mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-04-16 03:26:08 +00:00
convert : write tensors in parallel
This commit is contained in:
parent
b32efad2bc
commit
06e1d3119a
@ -73,7 +73,7 @@ class Model:
|
||||
use_temp_file: bool = False, eager: bool = False,
|
||||
metadata_override: Path | None = None, model_name: str | None = None,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
|
||||
small_first_shard: bool = False, hparams: dict[str, Any] | None = None, thread_count: int = 2):
|
||||
if type(self) is Model:
|
||||
raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
|
||||
|
||||
@ -109,7 +109,8 @@ class Model:
|
||||
|
||||
# Configure GGUF Writer
|
||||
self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
|
||||
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
|
||||
split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard,
|
||||
thread_count=thread_count)
|
||||
|
||||
@classmethod
|
||||
def __init_subclass__(cls):
|
||||
@ -5470,6 +5471,10 @@ def parse_args() -> argparse.Namespace:
|
||||
"--print-supported-models", action="store_true",
|
||||
help="Print the supported models"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-t", "--threads", type=int, default=2,
|
||||
help="Number of threads to use when writing the tensors. Make sure you have enough RAM for at least THREADS of the biggest tensors in the model when setting this.",
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
if not args.print_supported_models and args.model is None:
|
||||
@ -5554,7 +5559,7 @@ def main() -> None:
|
||||
metadata_override=args.metadata, model_name=args.model_name,
|
||||
split_max_tensors=args.split_max_tensors,
|
||||
split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
|
||||
small_first_shard=args.no_tensor_first_split)
|
||||
small_first_shard=args.no_tensor_first_split, thread_count=args.threads)
|
||||
|
||||
if args.vocab_only:
|
||||
logger.info("Exporting model vocab...")
|
||||
|
@ -5,10 +5,12 @@ import os
|
||||
import shutil
|
||||
import struct
|
||||
import tempfile
|
||||
import threading
|
||||
from dataclasses import dataclass
|
||||
from enum import Enum, auto
|
||||
from math import prod
|
||||
from pathlib import Path
|
||||
from queue import Empty, Queue
|
||||
from io import BufferedWriter
|
||||
from typing import IO, Any, Sequence, Mapping
|
||||
from string import ascii_letters, digits
|
||||
@ -60,8 +62,31 @@ class WriterState(Enum):
|
||||
WEIGHTS = auto()
|
||||
|
||||
|
||||
@dataclass
|
||||
class TensorWriteInfo:
|
||||
filename: Path
|
||||
offset: int
|
||||
post_pad: int
|
||||
tensor: np.ndarray
|
||||
bar: Any | None
|
||||
|
||||
def write_chunk(self, open_files: dict[Path, BufferedWriter]):
|
||||
if self.filename not in open_files:
|
||||
open_files[self.filename] = open(self.filename, "r+b")
|
||||
f = open_files[self.filename]
|
||||
|
||||
f.seek(self.offset)
|
||||
f.write(self.tensor.data)
|
||||
if self.post_pad > 0:
|
||||
f.write(bytes([0] * self.post_pad))
|
||||
if self.bar is not None:
|
||||
self.bar.update(self.tensor.nbytes)
|
||||
|
||||
|
||||
class GGUFWriter:
|
||||
fout: list[BufferedWriter] | None
|
||||
filenames: list[Path] | None
|
||||
thread_count: int
|
||||
path: Path | None
|
||||
temp_file: tempfile.SpooledTemporaryFile[bytes] | None
|
||||
tensors: list[dict[str, TensorInfo]]
|
||||
@ -83,7 +108,8 @@ class GGUFWriter:
|
||||
|
||||
def __init__(
|
||||
self, path: os.PathLike[str] | str | None, arch: str, use_temp_file: bool = False, endianess: GGUFEndian = GGUFEndian.LITTLE,
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False
|
||||
split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False,
|
||||
thread_count: int = 2,
|
||||
):
|
||||
self.fout = None
|
||||
self.path = Path(path) if path else None
|
||||
@ -98,6 +124,7 @@ class GGUFWriter:
|
||||
self.split_max_size = split_max_size
|
||||
self.dry_run = dry_run
|
||||
self.small_first_shard = small_first_shard
|
||||
self.thread_count = thread_count
|
||||
logger.info("gguf: This GGUF file is for {0} Endian only".format(
|
||||
"Big" if self.endianess == GGUFEndian.BIG else "Little",
|
||||
))
|
||||
@ -173,6 +200,7 @@ class GGUFWriter:
|
||||
|
||||
if self.path is not None:
|
||||
filenames = self.print_plan()
|
||||
self.filenames = filenames
|
||||
self.fout = [open(filename, "wb") for filename in filenames]
|
||||
self.state = WriterState.EMPTY
|
||||
|
||||
@ -424,40 +452,78 @@ class GGUFWriter:
|
||||
self.write_ti_data_to_file()
|
||||
|
||||
assert self.fout is not None
|
||||
assert self.filenames is not None
|
||||
|
||||
for fout in self.fout:
|
||||
self.write_padding(fout, fout.tell())
|
||||
|
||||
if self.temp_file is None:
|
||||
shard_bar = None
|
||||
bar = None
|
||||
# Distribute writing the tensors between multiple threads
|
||||
tensor_queue: Queue[TensorWriteInfo] = Queue()
|
||||
|
||||
offsets: list[int] = [fout.tell() for fout in self.fout]
|
||||
|
||||
if progress:
|
||||
# TODO: add back the shard bar to show which shard is being written when single-threaded
|
||||
from tqdm import tqdm
|
||||
|
||||
total_bytes = sum(ti.nbytes for t in self.tensors for ti in t.values())
|
||||
|
||||
if len(self.fout) > 1:
|
||||
shard_bar = tqdm(desc=f"Shard (0/{len(self.fout)})", total=None, unit="byte", unit_scale=True)
|
||||
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)
|
||||
|
||||
for i, (fout, tensors) in enumerate(zip(self.fout, self.tensors)):
|
||||
if shard_bar is not None:
|
||||
shard_bar.set_description(f"Shard ({i + 1}/{len(self.fout)})")
|
||||
total = sum(ti.nbytes for ti in tensors.values())
|
||||
shard_bar.reset(total=(total if total > 0 else None))
|
||||
for i, (filename, tensors) in enumerate(zip(self.filenames, self.tensors)):
|
||||
offset = offsets[i]
|
||||
|
||||
# relying on the fact that Python dicts preserve insertion order (since 3.7)
|
||||
for ti in tensors.values():
|
||||
assert ti.tensor is not None # can only iterate once over the tensors
|
||||
assert ti.tensor.nbytes == ti.nbytes
|
||||
ti.tensor.tofile(fout)
|
||||
if shard_bar is not None:
|
||||
shard_bar.update(ti.nbytes)
|
||||
if bar is not None:
|
||||
bar.update(ti.nbytes)
|
||||
self.write_padding(fout, ti.nbytes)
|
||||
ti.tensor = None
|
||||
start_offset = offset
|
||||
nbytes = ti.tensor.nbytes
|
||||
offset = self.ggml_pad(start_offset + nbytes, self.data_alignment)
|
||||
padding = offset - (start_offset + nbytes)
|
||||
tensor_queue.put(
|
||||
TensorWriteInfo(
|
||||
filename=filename,
|
||||
offset=start_offset,
|
||||
post_pad=padding,
|
||||
tensor=ti.tensor,
|
||||
bar=bar,
|
||||
)
|
||||
)
|
||||
ti.tensor = None # avoid keeping a reference to written tensors
|
||||
|
||||
# Write tensors in parallel
|
||||
# TODO: total tensor size limit for the running threads
|
||||
def write_tensors_from_thread(queue: Queue[TensorWriteInfo]):
|
||||
open_files: dict[Path, BufferedWriter] = {}
|
||||
try:
|
||||
while t := queue.get_nowait():
|
||||
t.write_chunk(open_files)
|
||||
del t
|
||||
queue.task_done()
|
||||
except Empty:
|
||||
pass
|
||||
|
||||
for f in open_files.values():
|
||||
f.close()
|
||||
|
||||
threads = [
|
||||
threading.Thread(target=write_tensors_from_thread, args=(tensor_queue,))
|
||||
for _ in range(self.thread_count)
|
||||
]
|
||||
|
||||
for t in threads:
|
||||
t.start()
|
||||
|
||||
# NOTE: thread joining has weird interactions with KeyboardInterrupt,
|
||||
# so waiting for the queue to be "done" first.
|
||||
tensor_queue.join()
|
||||
|
||||
for t in threads:
|
||||
t.join()
|
||||
|
||||
else:
|
||||
self.temp_file.seek(0)
|
||||
|
||||
|
@ -220,4 +220,9 @@ class LazyNumpyTensor(LazyBase):
|
||||
eager = LazyNumpyTensor.to_eager(self)
|
||||
return eager.tofile(*args, **kwargs)
|
||||
|
||||
@property
|
||||
def data(self):
|
||||
eager = LazyNumpyTensor.to_eager(self)
|
||||
return eager.data
|
||||
|
||||
# TODO: __array_function__
|
||||
|
Loading…
x
Reference in New Issue
Block a user