CANN: Support Opt CONV_TRANSPOSE_1D and ELU (#12786)

* [CANN] Support ELU and CONV_TRANSPOSE_1D

* [CANN]Modification review comments

* [CANN]Modification review comments

* [CANN]name adjustment

* [CANN]remove lambda used in template

* [CANN]Use std::func instead of template

* [CANN]Modify the code according to the review comments

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
This commit is contained in:
Chenguang Li 2025-04-09 14:04:14 +08:00 committed by GitHub
parent 0090950f67
commit 6e1c4cebdb
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 204 additions and 78 deletions

View File

@ -1,4 +1,4 @@
ARG ASCEND_VERSION=8.0.rc2.alpha003-910b-openeuler22.03-py3.8
ARG ASCEND_VERSION=8.1.RC1.alpha001-910b-openeuler22.03-py3.10
FROM ascendai/cann:$ASCEND_VERSION AS build
@ -6,7 +6,7 @@ WORKDIR /app
COPY . .
RUN yum install -y gcc g++ cmake make
RUN yum install -y gcc g++ cmake make libcurl-devel
ENV ASCEND_TOOLKIT_HOME=/usr/local/Ascend/ascend-toolkit/latest
ENV LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:$LIBRARY_PATH
ENV LD_LIBRARY_PATH=${ASCEND_TOOLKIT_HOME}/lib64:${ASCEND_TOOLKIT_HOME}/lib64/plugin/opskernel:${ASCEND_TOOLKIT_HOME}/lib64/plugin/nnengine:${ASCEND_TOOLKIT_HOME}/opp/built-in/op_impl/ai_core/tbe/op_tiling:${LD_LIBRARY_PATH}

View File

@ -1771,7 +1771,7 @@ jobs:
strategy:
matrix:
cann:
- '8.0.rc3.beta1-910b-openeuler22.03-py3.10'
- '8.1.RC1.alpha001-910b-openeuler22.03-py3.10'
device:
- 'ascend910b3'
build:
@ -1784,7 +1784,7 @@ jobs:
- name: Dependencies
run: |
yum update -y
yum install -y git gcc gcc-c++ make cmake
yum install -y git gcc gcc-c++ make cmake libcurl-devel
- name: Build
run: |

View File

@ -57,6 +57,8 @@
#include <aclnnop/aclnn_sub.h>
#include <aclnnop/aclnn_mul.h>
#include <aclnnop/aclnn_div.h>
#include <aclnnop/aclnn_convolution.h>
#include <aclnnop/aclnn_elu.h>
#include <float.h>
#include <cmath>
@ -86,6 +88,20 @@ void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclT
}
}
void ggml_cann_unary_op(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
unary_op(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Repeats elements of a tensor along each dimension according to the
* specified repeat array.
@ -2585,3 +2601,49 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];
ggml_tensor * src1 = dst->src[1];
// stride
int64_t s0 = ((const int32_t*)(dst->op_params))[0];
aclTensor* acl_input = ggml_cann_create_tensor(src1, src1->ne, src1->nb, 3, ACL_FORMAT_NCL);
aclTensor* acl_weight = ggml_cann_create_tensor(src0, src0->ne, src0->nb, 3, ACL_FORMAT_NCL);
aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst->ne, dst->nb, 3, ACL_FORMAT_NCL);
int64_t strideVal[1];
strideVal[0] = s0;
aclIntArray *stride = aclCreateIntArray(strideVal, 1);
int64_t paddingVal[] = {0};
aclIntArray *padding = aclCreateIntArray(paddingVal, 1);
int64_t dilationVal[] = {1};
aclIntArray *dilation = aclCreateIntArray(dilationVal, 1);
bool transposed = true;
int64_t groups = 1;
int8_t cubeMathType = 0;
GGML_CANN_CALL_ACLNN_OP(Convolution, acl_input, acl_weight, nullptr, stride,
padding, dilation, transposed, padding, groups, acl_dst, cubeMathType);
ACL_CHECK(aclDestroyTensor(acl_weight));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];
aclTensor* acl_input = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float alphaValue = 1.0f;
aclScalar* alpha = nullptr;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(Elu, acl_input, alpha, alpha, alpha,
acl_dst);
ACL_CHECK(aclDestroyTensor(acl_input));
ACL_CHECK(aclDestroyTensor(acl_dst));
}

