llava: add quantization for the visual projector LLAVA, Qwen2VL (#11644)

* Added quantization for visual projector
* Added README
* Fixed the clip quantize implementation in the file

* Fixed the gcc warning regarding minor linting

* Removed trailing whitespace
This commit is contained in:
SAMI 2025-02-05 14:45:40 +07:00 committed by GitHub
parent 9f4cc8f8d3
commit 1ec208083c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 113 additions and 5 deletions

View File

@ -50,3 +50,10 @@ set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-qwen2vl-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)
set(TARGET llama-llava-clip-quantize-cli)
add_executable(${TARGET} clip-quantize-cli.cpp)
set_target_properties(${TARGET} PROPERTIES OUTPUT_NAME llama-llava-clip-quantize-cli)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE common llava ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View File

@ -0,0 +1,44 @@
# Quantizing CLIP Visual Projector
This is the tool for quantizing the CLIP visual projector model. Quantization reduces the precision of the model's weights, which can significantly decrease the model size and improve inference speed, often with minimal impact on performance.
## Usage
To quantize a CLIP visual projector model, use the following command:
```sh
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf <type>
```
After the quantization, the visual projector can be used freely with the existing LLAVA cli (LLAVA, Qwen2VL, etc).
### Arguments
- `/path/to/ggml-model-f32.gguf`: The path to the input model file in FP32 or FP16 format.
- `/path/to/ggml-model-quantized.gguf`: The path where the quantized model will be saved.
- `<type>`: The quantization type to apply. This should be an integer corresponding to one of the quantization types defined in the `enum ggml_type`.
### Quantization Types
The following quantization types are supported, based on the `enum ggml_type` definition:
- `2` - `q4_0`: 4-bit quantization with a single scale value.
- `3` - `q4_1`: 4-bit quantization with a separate scale value for each block.
- `6` - `q5_0`: 5-bit quantization with a single scale value.
- `7` - `q5_1`: 5-bit quantization with a separate scale value for each block.
- `8` - `q8_0`: 8-bit quantization with a single scale value.
### Example
To quantize a model using the `q4_0` quantization type, you would run:
```sh
./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf 2
```
This command will generate a quantized model at `/path/to/ggml-model-quantized.gguf` using the `q4_0` quantization method.
## Notes
- Quantization can lead to a loss in model accuracy, depending on the chosen quantization type. It is recommended to evaluate the quantized model's performance on your specific task to ensure it meets your requirements.
- The quantized model will typically be smaller in size and faster to run, making it more suitable for deployment in resource-constrained environments.

View File

@ -0,0 +1,59 @@
#include "arg.h"
#include "base64.hpp"
#include "log.h"
#include "common.h"
#include "sampling.h"
#include "clip.h"
#include "llava.h"
#include "llama.h"
#include "ggml.h"
static void print_usage(int argc, char ** argv) {
(void) argc;
fprintf(stderr, "usage: %s /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf type\n", argv[0]);
fprintf(stderr, " type = 2 - q4_0\n");
fprintf(stderr, " type = 3 - q4_1\n");
fprintf(stderr, " type = 6 - q5_0\n");
fprintf(stderr, " type = 7 - q5_1\n");
fprintf(stderr, " type = 8 - q8_0\n");
}
int main(int argc, char ** argv) {
if (argc != 4) {
print_usage(argc, argv);
return 1;
}
const std::string fname_inp = argv[1];
const std::string fname_out = argv[2];
const int itype = atoi(argv[3]);
const int64_t t_main_start_us = ggml_time_us();
int64_t t_quantize_us = 0;
// load the model
{
const int64_t t_start_us = ggml_time_us();
if (!clip_model_quantize(fname_inp.c_str(), fname_out.c_str(), itype)) {
fprintf(stderr, "%s: failed to quantize model from '%s'\n", __func__, fname_inp.c_str());
return 1;
}
t_quantize_us = ggml_time_us() - t_start_us;
}
// report timing
{
const int64_t t_main_end_us = ggml_time_us();
printf("\n");
printf("%s: quantize time = %8.2f ms\n", __func__, t_quantize_us / 1000.0f);
printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us) / 1000.0f);
}
return 0;
}

View File

@ -2745,10 +2745,8 @@ bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_ima
}
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
ggml_type type = GGML_TYPE_Q4_1;
assert(itype < GGML_TYPE_COUNT);
type = static_cast<ggml_type>(itype);
ggml_type type = static_cast<ggml_type>(itype);
auto * ctx_clip = clip_model_load(fname_inp, 2);
@ -2801,8 +2799,8 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i
}
}
// quantize only 2D tensors
quantize &= (ggml_n_dims(cur) == 2);
// quantize only 2D tensors and bigger than block size
quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type);
if (quantize) {
new_type = type;