mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-04-15 19:16:09 +00:00
examples : add embd_to_audio to tts-outetts.py [no ci] (#11235)
This commit contains a suggestion for adding the missing embd_to_audio function from tts.cpp to tts-outetts.py. This introduces a depencency numpy which I was not sure if that is acceptable or not (only PyTorch was mentioned in referened PR). Also the README has been updated with instructions to run the example with llama-server and the python script. Refs: https://github.com/ggerganov/llama.cpp/pull/10784#issuecomment-2548377734
This commit is contained in:
parent
f446c2cf6a
commit
0ccd7f3eb2
@ -78,3 +78,40 @@ play the audio:
|
||||
$ aplay output.wav
|
||||
```
|
||||
|
||||
### Running the example with llama-server
|
||||
Running this example with `llama-server` is also possible and requires two
|
||||
server instances to be started. One will serve the LLM model and the other
|
||||
will serve the voice decoder model.
|
||||
|
||||
The LLM model server can be started with the following command:
|
||||
```console
|
||||
$ ./build/bin/llama-server -m ./models/outetts-0.2-0.5B-q8_0.gguf --port 8020
|
||||
```
|
||||
|
||||
And the voice decoder model server can be started using:
|
||||
```console
|
||||
./build/bin/llama-server -m ./models/wavtokenizer-large-75-f16.gguf --port 8021 --embeddings --pooling none
|
||||
```
|
||||
|
||||
Then we can run [tts-outetts.py](tts-outetts.py) to generate the audio.
|
||||
|
||||
First create a virtual environment for python and install the required
|
||||
dependencies (this in only required to be done once):
|
||||
```console
|
||||
$ python3 -m venv venv
|
||||
$ source venv/bin/activate
|
||||
(venv) pip install requests numpy
|
||||
```
|
||||
|
||||
And then run the python script using:
|
||||
```conole
|
||||
(venv) python ./examples/tts/tts-outetts.py http://localhost:8020 http://localhost:8021 "Hello world"
|
||||
spectrogram generated: n_codes: 90, n_embd: 1282
|
||||
converting to audio ...
|
||||
audio generated: 28800 samples
|
||||
audio written to file "output.wav"
|
||||
```
|
||||
And to play the audio we can again use aplay or any other media player:
|
||||
```console
|
||||
$ aplay output.wav
|
||||
```
|
||||
|
@ -3,6 +3,121 @@ import sys
|
||||
#import struct
|
||||
import requests
|
||||
import re
|
||||
import struct
|
||||
import numpy as np
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
|
||||
def fill_hann_window(size, periodic=True):
|
||||
if periodic:
|
||||
return np.hanning(size + 1)[:-1]
|
||||
return np.hanning(size)
|
||||
|
||||
|
||||
def irfft(n_fft, complex_input):
|
||||
return np.fft.irfft(complex_input, n=n_fft)
|
||||
|
||||
|
||||
def fold(buffer, n_out, n_win, n_hop, n_pad):
|
||||
result = np.zeros(n_out)
|
||||
n_frames = len(buffer) // n_win
|
||||
|
||||
for i in range(n_frames):
|
||||
start = i * n_hop
|
||||
end = start + n_win
|
||||
result[start:end] += buffer[i * n_win:(i + 1) * n_win]
|
||||
|
||||
return result[n_pad:-n_pad] if n_pad > 0 else result
|
||||
|
||||
|
||||
def process_frame(args):
|
||||
l, n_fft, ST, hann = args
|
||||
frame = irfft(n_fft, ST[l])
|
||||
frame = frame * hann
|
||||
hann2 = hann * hann
|
||||
return frame, hann2
|
||||
|
||||
|
||||
def embd_to_audio(embd, n_codes, n_embd, n_thread=4):
|
||||
