%UOL9=1);-g9G zX7jx!+C47FKq`Q>zW+9J?~e^oKpUufop2gPa3v0|shO{|6Kgi6CAqgmifRcHO72-2 zEU#|&J6kR*LV~zYw4LdUYD-*5@^T9duq!jrxB4FW<CFWDlHm;^1m0O-P8g}<dS!4_ z2T=};Oixr?Ej76Q-8?WyM-tJM9L-g%xr>dp;L_~?=I(~|5ZvVP<A66laCgFpsHE<< z+IdAo6GLU?yWNVyBr2V;#>qX;pJU^Y=fK9W5NIPL|2X6XaLE28#Inw3vBp3^c)0p} zeaLpNvQ7V%*y<(qF}K|O6}x7-PZ6%J9sI1Pb<g21EavZ4cpey{+9HK!7Fxm{qh=+| zk{gDf)ELG_MrOae><#Y*&JJ%mpql~LiTa%aGJ9$pHpc{Qi3ah>S9t;DS+R$TwjK!# zWvD#ZdOMUPkgXCM)#OKgy<3-MLa+`5FI3unc^s;ww0#Qm$pS`CSy))AG@B<rgM;w^ z&-*GoL-5DJh=LE_*1SuAJd3RbqN#~hVtdF^sHb7oZ*O!xTix2{z1|ZJHB!3A&dnAC z`i3bv3lT{ZWi`=;#R~yl4~6YBf|KH|8yE2jSCl~E!a55OTYUj_-7VbHffE4F*l3bM z3EmBfKDvLd8w{r=^{mGAe;0f_tnC~t>G8Upm{><z`Y*!K$Ck>A`~8LEY0ow_X$y<( zXH|iL!Iv*A2%`BeHw@hpXRz#bPyBf)u<U;$r_vYT?l{3`Uqf$sjV~`BlI!j%?6Is{ zlR5U@I1W7%Z+(Ei6MnU@roi{jc`Za-oM_@uQ}AA7eP3G?w{NM$V~r%cA%R?EFvGaf zd@_kO2%CW=Gqk8$b9hEqM2u-RCF3V+YKl$!{Z2+;bb;Hik{2<Af~6}V4Fv{5ZXZ@F z_d1O0$9A^Y@rR@yJV(V`2b45|k(-8%<YvngAIQE<36F`Sj1)ac?#Z<_Zl19m)<&=A zj%2G>Z$U2|0S1^5vx!>5^+b%EP$coOEuIPN_{aGHBvOqHkbmw)c=~!`R_v_z_Eo2v z405dt>;AgXFh~6WFI7`}_%;<o;^ch)%7#TeZ|9<E{gVR{;f?P}8x9Mmh)P=r7~%qO z8UEKre4%LU*V_=+p!52qIeiK8c}~=8I~hVYl37VsV^;i%JLRhwF^r+_#p|gR^xW)4 zWkzqp!y`(|sj~9&zSFJ@sAi1RANbh~3$>p*W3?2pw@0-ecVThO?-h{G5oJmbT8c>M z*Nd>PL~sFLV3)2YP6qvVf)lT;-Et!*UyqFI!1HL>Mh`zFFHiTzquT{`1J`ov&QT3I zsj7zX@fPO3apE{>lw4oB@iJ+`zGivMI(M-$Kh)r&Xldq_i(`9lS?rHxwVWm3VnB5F zk?rK~4TA6d?g5+E_^1}U?UYTJWS>cYfw5aIzeVnch=_Ze4Gfz@fuWUi<H-0e%woTR z>vCCnB8Xr4o~1pk4X|6gAKCc?1h%NX)!};)67E*+UGzWKRk?WhU5YfbPLq{a2WV@L zG_OWJW`mL%zuVw#GWy~d|5(E{pvBKfvBH3{O{DS3D_AEqjn$R2b|6kAY1yx}z0jt0 z+gwPM@Yplu0OU`38$>~7q4bHRnR*o=+_Bk9JuK1}mm^1MY2zIt!r811z!zl>E|6|& zX$;gFQc;x~7#==Q7>Z$F_+dZYa>qJZ^n1z%KRV98Kf1Pn@4ok!>X}eAg|qlzi9`Be zh4JBNADj!tNbU(%_ygILa2eb)a(TqAn_hEWUPlh4VfNYvQPcXAR`d46i;~FT9L`*K z4Q;*Aw1Q5<;cWFdKK|YwZLhAD+uzIk@2IJVmnFV=I5?75B(-Uz9&Tb+yj)mVk>iJH zZ2qw=wkPJI$;P#4m6+-7oV&F#_aN<Q?fHm!%i%hAy}Fj!yFX{=<REti%sL22UnRbP z^#9i?;m;ubU0npoTPQ9m00cPc4(K1gn{N4CeJJKTwWey?W}B3SQ367`1}q${q?67J z>S{~ArKRW6wM}c~r>JNP$KGY?efEK_Z(|y;ATG6!H~u)MAsrwZF{2Ztp*Zigg>3e$ zZa2up{!PWn{b*0d@4tke^xHz<X?Yvz!rU$9F5rF|a{^hqcH{SNf_nxhUQ<v=;U!DN zy^1G2Eq?Ih?Dqr=aeg8?3T{L%>WllD{hp6zI5+qt9*nzz_dkmTYL{_ec@nRa>bAVR yC`Qg&SXlUIJn7!y?R1u?p-aTLYRYten|DlQLt0N#G3^BScjuOpOu^0j&;JKgl&a7G literal 0 HcmV?d00001