mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-04-14 10:36:07 +00:00
ggml : add more generic custom op, remove deprecated custom ops (ggml/1183)
* ggml : add more generic ggml_custom op * ggml : remove deprecated custom ops
This commit is contained in:
parent
e4bf72d631
commit
459895c326
@ -507,17 +507,12 @@ extern "C" {
|
||||
|
||||
GGML_OP_UNARY,
|
||||
|
||||
GGML_OP_MAP_UNARY,
|
||||
GGML_OP_MAP_BINARY,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1_F32,
|
||||
GGML_OP_MAP_CUSTOM2_F32,
|
||||
GGML_OP_MAP_CUSTOM3_F32,
|
||||
|
||||
GGML_OP_MAP_CUSTOM1,
|
||||
GGML_OP_MAP_CUSTOM2,
|
||||
GGML_OP_MAP_CUSTOM3,
|
||||
|
||||
GGML_OP_CUSTOM,
|
||||
|
||||
GGML_OP_CROSS_ENTROPY_LOSS,
|
||||
GGML_OP_CROSS_ENTROPY_LOSS_BACK,
|
||||
GGML_OP_OPT_STEP_ADAMW,
|
||||
@ -1916,83 +1911,6 @@ extern "C" {
|
||||
|
||||
// custom operators
|
||||
|
||||
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
||||
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
||||
|
||||
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_unary_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_binary_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
ggml_custom1_op_f32_t fun),
|
||||
"use ggml_map_custom1_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
ggml_custom2_op_f32_t fun),
|
||||
"use ggml_map_custom2_inplace instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3 instead");
|
||||
|
||||
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
ggml_custom3_op_f32_t fun),
|
||||
"use ggml_map_custom3_inplace instead");
|
||||
|
||||
// custom operators v2
|
||||
|
||||
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
||||
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
||||
@ -2048,6 +1966,30 @@ extern "C" {
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
typedef void (*ggml_custom_op_t)(struct ggml_tensor * dst , int ith, int nth, void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_custom_4d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3,
|
||||
struct ggml_tensor ** args,
|
||||
int n_args,
|
||||
ggml_custom_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_custom_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor ** args,
|
||||
int n_args,
|
||||
ggml_custom_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata);
|
||||
|
||||
// loss function
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
|
||||
|
@ -2027,41 +2027,6 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
{
|
||||
ggml_compute_forward_rwkv_wkv7(params, tensor);
|
||||
} break;
|
||||
case GGML_OP_MAP_UNARY:
|
||||
{
|
||||
ggml_unary_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_unary(params, tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_BINARY:
|
||||
{
|
||||
ggml_binary_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_binary(params, tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM1_F32:
|
||||
{
|
||||
ggml_custom1_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom1_f32(params, tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM2_F32:
|
||||
{
|
||||
ggml_custom2_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom2_f32(params, tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM3_F32:
|
||||
{
|
||||
ggml_custom3_op_f32_t fun;
|
||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||
ggml_compute_forward_map_custom3_f32(params, tensor, fun);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_MAP_CUSTOM1:
|
||||
{
|
||||
ggml_compute_forward_map_custom1(params, tensor);
|
||||
@ -2077,6 +2042,11 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||
ggml_compute_forward_map_custom3(params, tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_CUSTOM:
|
||||
{
|
||||
ggml_compute_forward_custom(params, tensor);
|
||||
}
|
||||
break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
{
|
||||
ggml_compute_forward_cross_entropy_loss(params, tensor);
|
||||
@ -2328,11 +2298,6 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
case GGML_OP_WIN_PART:
|
||||
case GGML_OP_WIN_UNPART:
|
||||
case GGML_OP_GET_REL_POS:
|
||||
case GGML_OP_MAP_UNARY:
|
||||
case GGML_OP_MAP_BINARY:
|
||||
case GGML_OP_MAP_CUSTOM1_F32:
|
||||
case GGML_OP_MAP_CUSTOM2_F32:
|
||||
case GGML_OP_MAP_CUSTOM3_F32:
