{ "metadata": { "language": "haskell", "name": "" }, "nbformat": 3, "nbformat_minor": 0, "worksheets": [ { "cells": [ { "cell_type": "code", "collapsed": false, "input": [ "class A a where\n", " f :: a -> Bool" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 12 }, { "cell_type": "code", "collapsed": false, "input": [ "instance A Bool where\n", " f b = b" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 13 }, { "cell_type": "code", "collapsed": false, "input": [ "import Control.Monad.Identity\n", ":ext NoIm" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 14 }, { "cell_type": "code", "collapsed": false, "input": [ ":hoogle printf" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data" } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "import Graphics.Rendering.Chart \n", "import Graphics.Rendering.Chart.Backend.Cairo\n", "import Data.Default.Class\n", "import Control.Lens\n", "import System.Environment(getArgs)\n", "\n", "chart = toRenderable layout \n", " where\n", " values = [ (\"Mexico City\",19.2,e), (\"Mumbai\",12.9,e), (\"Sydney\",4.3,e), (\"London\",8.3,e), (\"New York\",8.2,e1) ]\n", " e = 0\n", " e1 = 25\n", " pitem (s,v,o) = pitem_value .~ v\n", " $ pitem_label .~ s\n", " $ pitem_offset .~ o\n", " $ def\n", "\n", " layout = pie_title .~ \"Relative Population\"\n", " $ pie_plot . pie_data .~ map pitem values\n", " $ def" ], "language": "python", "metadata": {}, "outputs": [], "prompt_number": 4 }, { "cell_type": "code", "collapsed": false, "input": [ "chart" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "png": "iVBORw0KGgoAAAANSUhEUgAAAcIAAAEsCAIAAADfNCTgAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nO3deUBUVd8H8O8wA4OAoqOsYjyyuISCuaWC4oaJhhou9Ihi5JuaqbiVEq6Va2Xu9SiatqmoiYZmiki5AeKSgRsgiwICyiIw7HPfP24hsQ7cmbmz/D5/wcy55/wG8ctdzxEwDANCCCEtpcd3AYQQotkoRgkhhBOKUUII4YRilBBCOKEYJYQQTkR8F0CUYtq0aQ8ePKj+Vl9f38HBYdKkSePGjWty2wEDBlRVVZ05c8bMzKyhNpmZmVKp1NLS0tjYGICjoyPDMH/88Ye1tbViKzc3Nx80aFBAQICJiQnHnhvC7+cl2oAh2ui1116r9597//79TW4rEokApKenN9Jm5MiRAEJCQthv2c5TU1OVVLmrq6tMJuPeeb34/bxEC9BBvTZbvnz5tWvXrl27duLECQcHBwCbNm1SxkCxsbGxsbGWlpaK6nDhwoXXrl2LiIh4//33AVy5cuXSpUuK6pw7hX9eotn4znGiFOw+3Z49e6pf2bt3LwADAwN2ty4vL2/u3Lldu3a1tbX19va+d+9edcuae2cpKSlvv/12165du3TpMm3atBMnTjAMM2/ePPb4t3///tu3b2cYZujQoe7u7k+fPl21apW7u/unn37KdnX37l13d/dRo0aVlZU1Pmityrdu3cp+W1VVxabV//73P4ZhKisrP/30U2dnZ2Nj427dui1atEgqlbI9u7u7jx8//vfff/f29ra3t/f19a3ewWTfdXd3Ly4uZl+pLpjj522kJLb4ESNGjBgxIioqytvb28HBYfbs2Tdv3lTEvzBRIxSj2qlujPr5+QFwdXVlGKaiosLZ2RlA+/btHR0dAbRr1y4uLo5tWTNW7OzsAHTu3NnV1VVPT08gEFy9