embd = np.asarray(embd, dtype=np.float32).reshape(n_codes, n_embd)
|
||||
|
||||
n_fft = 1280
|
||||
n_hop = 320
|
||||
n_win = 1280
|
||||
n_pad = (n_win - n_hop) // 2
|
||||
n_out = (n_codes - 1) * n_hop + n_win
|
||||
|
||||
hann = fill_hann_window(n_fft, True)
|
||||
|
||||
E = np.zeros((n_embd, n_codes), dtype=np.float32)
|
||||
for l in range(n_codes):
|
||||
for k in range(n_embd):
|
||||
E[k, l] = embd[l, k]
|
||||
|
||||
half_embd = n_embd // 2
|
||||
S = np.zeros((n_codes, half_embd + 1), dtype=np.complex64)
|
||||
|
||||
for k in range(half_embd):
|
||||
for l in range(n_codes):
|
||||
mag = E[k, l]
|
||||
phi = E[k + half_embd, l]
|
||||
|
||||
mag = np.clip(np.exp(mag), 0, 1e2)
|
||||
S[l, k] = mag * np.exp(1j * phi)
|
||||
|
||||
res = np.zeros(n_codes * n_fft)
|
||||
hann2_buffer = np.zeros(n_codes * n_fft)
|
||||
|
||||
with ThreadPoolExecutor(max_workers=n_thread) as executor:
|
||||
args = [(l, n_fft, S, hann) for l in range(n_codes)]
|
||||
results = list(executor.map(process_frame, args))
|
||||
|
||||
for l, (frame, hann2) in enumerate(results):
|
||||
res[l*n_fft:(l+1)*n_fft] = frame
|
||||
hann2_buffer[l*n_fft:(l+1)*n_fft] = hann2
|
||||
|
||||
audio = fold(res, n_out, n_win, n_hop, n_pad)
|
||||
env = fold(hann2_buffer, n_out, n_win, n_hop, n_pad)
|
||||
|
||||
mask = env > 1e-10
|
||||
audio[mask] /= env[mask]
|
||||
|
||||
return audio
|
||||
|
||||
|
||||
def save_wav(filename, audio_data, sample_rate):
|
||||
num_channels = 1
|
||||
bits_per_sample = 16
|
||||
bytes_per_sample = bits_per_sample // 8
|
||||
data_size = len(audio_data) * bytes_per_sample
|
||||
byte_rate = sample_rate * num_channels * bytes_per_sample
|
||||
block_align = num_channels * bytes_per_sample
|
||||
chunk_size = 36 + data_size # 36 = size of header minus first 8 bytes
|
||||
|
||||
header = struct.pack(
|
||||
'<4sI4s4sIHHIIHH4sI',
|
||||
b'RIFF',
|
||||
chunk_size,
|
||||
b'WAVE',
|
||||
b'fmt ',
|
||||
16, # fmt chunk size
|
||||
1, # audio format (PCM)
|
||||
num_channels,
|
||||
sample_rate,
|
||||
byte_rate,
|
||||
block_align,
|
||||
bits_per_sample,
|
||||
b'data',
|
||||
data_size
|
||||
)
|
||||
|
||||
audio_data = np.clip(audio_data * 32767, -32768, 32767)
|
||||
pcm_data = audio_data.astype(np.int16)
|
||||
|
||||
with open(filename, 'wb') as f:
|
||||
f.write(header)
|
||||
f.write(pcm_data.tobytes())
|
||||
|
||||
|
||||
def process_text(text: str):
|
||||
text = re.sub(r'\d+(\.\d+)?', lambda x: x.group(), text.lower()) # TODO this needs to be fixed
|
||||
@ -170,6 +285,15 @@ n_embd = len(embd[0])
|
||||
print('spectrogram generated: n_codes: %d, n_embd: %d' % (n_codes, n_embd))
|
||||
|
||||
# post-process the spectrogram to convert to audio
|
||||
# TODO: see the tts.cpp:embd_to_audio() and implement it in Python
|
||||
print('converting to audio ...')
|
||||
print('TODO: see the tts.cpp:embd_to_audio() and implement it in Python')
|
||||
audio = embd_to_audio(embd, n_codes, n_embd)
|
||||
print('audio generated: %d samples' % len(audio))
|
||||
|
||||
filename = "output.wav"
|
||||
sample_rate = 24000 # sampling rate
|
||||
|
||||
# zero out first 0.25 seconds
|
||||
audio[:24000 // 4] = 0.0
|
||||
|
||||
save_wav(filename, audio, sample_rate)
|
||||
print('audio written to file "%s"' % filename)
|
||||
|
Loading…
x
Reference in New Issue
Block a user