View File

@ -1,15 +1,4 @@
#ifndef CANN_ACLNN_OPS
#define CANN_ACLNN_OPS
/**
* @file acl_tensor
* @brief This file contains related functions of ggml_tensor and acl_tensor.
* Contains conversion from ggml_tensor to acl_tensor, broadcast and other
* functions.
* @author hipudding <huafengchun@gmail.com>
* @author wangshuai09 <391746016@qq.com>
* @date July 15, 2024
*
* Copyright (c) 2023-2024 The ggml authors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
@ -31,6 +20,9 @@
* IN THE SOFTWARE.
*/
#ifndef CANN_ACLNN_OPS
#define CANN_ACLNN_OPS
#include <aclnnop/aclnn_abs.h>
#include <aclnnop/aclnn_neg.h>
#include <aclnnop/aclnn_exp.h>
@ -483,8 +475,8 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst);
* operation is executed using the CANN backend for optimized performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the indices of the maximum values will be stored.
* dst->op is `GGML_OP_ARGMAX`.
* @param dst The destination tensor where the indices of the maximum values will
* be stored. dst->op is `GGML_OP_ARGMAX`.
*/
void ggml_cann_argmax(ggml_backend_cann_context& ctx, ggml_tensor* dst);
@ -599,6 +591,99 @@ void aclnn_cos(ggml_backend_cann_context& ctx, aclTensor* acl_src,
void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
aclTensor* acl_dst);
/**
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one
* output tensor.
*
* This function checks whether broadcasting is needed between `src0` and `src1`.
* If broadcasting is required, it calculates the proper shapes and creates
* ACL tensors with broadcast parameters. Otherwise, it directly creates ACL tensors
* based on the original tensor shapes.
*
* @param src0 The first input tensor (reference shape).
* @param src1 The second input tensor (possibly broadcasted).
* @param dst The destination/output tensor.
* @param acl_src0 Output pointer to the created ACL tensor corresponding to src0.
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
*/
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst,
aclTensor ** acl_src0, aclTensor ** acl_src1, aclTensor ** acl_dst);
/**
* @brief Computes the 1D transposed convolution (deconvolution) of a ggml
* tensor using the CANN backend.
*
* @details This function performs a 1D transposed convolution (also known as
* deconvolution) operation on the input tensor. The computed result is stored
* in the destination tensor `dst`. The operation is optimized using the CANN
* backend for improved performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the transposed convolution result
* will be stored. dst->op is `GGML_OP_CONV_TRANSPOSE_1D`.
*/
void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies the ELU (Exponential Linear Unit) activation to a ggml tensor
* using the CANN backend.
*
* @details This function performs an element-wise ELU activation on the input
* tensor.
* The result is written to the destination tensor `dst` in-place.
* The ELU function is defined as:
*
* \text{ELU}(x) =
* \begin{cases}
* x, & \text{if } x > 0 \\
* \alpha \left( \exp(x) - 1 \right), & \text{if } x \leq 0
* \end{cases}
*
* where α (alpha) is a hyperparameter, typically set to 1.0.
* This operation is optimized using the CANN backend for high-performance
* inference or training.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the ELU-activated result will be stored.
* dst->op is expected to be `GGML_OP_ELU`.
*/
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies a element-wise operation to two input tensors using the CANN
* backend.
*
* This templated function takes a binary operator and applies it to two source
* tensors
* associated with the destination tensor. The function handles broadcasting as
* needed.
*
* @tparam binary_op A callable object (e.g., lambda or function pointer) representing
* the binary operation to be performed. It must take three arguments:
* (ggml_backend_cann_context&, aclTensor*, aclTensor*, aclTensor*).
*
* @param ctx The CANN backend context used to manage execution and resources.
* @param dst The destination tensor.
*/
template <auto binary_op>
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
aclTensor* acl_src0;
aclTensor* acl_src1;
aclTensor* acl_dst;
// Need bcast
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
binary_op(ctx, acl_src0, acl_src1, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Launches an asynchronous task using the memory allocator.
*
@ -631,56 +716,6 @@ void aclnn_sin(ggml_backend_cann_context& ctx, aclTensor* acl_src,
ACL_CHECK(aclnn##OP_NAME(workspaceAddr, workspaceSize, executor, ctx.stream())); \
} while (0)
/**
* @brief Prepares broadcast-compatible ACL tensors for two input tensors and one output tensor.
*
* This function checks whether broadcasting is needed between `src0` and `src1`.
* If broadcasting is required, it calculates the proper shapes and creates
* ACL tensors with broadcast parameters. Otherwise, it directly creates ACL tensors
* based on the original tensor shapes.
*
* @param src0 The first input tensor (reference shape).
* @param src1 The second input tensor (possibly broadcasted).
* @param dst The destination/output tensor.
* @param acl_src0 Output pointer to the created ACL tensor corresponding to src0.
* @param acl_src1 Output pointer to the created ACL tensor corresponding to src1.
* @param acl_dst Output pointer to the created ACL tensor corresponding to dst.
*/
void bcast_shape(ggml_tensor * src0, ggml_tensor * src1, ggml_tensor * dst, aclTensor ** acl_src0,
aclTensor ** acl_src1, aclTensor ** acl_dst);
/**
* @brief Applies a element-wise operation to two input tensors using the CANN backend.
*
* This templated function takes a binary operator and applies it to two source tensors
* associated with the destination tensor. The function handles broadcasting as needed.
*
* @tparam binary_op A callable object (e.g., lambda or function pointer) representing
* the binary operation to be performed. It must take three arguments:
* (ggml_backend_cann_context&, aclTensor*, aclTensor*, aclTensor*).
*
* @param ctx The CANN backend context used to manage execution and resources.
* @param dst The destination tensor.
*/
template <auto binary_op>
void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
ggml_tensor* src0 = dst->src[0];
ggml_tensor* src1 = dst->src[1];
aclTensor* acl_src0;
aclTensor* acl_src1;
aclTensor* acl_dst;
// Need bcast
bcast_shape(src0, src1, dst, &acl_src0, &acl_src1, &acl_dst);
binary_op(ctx, acl_src0, acl_src1, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src0));
ACL_CHECK(aclDestroyTensor(acl_src1));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Applies a unary operation to an input tensor using the CANN backend.
*
@ -690,7 +725,6 @@ void ggml_cann_binary_op(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
* @tparam unary_op A callable with the signature:
* void(ggml_backend_cann_context&, aclTensor*, aclTensor*)
* where the first aclTensor is the source and the second is the destination.
*
* @param ctx The CANN backend context for managing resources and execution.
* @param dst The destination tensor. Its src[0] is treated as the input tensor.
*/
@ -702,10 +736,30 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
unary_op(ctx, acl_src, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
/**
* @brief Applies a unary operation to a ggml tensor using the CANN backend.
*
* @details This function performs a unary operation on the input tensor using
* a user-provided lambda or callable object `unary_op`, which accepts the CANN
* context and two ACL tensors (source and destination). Internally, this function
* creates ACL representations of the ggml tensors and invokes the unary operation.
* The result is stored in the destination tensor `dst`. This utility abstracts the
* common boilerplate of tensor conversion and cleanup when implementing unary ops.
*
* @param unary_op A callable that performs the unary operation using CANN APIs.
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* The source tensor is retrieved from `dst->src[0]`.
*/
void ggml_cann_unary_op(
std::function<void(ggml_backend_cann_context&, aclTensor*, aclTensor*)> unary_op,
ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Helper macro to invoke a unary ACL operation using ggml_cann_unary_op.
*
@ -725,11 +779,12 @@ template <void unary_op(ggml_backend_cann_context&, aclTensor*, aclTensor*)>
*/
#define GGML_CANN_CALL_UNARY_OP(OP_NAME) \
do { \
auto lambda = [](auto ctx, auto acl_src, auto acl_dst) { \
auto lambda = [](ggml_backend_cann_context& ctx, \
aclTensor* acl_src, \
aclTensor* acl_dst) { \
GGML_CANN_CALL_ACLNN_OP(OP_NAME, acl_src, acl_dst); \
}; \
ggml_cann_unary_op<lambda>(ctx, dst); \
ggml_cann_unary_op(lambda, ctx, dst); \
} \
while (0)
#endif // CANN_ACLNN_OPS