|
||||
{
|
||||
n_tasks = 1;
|
||||
} break;
|
||||
@ -2366,6 +2331,16 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
|
||||
n_tasks = MIN(p.n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CUSTOM:
|
||||
{
|
||||
struct ggml_custom_op_params p;
|
||||
memcpy(&p, node->op_params, sizeof(p));
|
||||
if (p.n_tasks == GGML_N_TASKS_MAX) {
|
||||
n_tasks = n_threads;
|
||||
} else {
|
||||
n_tasks = MIN(p.n_tasks, n_threads);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||
case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
|
||||
case GGML_OP_OPT_STEP_ADAMW:
|
||||
|
@ -8268,152 +8268,6 @@ void ggml_compute_forward_rwkv_wkv7(
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_unary
|
||||
|
||||
static void ggml_compute_forward_map_unary_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const ggml_unary_op_f32_t fun) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
assert(ggml_is_contiguous_1(src0));
|
||||
assert(ggml_is_contiguous_1(dst));
|
||||
assert(ggml_are_same_shape(src0, dst));
|
||||
|
||||
const int n = ggml_nrows(src0);
|
||||
const int nc = src0->ne[0];
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
fun(nc,
|
||||
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||||
(float *) ((char *) src0->data + i*(src0->nb[1])));
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_map_unary(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const ggml_unary_op_f32_t fun) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_map_unary_f32(params, dst, fun);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_binary
|
||||
|
||||
static void ggml_compute_forward_map_binary_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const ggml_binary_op_f32_t fun) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
const ggml_tensor * src1 = dst->src[1];
|
||||
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
assert(ggml_is_contiguous_1(src0));
|
||||
assert(ggml_is_contiguous_1(src1));
|
||||
assert(ggml_is_contiguous_1(dst));
|
||||
assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
|
||||
|
||||
const int n = ggml_nrows(src0);
|
||||
const int nc = src0->ne[0];
|
||||
|
||||
for (int i = 0; i < n; i++) {
|
||||
fun(nc,
|
||||
(float *) ((char *) dst->data + i*( dst->nb[1])),
|
||||
(float *) ((char *) src0->data + i*(src0->nb[1])),
|
||||
(float *) ((char *) src1->data + i*(src1->nb[1])));
|
||||
}
|
||||
}
|
||||
|
||||
void ggml_compute_forward_map_binary(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const ggml_binary_op_f32_t fun) {
|
||||
|
||||
const ggml_tensor * src0 = dst->src[0];
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_map_binary_f32(params, dst, fun);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ABORT("fatal error");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom1
|
||||
|
||||
void ggml_compute_forward_map_custom1_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const ggml_custom1_op_f32_t fun) {
|
||||
|
||||
const ggml_tensor * a = dst->src[0];
|
||||
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
fun(dst, a);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom2
|
||||
|
||||
void ggml_compute_forward_map_custom2_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const ggml_custom2_op_f32_t fun) {
|
||||
|
||||
const ggml_tensor * a = dst->src[0];
|
||||
const ggml_tensor * b = dst->src[1];
|
||||
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
fun(dst, a, b);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom3
|
||||
|
||||
void ggml_compute_forward_map_custom3_f32(
|
||||
const ggml_compute_params * params,
|
||||
ggml_tensor * dst,
|
||||
const ggml_custom3_op_f32_t fun) {
|
||||
|
||||
const ggml_tensor * a = dst->src[0];
|
||||
const ggml_tensor * b = dst->src[1];
|
||||
const ggml_tensor * c = dst->src[1];
|
||||
|
||||
if (params->ith != 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
fun(dst, a, b, c);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_map_custom1
|
||||
|
||||
void ggml_compute_forward_map_custom1(
|
||||
@ -8459,6 +8313,18 @@ void ggml_compute_forward_map_custom3(
|
||||
p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_custom
|
||||
|
||||
void ggml_compute_forward_custom(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst) {
|
||||
|
||||
struct ggml_custom_op_params p;
|
||||
memcpy(&p, dst->op_params, sizeof(p));
|
||||
|
||||
p.fun(dst, params->ith, params->nth, p.userdata);
|
||||
}
|
||||
|
||||
// ggml_compute_forward_cross_entropy_loss
|
||||
|
||||
static void ggml_compute_forward_cross_entropy_loss_f32(
|
||||
|
@ -96,29 +96,10 @@ void ggml_compute_forward_add_rel_pos(const struct ggml_compute_params * params,
|
||||
void ggml_compute_forward_rwkv_wkv6(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_rwkv_wkv7(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_gla(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_map_unary(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_unary_op_f32_t fun);
|
||||
void ggml_compute_forward_map_binary(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_binary_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom1_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom1_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom2_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom2_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom3_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
struct ggml_tensor * dst,
|
||||
const ggml_custom3_op_f32_t fun);
|
||||
void ggml_compute_forward_map_custom1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_map_custom2(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_map_custom3(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_custom(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
|
||||
|
@ -140,8 +140,14 @@ struct ggml_map_custom2_op_params {
|
||||
|
||||
struct ggml_map_custom3_op_params {
|
||||
ggml_custom3_op_t fun;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
struct ggml_custom_op_params {
|
||||
ggml_custom_op_t fun;
|
||||
int n_tasks;
|
||||
void * userdata;
|
||||
};
|
||||
|
||||
// bitset
|
||||
|
263
ggml/src/ggml.c
263
ggml/src/ggml.c
@ -982,23 +982,18 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||
|
||||
"UNARY",
|
||||
|
||||
"MAP_UNARY",
|
||||
"MAP_BINARY",
|
||||
|
||||
"MAP_CUSTOM1_F32",
|
||||
"MAP_CUSTOM2_F32",
|
||||
"MAP_CUSTOM3_F32",
|
||||
|
||||
"MAP_CUSTOM1",
|
||||
"MAP_CUSTOM2",
|
||||
"MAP_CUSTOM3",
|
||||
|
||||
"CUSTOM",
|
||||
|
||||
"CROSS_ENTROPY_LOSS",
|
||||
"CROSS_ENTROPY_LOSS_BACK",
|
||||
"OPT_STEP_ADAMW",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 85, "GGML_OP_COUNT != 85");
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
"none",
|
||||
@ -1081,23 +1076,18 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||
|
||||
"unary(x)",
|
||||
|
||||
"f(x)",
|
||||
"f(x,y)",
|
||||
|
||||
"custom_f32(x)",
|
||||
"custom_f32(x,y)",
|
||||
"custom_f32(x,y,z)",
|
||||
"map_custom(x)",
|
||||
"map_custom(x,y)",
|
||||
"map_custom(x,y,z)",
|
||||
|
||||
"custom(x)",
|
||||
"custom(x,y)",
|
||||
"custom(x,y,z)",
|
||||
|
||||
"cross_entropy_loss(x,y)",
|
||||
"cross_entropy_loss_back(x,y)",
|
||||
"adamw(x)",
|
||||
};
|
||||
|
||||
static_assert(GGML_OP_COUNT == 85, "GGML_OP_COUNT != 85");
|
||||
static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81");
|
||||
|
||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||
|
||||
@ -4842,179 +4832,6 @@ struct ggml_tensor * ggml_unary_inplace(
|
||||
return ggml_unary_impl(ctx, a, op, true);
|
||||
}
|
||||
|
||||
// ggml_map_unary
|
||||
|
||||
static struct ggml_tensor * ggml_map_unary_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_unary_op_f32_t fun,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_UNARY;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_unary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_unary_op_f32_t fun) {
|
||||
return ggml_map_unary_impl_f32(ctx, a, fun, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_unary_op_f32_t fun) {
|
||||
return ggml_map_unary_impl_f32(ctx, a, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_binary
|
||||
|
||||
static struct ggml_tensor * ggml_map_binary_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_binary_op_f32_t fun,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(ggml_are_same_shape(a, b));
|
||||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_BINARY;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_binary_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_binary_op_f32_t fun) {