enXatGlt27YF0L179/Xr1zM1DnIPHToEwNramu1q3bp1ACZNmtTkoLUqr47RgoKCVq1aAfjxxx8ZhvH19WXHcnZ21tPTA+Dm5iaTybKzswGIxWIjIyOJRMK26dy5c0lJCcMw7LsAXrx4wXYrEAgApKSkcPy8jZTEMExVVRX7Vvv27Xv06CEUCgFYWFiwf1SI1qAY1U5sGJmbmzs6Ojo6OrIp4OTklJCQwDDMd999B6Br166lpaUMw/j7+wOYNWsWu211rCQlJQ0dOtTX15d9feDAgQC++uorpuFzhVKptE2bNgDYfS52k19++aXJQWtV7ubmNnfu3HfffdfW1pbNx6SkpJs3b7IDRUdHMwyTkJDAJuyJEyeqg5It7+LFi2wZwcHBjNwx2oLP20hJTI0Y3bFjB8MwcXFx7Ld3795V8L834RWdG9VmVVVV5eXlpaWlBQUFAMrLy9n/2Ldv3wYgk8n8/Px8fHzYK+MRERG1Nrezs/vpp5/c3d2nTZvWq1eva9eusZ00MmKrVq2mTJkC4MyZMzk5OdHR0ebm5qNHj5Z/UNbly5d37969f//+1NRUKyurb7/91s7Oji2gZ8+e/fv3B+Dg4ODu7g7g6tWr7FYCgWD27NkAhg4dOmzYMADx8fHy/7ha8HmbLInl5eUFwMnJif17VlRUJH9VRP3RDU/abMOGDe+99x6A3NxcV1fX+/fv79mz58svv2T/GwuFQplMBsDa2nrSpEnVx8LVkpKSBg4cmJOT4+rqOnbs2Pbt2zeUejX5+fkFBwefPn3axsZGJpP5+vqyu3tyDspatGiRj4+Pnp6eubm5jY0NezgslUoBsEnEYr9mXwdgZGTE7gwCMDU1BcCOVY1hGAAVFRVMfTPytODzNlkSi901BsAe9RMtQzGqEyQSyciRI+/fv3/37l0AXbt2BSASiUJCQgQCQUpKSlxcXN27Jo8ePZqTkzN27NiwsDCGYbp37y7PWG5ubnZ2dtHR0WKxGMCMGTPY1+UclGVra/v666/XerFnz54AoqKiCgoKTE1Nq6qqLly4UP06gOLi4ps3b/bu3buiooJ9i70/QSKRiMXisrKy9PT0Nm3a3Lhxo95BW/B5myyJ6AL626gr2rVrh3/2knx8fNjLO76+vitWrHB1dfXy8qp7/MteCEpISDh69OjcuXPZw3B2/87IyAhAcHDwmTNnam0lEAimT58uk8kiIyNdXFxcXFzY1+UctBGjRo1iI7J79+4BAQFdunTJycnp2LHj9OnTq9uMHTt29uzZDg4O6enppqam//3vfwEIhcJXX30VwNChQ2fPnj1x4kT23Cj3zytPSUT78XtqlihJQzc8tWnTJjs7m2GYS5cudevWjf0dEIlEq1evrqqqYltWX3KpqKgYMWIEmziurq7sLZyenp4Mwxw/fpw9fPbz82Pq3I6elJTEvrJly5aaVTUyaK3Kq6/U1/L48eMhQ4ZU//b26NEjPj6e+ecikkgkCgwMNDQ0BGBubh4eHl694dWrV9k9X319/U8++cTCwgJ1LjG17PM2VBJT4xJTbm4u+wp7EiMmJqb5/6REfQkYmrZZV8lkskePHhUUFHTv3p3d26pXenq6QCCo+9RjZWXl8+fPjYyMWrdurfBBG5eVlZWYmPjKK6906tSJfSUnJ8fc3FwkElVUVEil0rS0NEdHR/aMak2pqant27dv/LnSln3euiUR3UExSrRBzRjluxaic+jcKCGEcEJX6ok2kEgkCQkJ9V44IkTZ6KCeEEI4oYN6QgjhhGKUEEI4oRglhBBOKEYJIYQTilFCCOGEYpQQQjihGCWEEE4oRgkhhBOKUUII4YRilBBCOKEYJYQQTihGCSGEE4pRQgjhhGKUEEI4oRglhBBOKEYJIYQTilFCCOGEYpQQQjihGCWEEE4oRgkhhBOKUUII4YRilBBCOKEYJYQQTihGCSGEE4pRQgjhhGKUEEI4oRglhBBOKEYJIYQTilFCCOGEYpQQQjihGCWEEE4oRgkhhBOKUUII4YRilGgVqVSakpLS4s3v3r2ruFqIrqAYJVrl5s2b7733Xos39/b2VmAxREdQjBJtJpPJFi9ebGtr6+PjEx8fD+D06dNBQUFDhw7t3LnzsWPH2DaLFi1ydHQMCAhgGEaeTQipiWKUaLOYmJj4+Phbt24FBgauXLkSQEFBweHDhw8dOvT1119/8cUXAC5cuPDXX39dvnzZ2tq6oKBAnk0IqYlilGizs2fPvvPOOxKJpFevXsnJycXFxQDGjRtnZWX1xhtvPHnyBMCFCxf8/PwsLCxmz54tFArl2YSQmihGiTZLS0szMzNjv66oqGAYBoCRkREAgUDAvp6RkWFhYcG+rq+vL88mhNREMUq0mYeHR0REBIDk5GSJRGJiYlK3zRtvvBEeHg7g6tWrpaWl8mxCSE0Uo0Tb/PHHH5b/KCoqio+PHzFiRL9+/RYuXFhv+zFjxty5c2fw4MFr1641MzPz9PRschNCahKwxyyEaLHMzExTU1P2wLwhGRkZVlZW1Yft8mxCCItilBBCOKGDekII4YRilGiwiooKfX19gQrRfaOkLhHfBRDScsnJyZ07d3748CHfhRCdRnujRIMlJCQ4ODjwXQXRdRSjRIMlJiY6OjryXQXRdRSjRIPR3ihRBxSjRIMlJiZSjBLeUYwSDZaQkEAH9YR3dPs90VTl5eWmpqaFhYUiEd1wQvhEe6NqJD09PTw8XCqVNtmS1roAkJyc3KlTJ8pQwjuKUbUgk8lmzJixb9++uLi4WbNmBQcHN96e1roAnRglaoNiVC2kpKRER0d//PHHCxcu/O677ywtLQH4+fnduXMHQFxcnL+/f621Lupd2eLzzz+3t7cfNGhQXFxc3R74+3xKQSdGiZqgGFULdnZ2zs7OnTp1mjNnzq+//jp27FgATk5Op06dAnDy5EknJ6daa13UXdkiKSkpNDQ0JiZm0aJFU6dOrdsDrx9R8WhvlKgJilF1ERISEhYWZmlpuWDBgunTpwPw9vY+ffo0gNOnT7/11lu11rpAnZUtwsLC7O3tz549W15enp2dnZeXV6sHXj+f4tFNo0RN0Ol5tXD16tWysrJhw4b16dMnKCjIzs4uJyfH0dGxtLT03r17paWl9vb2GRkZw4YNwz9rXaDOyhaPHz9mGCY3NxdAUFCQvr5+rR74+3xKQQf1RE3Q3qhaMDc3X79+fVVVFYDy8nKZTMZegJ4wYUJAQAC7I1lrrYu6nYwZM8bExGT+/Pn+/v7h4eHGxsa1etAy7777rq2tLd9VEEL3jaqNpUuXxsTEdOjQ4fHjxz4+PkuXLgUQFxfXs2fPBw8edOnSJS8v7+2335ZKpSKR6NmzZ4GBgfHx8evWrQNgY2Pz5MmTiooKX1/f3Nzc5OTkFStWsNeUavbA8yckREtRjKqRysrKtLQ0Ozu76lfS0tJmzJhx8eLF6ldqrXVRV1ZWllgsbtu2bUM9EEIUiw7q1YhIJKqZob/++qufn9/KlStrtrG2tm58mV8LC4vqDK23B0KIYtHeqFo4f/78qFGjVDli69atY2Nj6UifEO4oRnXUgQMHNmzYEBsb27p1a14LyQUSgCdAJvAESAOygBJAChT880U1U8AKMAc6AJZAR+AVwBZ4BZDw9gmIzqMY1V3+/v6lpaWHDh1S4ZgM8BCIAf4C7gN3gUygEqgCqlrUoRAQAULADOgDuAA9gJ6AA9DYqQ+VKQS+BhYAhnxXQpSHYlR3FRcX9+/ff/HixTNnzlTyUInABeAKcAV4CpQDlUobSwjoAx2BoYAb4ArweW/pPGAP0BvYC/TksQ6iTBSjOi0+Pt7d3f38+fOvvfaaovtmgD+Bs8Ap4E+grKX7m1wIATHgCEwE3gQU/hmbcA6YAJQAAMyBLYCviisgKkExqusOHDiwfv362NjYNm3aKKjLdCAE+AG4C5QB6vALJgAMga7AJOBtQBUPdGUDrkBijVcMgHeArwAjFQxPVIhilMDf318qlR45coRLJ5WyyszCC51M9wG/AsXqkZ51CQAjYDQwAxgN6CtvpBnA93V+CkJgCPAdYKO8gYnKUYySv0+SLliwYPbs2S3YPLMoc9/NfQf/PNilg8np/yYDBQqvUAn0gc7AHOAdoJ3Cez8F+AD1PLELCICewI9AD4WPSnhCMUoAID4+fsiQIefPn+/du7f8Wz158WTX9V3f3vo2R5ojY2RGIqPkhcPNjcOUV6eiCYG2wH+BeUBXRXWaDrgCqY22sQAOAcMUNSThFT3FRADAycnpyy+/9PHxKSiQa18yJT9l/pn5zl87b7q8Kas4S8bIAEgrpd/9KQPESi5WgaqA58AuYACwBHjKvUcGWAikNdUsC5gInOI+HlEDtDdKXvL39y8uLg4JCWmkTUFpwc7rO3fG7MwuzmbTsyazVh3Sl3TSF95SZplKIgDaAe8DHwKmLe7lR2AmUCZf49bA16q9fC+VSlNSUl599VX222fPngHo0KFDszpJSUkxNTVt1+7vkyEZGRlCodDCwqLexvn5+ZWVlc0dQrPQ3ih5aefOnfHx8bt27ar3XRkj23tzb69veq2+uPpp0dO6GQrgeUnu5ccOgFDJlSoDA+QCG4EBwNGWdZEBfCx3hgIoBGYDJ1o2WIvcvHnTxcWl+i/lvn37Dhw40NxOYmJiPD092Xkdc3JyBgwYwMZxvU6ePNnk2mKajmKUvGRsbPzTTz8VFRXVfev+s/vjD4+fd2ZeSkFKFdPgHaAyyAIv/AW0V2aZSlUF3AemAV7Aw2ZtKQPmAY+bOV4x4AecbOZWXHh4eOzcuTMvL6/mi7VW8ZoyZcrjx4/Ly8tdXFxSUlIAjBkzprrxlClTOnfuvHnzZgBz5sxZsGCBk5OTTCZbvHixra2tj49PfHz8uXPnVq5cOXjwYHZzAMuWLdPWPKXZ78m/uLi4uLi41HxFxsi+if1mTeSaHGmOPD38+TTlccEbnUxVmQwKVw6cBq4Da4D35Ny53g+Eteg+ryJgBnAMGNn8bVvAwMAgMDDwww8/rA616lW8IiIipk6deufOHSsrq2vXrtna2qampl65cqW8vNzAwKBmJ7t27erTp09RUVF2dvbixYsBxMTExMfH37p1Ky0tbeXKlVOnTt2zZ8/BgwczMjKys7M3bNiQmZm5ceNGlXxEVaMYJY15lPdoTticiOSIRvZAaymtLN0RU7TZw7CBG340BQNkAb8Cs+RpnQKsAipaOlgB4AecBZxb2kOzeHp6fvPNN5GRkey31at4AWBX8Ro+fPjvv/+emZk5Z86ca9eulZWVjRgxomYPEolk+/btU6ZMiYuL09PTA3D27Nl33nlHIpFIJJLk5OSysrKxY8eOHj364MGDx44du3v37tOnTxuf41Fz0UE9adDem3sH7RsU/ihc/gz9Z8MbJRXNuHFKXVkB2+X5P1IFvM/5Mn8mMBl4wq0T+W3ZsmXBggXsajTVq3jl5uayq3i5u7vHxsZGRUXNnz//9u3bV65cGT58eK0eBgwYYGZmVr3GV1pampmZGft1RUUFwzASyd/TbonF4unTp2/ZskVVH07VKEZJPcqqypacWzL/zPys4iym+cep+aX555M7afixjj6wAZBrrafdwAVFPLaVAPgALzj3Iw97e/tx48bt3r0b9a3ixc78nZWV1bFjx1atWsXHxze5QLeHh0dERASA5ORkiURiaPhyTisvL68NGzbs3bs3NbXxu2k1FcUoqS2tIG30D6O3RW0rq5L/mnNty85FMYyVAqtSLQEwEfCTp2kC8BmHw/maGCAKWKSqB2k//vhj9ozn4MGDnz9/PnLkSBcXlwkTJrCH3oMGDWJXDBwwYIA8y8p6enrGx8ePGDGiX79+CxcurPWuRCJZunQpu8KY9qH7Rsm/XEq75B/q/yjvUQt2QmvS19P/6/3xXTscV9eH6xv3ChANWDbZrhx4A4hU6Nj6wBfAAoX2KY9aq3i1TGZmpqmpKbv0t+6gvVHyUlhC2FuH30rKS+KYoQAqZBVfXMvRzMmMDIDN8mQogO3AZUUPXwGsBGIU3W2Taq7i1WJWVla6lqGgGCXVdsXs8gnxeV7yXFEdhsTdelHeX1G9qYoAmAb4yNP0FvCZciagfgG8C+Ry66SwsHDNmjVt2rQRqJPi4mLF/IzUCcUogYyRrYhYsfT8UmmltOnWcntR/uLkvXZKnYxOCeyBTfK0KwcWKnMyq3vAxy3dtrCwcPny5ba2tnl5eUlJSYw6MTY2VuSPST1QjBKsiVzz+dXPSysVf5vn2t+vy5hXFN6t0oiB7YBcT39vBK4osxQZ8G3zn26qrKzcs2dP9+7dHz16FBUVtW3btuqbkIjyUIzquhURKzZe3lheVa6MzlMLMu9k9dGQXzM94B3AU56m14DPlb8oSjmwGMiWrzHDMEePHnVycjp8+PCJEydCQkJo9WyVoSv1Om3j5Y2rI1crKUNZb3Xr97PPA1XdDcnFq8BVeeZ2KgYGA6qZw0oAzAT2NtUsPDw8MDCwqqpq8+bNI0eq5plS8pJG7CYQpfjfjf+tiVyj1AwFcC7pbm7JIKUOoQiGwFY558fbDNxRdjn/YIAfgIsNN4iNjfXw8Jg9e/ZHH30UGxtLGcoLilEddfze8cVnF3O5wV5OxRXFP/ylDxg03ZQ3esAcwEOepheBL1S7xmkp8GF9k+89fPhwypQpXl5ekydPvnfv3uTJk9ln24nq0c9dF13PuD4nbI5ir8s3Yv2l6EqZOp+n6wF8Ik+7fGAeoKKfWg1/AgfrvHj8+HEbG5u4uLhZs2bVmn6JqBidG9U5yfnJHt95JOUlqWxEPej98e5k107H+FiqvklGwFlgsDxNFwHbgXpmq1Y+W+CGJk/jqt1ob1THlJaG/7ItvTBdlWPKIFsVcR/g+oSMEgiBADkz9CKwh6cMBfAY+JqnoUmTKEZ1zPLl732w/2T+aJvWHVU57NUnDzIKXVU5onx6AyvkaZcLvM/H4Xw1GbATkGvebKJyFKO65MgRfP01CgtHbQ2LjOw8yKKvnkBFvwCllaV7b5YDhk03VZ3WwC45n/oPBBKUXU5TcoA9fNdA6kXnRnVGcjIGDcLTfyYXFgiKXLotmO/4Q/qvFTKFTPPWBImhJGOJvVh0XQVjyUEIrAJWydP0JODTnIXqlMcSiKMzpOqH9kZ1Q0UFZs58maEAGMbk9r19H13ZYuxtYmCighLyS/MjU+3UZtHQQcAyedo9Bz5SjwwFkA38xHcNpC6KUd2wcycuXar7suD583krfznxbKRtG6U/+S6DbHn4DQbq8Ih3W2AXIJan6UI1OJyvJgN2K2iKaKJAFKM64OFDrFuHygZmdJNKR277JeKSvZtlf2WfKr2bnZaSPwjgd10zERAE9JSn6REgRM3mnX4EnOO7BlILxai2k8kwfz6eNzqLaFWV3YmLZ7/KeddqjL6eEue1K5eVf3Utj+8LTcOA2ktc1OsJsBRQ7qOyzVcO7Oe7BlILxai2O3wYFxt5Jvsl4wfJez68tEv8VhtxG+WVc/D2DWlFH+X135QOwE4519pbDqj09lq5/Qak8F0DqYliVKu9eIHVq1Eh78k0QUHBe2t+OZMzyqGdvUA5h94vyl+cSbDkadFQfWA1INdjqQfU73C+WglwnO8aSE0Uo1rtq6/w6FHzNikpcd36c+QpyQjLQUKBUq6qr4y4zjA2yui5UQLgDWCuPE0fAcvV+EqODDjCdw2kJopR7ZWSgu3bIWv+44syWccL13/Z/PgDSy8DoeLnvEjMS7/3rJ/KLzRZADvk+YWvAubLPVkyX/5S4WR9pEkUo9pr61bk5bV4a8NHaduWRQYbT21n2E6BRQGolFV++kcaoMo1efSBT4H/yNP0IHBeXQ/nq5UBp/iugVSjp5i0VGIi+vTBC85zzovFUf4jZ3R/mJCXyH3V5WomBiaPF7/eVnxBUR02SgBMAo7Is/97H3ADFLY4qjK9DkTxXQNh0d6oltqxA4WFCuinrGzAnl8jT7QZZeWmwFOlReVFx+PbqGrRUGvgS3kytAL4QEMyFMBfwGO+ayAsilFtlJqK77+Hoo4zZDKryBsn1z8KsBgnFsr15I881v4eVcV0VlRvDTMANgGd5Gm6E/hD2eUoTlmji4sQVaIY1UYHDyI/X7FdilPTv/wwfK94kqSVRCEdpr/Iuvm0l5J/AwXAZMBXnqZ/Ap8ADTzppY6qANWcEyFNonOjWqe4GN264ckTpXRuYHB92vDpLo8e5iVwP1X6hkOvs74pgIITv4b/AFGARZPtKoDRQITS6lCS/wCP+H60loD2RrXQsWPIzFRW5+Xl/Q6cizxqNNp6MPdTpZdSHmYXK2/RUDHwpTwZCuBL4Hel1aE8WUAi3zUQUIxqoQMHUKXMJY9kMsvLt0999mhNR1+Op0qlldIf7wjlnGmpmfSA6YC3PE1vABvUcpWoJpUDN/mugYBiVNvExSE6WgXjiNKerFj48w8VXuZG5lz62Xg5qqKqu6KqqsEB2ChPuxJgLsD5vjB+VAG3+K6BgGJU2xw/jtJSFY1VVDRp46nw2z1dOji1+AH8Z9LnV590VfRczobANjknif8CuKHQsVVMTdYS0HEUo1pEJsPhwwq7z0ke5eU9D0Vc+En/LRsPkV5LZhuRQbbiwl+AAh+U0gP+DxgtT9MrwCbNPJyvFsffYqWkGsWoFomORnKyqgdlmPZXbx8Jur1a4m0oaslEorGZj568UOCioa8C6+RpVwR8ABQrbmBeFAEZfNdAKEa1yNmzKONn0SBRVvaKj8J+Kh1rbtzsU6WllaX/iy1V0FzORsAuQK75UtcCfyliSH5VqtMaJzqLYlRbMAxCQ/ksQCp9a+PJCzeceps5N3cxkp3Xo0srenGuQAjMBYbI0/QCsEsrDocrgSS+ayAUo9oiIQEJfO+XVFb2OBIZfpCZ2LF5p0rzS/PDUzpxnsu5F7BWnnaFwGKghNtgakJGT9arAYpRbREZydcR/b8wTLuYvw4F3Vwt8W4laiX/dkEXbjLgcu+UCbAbMJKn6cdAHIeR1E0W3wUQilFtERnZkhmalUOYlbPio7ATBaM7mljLucn9nMdJuQNb+mSjEFgE9JenaRiwVysO56s95bsAQjGqFaqq8IeaTU4klb7x1S+RsU4DLPrIc6q0XFa+6Uo20Iwd2BoGAB/L0y4bWAiowU67IlGM8o5iVCvcvdvEEsq8qKx0OHz+3I786Vaj5Vm3OSTuz6Lyfs0fpi2wS84L/asBld8RpnR0UM87ilGtcPu2/Mt/qljru0nfLru2xdjbWL+JVUNelL849aB9M+dyFgEfAS7yNP0Z2K9dh/OsIr4LIBSjWuHWLeVOR8KNIC9v3opTJ3I9XmnTxPTJKyKiZYxcUyz/YxCwRJ52GcBCoLw5XWuKUm3826BZKEa1wp9/8l1BU0pKPLb+EnHZwdWiXyOnSh+/yIrP7iv3hSYJsBtoeu1SBlgIKGcGVrWgZWd7NQ5N26z5ZDJYWyNLM06RFXftHLDE6bunv1XI6j8L4dPj9cMT4+U4VBUBm4DF8gz6EzBLS3dFAbQCUoG2fJehyyhGNV9aGrp3h1TKdx3yYkxNd60a/XHZmcLyehbdMzEwSVs0qJ3huUb7EAAewGk579i/CShieT/1NVCefXKiNByfGyFqICkJlRq0hhAEBQXzgk6+Om/Mu9axaS8e11qMpKi86Ehcqzl9DRrdfTQDdsr/29ubQ7WENInOjWq+tDTNilEAKC0dviX0YnjHwfWdKv3k92uVMvuGN9YH1gCOyqyPkGagGNV8mZnq8/xSM8hknc9c+23Dkw8sxxkI/3VImlX07EamcwO/nAJgDDBbNTUSIg+KUc2npEVAVcIwLWP7kvBgwfi24pfXSGSQrbp4HzCtbwsrYBv93hK1Qr+Omk9DrtE3qKho+qenzmQO79LOsXoxksupCU+L6s7lbACsA2xVXCAhjaMY1Xy5uXxXwFlZ2cCdoRePm3hYubLrNksrpd/ekv170VAB4A3M4KtGQhpCMar5tCBGAchk1n/cOrnu0XwLL/ZU6RdXo8qqetRo8QqwpSMiLRUAABLGSURBVKVTQBGiRBSjmi8vj+8KFMYwLeOrjyKCDadIWknyS/Mvpzr8s2ioGNgIWPFcHyH1odvvNZ+lpcafHq3FwCDab/iMno/aGetdm5kH5AAzgP18l0VI/WhvVPOp69xOLVde/vr+c5HHjM0EHVPyBwJ2wGa+ayKkQRSjtRUXF8fFxZXVWJAjKSkpPT29WZ3k5OTk5OQ00qCgoCBLUbuQGnfvvTxkMstLt45++iAp2hz4AujAd0GENIgeBq0tKirK09Nz//7906ZNAyCVSvv16+ft7R0cHCx/J0eOHJHJZAsWLGioQWJiYkZGhpeXF9dytfqcjPjJ08772plPH1+iHevP1cfEBJmZfBdBuKEYrYebm9vRo0fZGA0LC+vbty/7+smTJ1NSUgICAkpKSt5+++1Zs2ZduHDhxo0bL168CAwM3Lhxo1QqDQkJcXZ2BhAdHe3k5GRpabl+/frXX389KCgoNDS0Q4cOW7dufe2117Kzs5OTFTERu0AA/WbNc6w59PRyRvm+fmH9M624E6EhbWlqJs1HB/X1MDMzk0qlubm5AEJCQsaNG8e+np+fn52dDUAmkyUmJhYUFBw+fPiHH37w9vb+4IMPTp48uWDBgr1797KNb9y4ce7cueXLly9ZsiQ5OTkxMfHWrVtr167dsGEDgLy8vOaeKGiQWNx0G40jEEgHjRwS//WzXC3/FTWSazFTota0/He0ZRiG8fLyOn78eGFhYU5OTqdODc7HPnLkyE6dOvXp02f48OGdOnVycXHJyMhg35owYULHjh09PDzy8/MlEsn27dt/+umngwcPVjdQGEO5liHSLFUOXXyK9t1PbdkKd5qEYlQLUIzWz9vb+8iRI6GhoWPGjKn7bkFBAfsFm7ACgcDU9O8HwKtvILOwsGC/EIvF169fHz58eG5u7ptvvqn4WrXusJCx7viBdWjYbRu+C1EFilEtQDFaPxsbm5KSkp07d3p7e1e/2LZtW3Zf8sqVK032cOnSJQBZWVlisfjSpUuzZ89evHjxw4cPFV9r+/aK75NHbdrsGvB98OVufNehIiYmfFdAOKMYbdD48eOlUqmj48t5Ld3c3J49e+bm5hYWFqan18SP7unTpyNGjHB2dl6wYIGXl9c333wzadKklJSUrKys6OhoRRaqTTEqFp98Y/eSsGFqvECfgnXsyHcFhDN6iqnZioqKTOTbhSgoKBAKhWzj0tLS4uLi9u3bS6VSfX19fQVeXl+0CFu3Kqw3HolE999c2vf8huJivitRoRUr8OmnfBdBuKEbnppNzgwFUH3CFIChoaGhoSEAowZOhpWUlOTJJyAgYNmyZS+3tNGKc4hCYfYb010j1+lUhgoEsKJ5AjQfxWht06ZN+/HHH1U/rqGhYbv62NnZ1X3xX1taW0MoVOd16psmEEgHeQy+sys3X7fOMgmF+OdKJNFgdFCv+S5dwsiRKNfg9YOrunQfbxx++pY134WomoEBIiMxcCDfdRBudOuPv3bq0gUiDT6qYGw6zbE4oYMZCkBfH1268F0E4YxiVPNZWMDMjO8iWqpt2w3Oh/Zf6cp3HfywsdGq+yx0FsWoVnBy4ruCFhGLQz12rQ131cSFTRWiVy++KyCKQDGqFZyd+a6g+USi+DEfTjszVZNP6nKlif9upC6KUa3Qp4+GnR4VCjPG/J9bxCc6dXtTLSIRunfnuwiiCBSjWuG11zRpujyBoMRt1PA/v8ov0On16fT16aBeS1CMagU7Ow26/7Cyq9O4Z/sfpGrhxFTN4uiIzp35LoIoAsWoVhAIMGIE30XIhen0yqwOP4fHW/JdCP+GD+e7AqIgFKPaYsgQCIV8F9EUiWRdj8MHrzo23VLbiURwdeW7CKIgFKPawtUVBgZ8F9Eosfik+5ZPLwzU2dubajIwgJsb30UQBaEY1Rb29ujZk+8iGiYS3fFeM/W3Gbp8e1NNzs6wpBMb2oJiVIuMGweBWl77FgrTx85yP7NMKuW7EvUgEGDyZL6LIIpDMapFRo1Sx+XtBILiwaOH3vhSx29vqsnQEOPH810EURyKUS3Suzf+8x++i6itsntPr+x9iU90/fammvr1g70930UQxaEY1SJCIfz81Oq4XtbZfoZp6MW7GnNPqwro6aHG+l5EG1CMapcpU9BKbRYllkg2O/9wOJpuMf8XIyOMG8d3EUShKEa1i709Bg/muwgAgFh8dPD21b8OoNubannzTXp4SdtQjGqdWbP4f75eX//6+M/8fvOl25tqMTCAvz/fRRBFo0VEtE55OXr2xMOHvBUgFD55c07PyB10ab4uFxfcvImmFucmGob+PbWOgQFmzODtf6pAUDTQY0j055Shdenp4d13KUO1EO2NaqOcHDg5ISdH9SNXvNbPo+q33++0a7qp7jE3x19/wdyc7zqIotFfRm1kZoaZM1V/55PMzsFPHEIZWi89PcyfTxmqnWhvVEulp6NHD+Tnq27E9u3X9j/9yW+v06X5ellZIS4OEgnfdRAloL1RLdWxo0pvxReLjwzesS6cMrR+enqYO5cyVGvR3qj2evoUvXohK0vpAxkYxE7cMCR0cUmJ0ofSUHRWVLvR3qj2srREQIDSLwwLhY/HzPb4lTK0QUIhAgMpQ7UZ7Y1qtfx89O2LpCRl9S8QFLp5uiQeT86kmUca1K8fLl9W9zm1CRe0N6rV2rbFxo3K+h8sEJT3dR2efZgytBFiMT77jDJUy1GMartJkzB2rDI6ltk5+Al/iH3QWhmdaweBAJMmYdQovusgSkYH9Trg7l24uSEvT5F9tmu3bmDYqrOD6NJ8I8zMcPUqHBz4roMoGe2N6oBXX8UnnyhyvhJj4wPDDq45RxnaGH19bNpEGaoTaG9UN8hkGDcOp08roCt9/aveX4w8tYAuzTdCIMDUqfj+e7WaRJsoC8Wozrh/H+7uyM7m1IlQmDp6dq/LO2nmkcZ17oyrV2ntT11BB/U6o1s37NkDQw5X1fX0Xox8a+jtrZShjROL8cUXlKE6hGJUl4wfjwULWnxDflmfQSNS9qek8z0ntHoTCvHhh7Takm6hg3odU1KCN9/ExYto5r+77D920yzCD9HCSo0SCDBhAkJCIBLxXQpRIdob1TGtWuHQIXTr1rytzM2Xd/n5yHXK0Ca4uCA4mDJU51CM6h5zc3z/fTOmGzIy+m7o/m2RLnR7U+MkEuzdS9M46SKKUZ3Upw+++UaupZj19a94fvZ+2FhanK5xrVvjxx/Rty/fdRA+UIzqqsmTsXs3xOLG2ohEieMWjzm/SCpVVVWaycgI+/dj9Gi+6yA8oRjVYe+8g48/bvDpJj29PDev4Zc/efFCtVVpGrEYO3Zg0iS+6yD8oRjVbatW4bPP6k3Ssn5ubzz97nEWzU3UGH19BAXh3Xf5roPwiq4p6ryPPoKeHoKCUOP0Z1XXVydXHb5+34THutSfgQG+/BLz5vFdB+Eb7Y0SYOlSrF37clLMDh2COh44fdOK15rUnZER9uyhDCUA3X5PXgoJwXvvQSbbPfLngDCPykq+61FjpqY4cAATJvBdB1EPFKOkhpMnr4SkjwqdS5fmG2FujoMH6bo8eYlilPxLfDx8fXHnTnMfFtUJAgH69sXhw7Cz47sUok7o3Cj5FycnRETA25ueaKxNJMLEiTh3jjKU1EYxSmqTSPDTT1iypIl783WKWIyFC/Hjj2jblu9SiPqhg3rSoKNHsXgx0tN1+gBfIMArr2D7dowbx3cpRF1RjJLGZGdj6VIcOQLdfKbewAD//S+++AIdOvBdClFjFKOkCQyD4GAEBSEnh+9SVEggQIcOWL8eM2fSekqkCRSjRC4JCVi+HGFhOrFbKhZj8mR89hlsbfkuhWgCilHSDJcu4eOPERUFbb05XyTC669j0ya4uvJdCtEcFKOkecrKEByM9euRmalVl5709GBujsWLMW+eXBOxElKNYpS0xLNn2L0bu3bh2TNo+qz4enro0AFz52LuXJiZ8V0N0UAUo6Tliopw4AA2bUJGhkaGqZ4erKywcCFmzkS7dnxXQzQWxSjhKicH+/bh22+RnIyKCr6rkY+BARwcMHMmfH1hYcF3NUTDUYwSxZDJcPkyDh7EsWMoLFTT06Z6ejAxwaRJmDEDbm7Qo4f4iCJQjBIFS0xESAhCQxEXh9JStchTgQCGhujdGxMnYsIEdKaFoolCUYwSZXnwAGfP4uRJREejvJyHe6SEQojF6NkTkybBywtdu6q6AKIjKEaJ0j19ikuXcPkyIiLw6JFyI1UkgoEBbG0xfDhcXeHqildeUdZYhLAoRolKPXqEqCjcvYu4OPz5J3JyUFEBmQxVVc0+/BcIoKcHoRAiEWxs4OyMHj3QrRv69IGDQ/O62rhxo6+vb6dOnZq3GSEAKEYJvzIycO8eMjORlYWnT5GZifR0FBSAYVBSgpKSv7NVJEKbNhCLYWwMY2PY2MDcHNbWaN8e1tbo0oXr1CGBgYFPnjz5/vvvFfKhiK6hGCUE+fn5jo6O586de+211/iuhWgeuuODELRt23bZsmVBQUGNtCkuLo6LiysrK6t+JSkpKT09vcnOCwoKsrKymlVPYmJiaGhoYmJii3sgqkQxSggAzJs3Lz4+/sKFCw01iIqK6t2799GjR9lvpVJpv379Vq9e3WTPiYmJMTEx8lcyd+7cjz76KCkp6fDhw+PHj09LS6vuITk5edWqVfJ3RVSDYpQQADA0NFyzZk1gYGAjp7nc3NyqYzQsLKxv377s159//rm9vf2gQYPi4uIArF27dtu2bQC2bNmyY8eO7Ozs5ORkmUw2f/58GxsbT0/P9PR0mUy2ePFiW1tbHx+f+Pj46iFOnTqVmpr6888/L1myZMWKFZ9//nlaWhrbAwB/f/9t27YJBII7d+4AiIuL8/f3V9qPhMiLYpSQv/n5+ZWUlBw7dqyhBmZmZlKpNDc3F0BISMi4ceMAJCUlhYaGxsTELFq0aOrUqQBmzZq1efPmqKioXbt2+fn55eXlpaenx8TEPHnyJDU1dcKECXv27ImJiYmPj79161ZgYODKlSurh7h161a/fv2qv+3SpYubmxvbA4AdO3a4ublt3Ljx1KlTAE6ePOnk5KS0nweRF8UoIX8TCoXr168PCgqqaGBqAIZhvLy8jh8/XlhYmJOTw94gFRYWZm9vf/bs2fLy8uzs7Ly8PCsrq2XLlg0bNmz9+vWmpqbstr/99tuUKVOEQuHMmTNnzZp19uzZd955RyKR9OrVKzk5ubi4mG0mEolqnn6tl7e39+nTpwGcPn36rbfeUtjnJy1FMUrIS15eXjY2NsHBwQ018Pb2PnLkSGho6JgxY9hXHj9+zDBMbm5ubm5uUFCQvr4+ACMjo4qKChMTk+oNU1JS2rZtC0AkEpmbm6elpZn9MytfRUVF9ZkEe3v7ixcvVm/122+/BQQE1KrB0dGxtLT03r17paWl9vb2CvjYhBuKUUL+ZePGjWvXri0sLKz3XRsbm5KSkp07d3p7e7OvjBkzxsTEZP78+f7+/uHh4cbGxjk5OZ999tkvv/wSEBAglUrZZiNHjoyMjAQQGhq6YsUKDw+PiIgIAMnJyRKJpDpwPT0909LSbty4AaCiomLz5s0TJ06sWYBMJgMwYcKEgIAA2hVVExSjhPxL//79Bw4cyF4jqtf48eOlUqmjoyP77eDBg58/fz5y5EgXF5cJEyYIBIIlS5Z88MEHnp6enp6ea9euZZu9+eabKSkpQ4cOXbduHftufHz8iBEj+vXrt3DhwurOTU1Nv/vuu8DAQDc3ty5duvTq1WvIkCHV79rZ2d29ezc4OHjixInnz5/38fFRzs+ANA/dfk9IbQ8ePBg4cOD9+/fNzc3l3CQrK0ssFrOH7Y0oKCioPlsKIDMz09TU1MjIqG7Lht6qrKyUyWRPnz6dMWNGzcN/wiOKUULq8d5775mYmHz11Vd8F1KPX3/9ddOmTatWrRo+fDjftRCAYpSQeqWmpnbr1q20tJTvQpp2/Pjx6hO1hBcUo4QQwgldYiKEEE4oRgkhhBOKUUII4YRilBBCOKEYJYQQTihGCSGEE4pRQgjhhGKUEEI4oRglhBBOKEYJIYQTilFCCOGEYpQQQjihGCWEEE4oRgkhhBOKUUII4YRilBBCOKEYJYQQTihGCSGEE4pRQgjhhGKUEEI4oRglhBBOKEYJIYQTilFCCOGEYpQQQjihGCWEEE4oRgkhhBOKUUII4YRilBBCOKEYJYQQTihGCSGEE4pRQgjhhGKUEEI4oRglhBBOKEYJIYQTilFCCOGEYpQQQjihGCWEEE4oRgkhhBOKUUII4YRilBBCOKEYJYQQTihGCSGEE4pRQgjhhGKUEEI4oRglhBBOKEYJIYQTilFCCOGEYpQQQjihGCWEEE4oRgkhhBOKUUII4YRilBBCOPl/Rq2W/HSE6DIAAAAASUVORK5CYII=", "svg": [ "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "\n", "\n", "\n" ] } ], "prompt_number": 5 }, { "cell_type": "code", "collapsed": false, "input": [ ":set show-types\n", ":set no-lint" ], "language": "python", "metadata": {}, "outputs": [ { "html": [], "metadata": {}, "output_type": "display_data" } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "1 + 1" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "text": [ "2" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "2+ 3" ], "language": "python", "metadata": {}, "outputs": [ { "metadata": {}, "output_type": "display_data", "text": [ "5" ] } ], "prompt_number": 3 }, { "cell_type": "code", "collapsed": false, "input": [ ":load bloo.hs" ], "language": "python", "metadata": {}, "outputs": [ { "html": [ "Failed to load module bloo: parse error on input `bloo'" ], "metadata": {}, "output_type": "display_data", "text": [ "Failed to load module bloo: parse error on input `bloo'" ] }, { "html": [ "Not in scope: `createPipe'" ], "metadata": {}, "output_type": "display_data", "text": [ "Not in scope: `createPipe'" ] } ], "prompt_number": 1 }, { "cell_type": "code", "collapsed": false, "input": [ "ll" ], "language": "python", "metadata": {}, "outputs": [] } ], "metadata": {} } ] }