View File

@ -1330,12 +1330,13 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
GGML_CANN_CALL_UNARY_OP(Silu);
break;
case GGML_UNARY_OP_GELU_QUICK: {
auto lambda = [](auto ctx, auto acl_src, auto acl_dst) {
GGML_CANN_CALL_ACLNN_OP(GeluV2, acl_src, 0, acl_dst);
};
ggml_cann_unary_op<lambda>(ctx, dst);
}
break;
auto lambda = [](ggml_backend_cann_context& ctx,
aclTensor* acl_src,
aclTensor* acl_dst) {
GGML_CANN_CALL_ACLNN_OP(GeluV2, acl_src, 0, acl_dst);
};
ggml_cann_unary_op(lambda, ctx, dst);
} break;
case GGML_UNARY_OP_TANH:
GGML_CANN_CALL_UNARY_OP(Tanh);
break;
@ -1354,6 +1355,9 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_UNARY_OP_EXP:
GGML_CANN_CALL_UNARY_OP(Exp);
break;
case GGML_UNARY_OP_ELU:
ggml_cann_elu(ctx, dst);
break;
default:
return false;
}
@ -1448,7 +1452,10 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
break;
case GGML_OP_SIN:
ggml_cann_unary_op<aclnn_sin>(ctx, dst);
break;
break;
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cann_conv_transpose_1d(ctx, dst);
break;
default:
return false;
}
@ -1710,6 +1717,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_UNARY_OP_GELU_QUICK:
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_ELU:
return true;
default:
return false;
@ -1842,6 +1850,7 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_ARGMAX:
case GGML_OP_COS:
case GGML_OP_SIN:
case GGML_OP_CONV_TRANSPOSE_1D:
return true;
default:
return false;