|
||||
return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_binary_op_f32_t fun) {
|
||||
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom1_f32
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom1_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_custom1_op_f32_t fun,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM1_F32;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom1_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_custom1_op_f32_t fun) {
|
||||
return ggml_map_custom1_impl_f32(ctx, a, fun, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
const ggml_custom1_op_f32_t fun) {
|
||||
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom2_f32
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom2_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_custom2_op_f32_t fun,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM2_F32;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom2_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_custom2_op_f32_t fun) {
|
||||
return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
const ggml_custom2_op_f32_t fun) {
|
||||
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom3_f32
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom3_impl_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
const ggml_custom3_op_f32_t fun,
|
||||
bool inplace) {
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
|
||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM3_F32;
|
||||
result->src[0] = a;
|
||||
result->src[1] = b;
|
||||
result->src[2] = c;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom3_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
const ggml_custom3_op_f32_t fun) {
|
||||
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
struct ggml_tensor * c,
|
||||
const ggml_custom3_op_f32_t fun) {
|
||||
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
|
||||
}
|
||||
|
||||
// ggml_map_custom1
|
||||
|
||||
static struct ggml_tensor * ggml_map_custom1_impl(
|
||||
@ -5033,7 +4850,7 @@ static struct ggml_tensor * ggml_map_custom1_impl(
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM1;
|
||||
result->src[0] = a;
|
||||
@ -5078,7 +4895,7 @@ static struct ggml_tensor * ggml_map_custom2_impl(
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM2;
|
||||
result->src[0] = a;
|
||||
@ -5127,7 +4944,7 @@ static struct ggml_tensor * ggml_map_custom3_impl(
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_MAP_CUSTOM3;
|
||||
result->src[0] = a;
|
||||
@ -5159,6 +4976,66 @@ struct ggml_tensor * ggml_map_custom3_inplace(
|
||||
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_custom_4d(
|
||||
struct ggml_context * ctx,
|
||||
enum ggml_type type,
|
||||
int64_t ne0,
|
||||
int64_t ne1,
|
||||
int64_t ne2,
|
||||
int64_t ne3,
|
||||
struct ggml_tensor ** args,
|
||||
int n_args,
|
||||
ggml_custom_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
|
||||
GGML_ASSERT(n_args < GGML_MAX_SRC);
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, ne0, ne1, ne2, ne3);
|
||||
|
||||
struct ggml_custom_op_params params = {
|
||||
/*.fun =*/ fun,
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_CUSTOM;
|
||||
for (int i = 0; i < n_args; i++) {
|
||||
result->src[i] = args[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_custom_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor ** args,
|
||||
int n_args,
|
||||
ggml_custom_op_t fun,
|
||||
int n_tasks,
|
||||
void * userdata) {
|
||||
|
||||
GGML_ASSERT(n_args < GGML_MAX_SRC - 1);
|
||||
|
||||
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
||||
|
||||
struct ggml_custom_op_params params = {
|
||||
/*.fun =*/ fun,
|
||||
/*.n_tasks =*/ n_tasks,
|
||||
/*.userdata =*/ userdata
|
||||
};
|
||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
||||
|
||||
result->op = GGML_OP_CUSTOM;
|
||||
result->src[0] = a;
|
||||
for (int i = 0; i < n_args; i++) {
|
||||
result->src[i + 1] = args[i];
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
// ggml_cross_entropy_loss
|
||||
|
||||
struct ggml_tensor * ggml_cross_entropy_loss(
|
||||
|
Loading…
x
Reference in New Issue
Block a user