diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py index 656dc9877..c9ac2957f 100755 --- a/convert_hf_to_gguf.py +++ b/convert_hf_to_gguf.py @@ -65,6 +65,7 @@ class Model: model_name: str | None metadata_override: Path | None dir_model_card: Path + remote_hf_model_id: str | None # subclasses should define this! model_arch: gguf.MODEL_ARCH @@ -73,7 +74,7 @@ class Model: use_temp_file: bool = False, eager: bool = False, metadata_override: Path | None = None, model_name: str | None = None, split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, - small_first_shard: bool = False, hparams: dict[str, Any] | None = None): + small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None): if type(self) is Model: raise TypeError(f"{type(self).__name__!r} should not be directly instantiated") @@ -83,11 +84,24 @@ class Model: self.is_big_endian = is_big_endian self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE self.use_temp_file = use_temp_file - self.lazy = not eager - self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") - self.is_safetensors = len(self.part_names) > 0 - if not self.is_safetensors: - self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin") + self.lazy = not eager or (remote_hf_model_id is not None) + self.remote_hf_model_id = remote_hf_model_id + if remote_hf_model_id is not None: + self.is_safetensors = True + + def get_remote_tensors() -> Iterator[tuple[str, Tensor]]: + logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}") + remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id) + self.tensor_names = set(name for name in remote_tensors.keys()) + for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items(): + yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor)) + + self.get_tensors = get_remote_tensors + else: + self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors") + self.is_safetensors = len(self.part_names) > 0 + if not self.is_safetensors: + self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin") self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"]) self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count) @@ -393,6 +407,10 @@ class Model: self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params) + # If we are using HF model id, set the metadata name to the model id + if self.remote_hf_model_id: + self.metadata.name = self.remote_hf_model_id + # Fallback to model directory name if metadata name is still missing if self.metadata.name is None: self.metadata.name = self.dir_model.name @@ -5403,6 +5421,14 @@ class LazyTorchTensor(gguf.LazyBase): lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:]) return cast(torch.Tensor, lazy) + @classmethod + def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor): + dtype = cls._dtype_str_map[remote_tensor.dtype] + shape = remote_tensor.shape + meta = cls.meta_with_dtype_and_shape(dtype, shape) + lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape)) + return cast(torch.Tensor, lazy) + @classmethod def __torch_function__(cls, func, types, args=(), kwargs=None): del types # unused @@ -5480,6 +5506,10 @@ def parse_args() -> argparse.Namespace: "--print-supported-models", action="store_true", help="Print the supported models" ) + parser.add_argument( + "--remote", action="store_true", + help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.", + ) args = parser.parse_args() if not args.print_supported_models and args.model is None: @@ -5520,6 +5550,14 @@ def main() -> None: dir_model = args.model + if args.remote: + from huggingface_hub import snapshot_download + local_dir = snapshot_download( + repo_id=str(dir_model), + allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]) + dir_model = Path(local_dir) + logger.info(f"Downloaded config and tokenizer to {local_dir}") + if not dir_model.is_dir(): logger.error(f'Error: {args.model} is not a directory') sys.exit(1) @@ -5541,6 +5579,9 @@ def main() -> None: if args.outfile is not None: fname_out = args.outfile + elif args.remote: + # if remote, use the model ID as the output file name + fname_out = Path("./" + str(args.model).replace("/", "-") + "-{ftype}.gguf") else: fname_out = dir_model @@ -5564,7 +5605,8 @@ def main() -> None: metadata_override=args.metadata, model_name=args.model_name, split_max_tensors=args.split_max_tensors, split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run, - small_first_shard=args.no_tensor_first_split) + small_first_shard=args.no_tensor_first_split, + remote_hf_model_id=str(args.model) if args.remote else None) if args.vocab_only: logger.info("Exporting model vocab...") diff --git a/gguf-py/gguf/utility.py b/gguf-py/gguf/utility.py index ae92d786a..e5251aef8 100644 --- a/gguf-py/gguf/utility.py +++ b/gguf-py/gguf/utility.py @@ -1,7 +1,11 @@ from __future__ import annotations +from dataclasses import dataclass from typing import Literal +import os +import json + def fill_templated_filename(filename: str, output_type: str | None) -> str: # Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf' @@ -67,3 +71,194 @@ def naming_convention(model_name: str | None, base_name: str | None, finetune_st kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else "" return f"{name}{parameters}{finetune}{version}{encoding}{kind}" + + +@dataclass +class RemoteTensor: + dtype: str + shape: tuple[int, ...] + offset_start: int + size: int + url: str + + def data(self) -> bytearray: + # TODO: handle request errors (maybe with limited retries?) + # NOTE: using a bytearray, otherwise PyTorch complains the buffer is not writeable + data = bytearray(SafetensorRemote.get_data_by_range(url=self.url, start=self.offset_start, size=self.size)) + return data + + +class SafetensorRemote: + """ + Uility class to handle remote safetensor files. + This class is designed to work with Hugging Face model repositories. + + Example (one model has single safetensor file, the other has multiple): + for model_id in ["ngxson/TEST-Tiny-Llama4", "Qwen/Qwen2.5-7B-Instruct"]: + tensors = SafetensorRemote.get_list_tensors_hf_model(model_id) + print(tensors) + + Example reading tensor data: + tensors = SafetensorRemote.get_list_tensors_hf_model(model_id) + for name, meta in tensors.items(): + dtype, shape, offset_start, size, remote_safetensor_url = meta + # read the tensor data + data = SafetensorRemote.get_data_by_range(remote_safetensor_url, offset_start, size) + print(data) + """ + + BASE_DOMAIN = "https://huggingface.co" + ALIGNMENT = 8 # bytes + + @classmethod + def get_list_tensors_hf_model(cls, model_id: str) -> dict[str, RemoteTensor]: + """ + Get list of tensors from a Hugging Face model repository. + + Returns a dictionary of tensor names and their metadata. + Each tensor is represented as a tuple of (dtype, shape, offset_start, size, remote_safetensor_url) + """ + # case 1: model has only one single model.safetensor file + is_single_file = cls.check_file_exist(f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors") + if is_single_file: + url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors" + return cls.get_list_tensors(url) + + # case 2: model has multiple files + index_url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors.index.json" + is_multiple_files = cls.check_file_exist(index_url) + if is_multiple_files: + # read the index file + index_data = cls.get_data_by_range(index_url, 0) + index_str = index_data.decode('utf-8') + index_json = json.loads(index_str) + assert index_json.get("weight_map") is not None, "weight_map not found in index file" + weight_map = index_json["weight_map"] + # get the list of files + all_files = list(set(weight_map.values())) + all_files.sort() # make sure we load shard files in order + # get the list of tensors + tensors: dict[str, RemoteTensor] = {} + for file in all_files: + url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/{file}" + for key, val in cls.get_list_tensors(url).items(): + tensors[key] = val + return tensors + + raise ValueError(f"Model {model_id} does not have any safetensor files") + + @classmethod + def get_list_tensors(cls, url: str) -> dict[str, RemoteTensor]: + """ + Get list of tensors from a remote safetensor file. + + Returns a dictionary of tensor names and their metadata. + Each tensor is represented as a tuple of (dtype, shape, offset_start, size) + """ + metadata, data_start_offset = cls.get_metadata(url) + res: dict[str, RemoteTensor] = {} + + for name, meta in metadata.items(): + if name == "__metadata__": + continue + if not isinstance(meta, dict): + raise ValueError(f"Invalid metadata for tensor '{name}': {meta}") + try: + dtype = meta["dtype"] + shape = meta["shape"] + offset_start_relative, offset_end_relative = meta["data_offsets"] + size = offset_end_relative - offset_start_relative + offset_start = data_start_offset + offset_start_relative + res[name] = RemoteTensor(dtype=dtype, shape=tuple(shape), offset_start=offset_start, size=size, url=url) + except KeyError as e: + raise ValueError(f"Missing key in metadata for tensor '{name}': {e}, meta = {meta}") + + return res + + @classmethod + def get_metadata(cls, url: str) -> tuple[dict, int]: + """ + Get JSON metadata from a remote safetensor file. + + Returns tuple of (metadata, data_start_offset) + """ + # Request first 5MB of the file (hopefully enough for metadata) + read_size = 5 * 1024 * 1024 + raw_data = cls.get_data_by_range(url, 0, read_size) + + # Parse header + # First 8 bytes contain the metadata length as u64 little-endian + if len(raw_data) < 8: + raise ValueError("Not enough data to read metadata size") + metadata_length = int.from_bytes(raw_data[:8], byteorder='little') + + # Calculate the data start offset + data_start_offset = 8 + metadata_length + alignment = SafetensorRemote.ALIGNMENT + if data_start_offset % alignment != 0: + data_start_offset += alignment - (data_start_offset % alignment) + + # Check if we have enough data to read the metadata + if len(raw_data) < 8 + metadata_length: + raise ValueError(f"Could not read complete metadata. Need {8 + metadata_length} bytes, got {len(raw_data)}") + + # Extract metadata bytes and parse as JSON + metadata_bytes = raw_data[8:8 + metadata_length] + metadata_str = metadata_bytes.decode('utf-8') + try: + metadata = json.loads(metadata_str) + return metadata, data_start_offset + except json.JSONDecodeError as e: + raise ValueError(f"Failed to parse safetensor metadata as JSON: {e}") + + @classmethod + def get_data_by_range(cls, url: str, start: int, size: int = -1) -> bytes: + """ + Get raw byte data from a remote file by range. + If size is not specified, it will read the entire file. + """ + import requests + from urllib.parse import urlparse + + parsed_url = urlparse(url) + if not parsed_url.scheme or not parsed_url.netloc: + raise ValueError(f"Invalid URL: {url}") + + headers = cls._get_request_headers() + if size > -1: + headers["Range"] = f"bytes={start}-{start + size}" + response = requests.get(url, allow_redirects=True, headers=headers) + response.raise_for_status() + + # Get raw byte data + return response.content[:size] + + @classmethod + def check_file_exist(cls, url: str) -> bool: + """ + Check if a file exists at the given URL. + Returns True if the file exists, False otherwise. + """ + import requests + from urllib.parse import urlparse + + parsed_url = urlparse(url) + if not parsed_url.scheme or not parsed_url.netloc: + raise ValueError(f"Invalid URL: {url}") + + try: + headers = cls._get_request_headers() + headers["Range"] = "bytes=0-0" + response = requests.head(url, allow_redirects=True, headers=headers) + # Success (2xx) or redirect (3xx) + return 200 <= response.status_code < 400 + except requests.RequestException: + return False + + @classmethod + def _get_request_headers(cls) -> dict[str, str]: + """Prepare common headers for requests.""" + headers = {"User-Agent": "convert_hf_to_gguf"} + if os.environ.get("HF_TOKEN"): + headers["Authorization"] = f"Bearer {os.environ['HF_TOKEN']}" + return headers