mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-04-13 01:56:09 +00:00
ggml : upgrade init_tensor API to return a ggml_status (#11854)
* Upgrade init_tensor API to return a ggml_status To prepare for an 'abort-free' ggml (ggml not to abort on OOMs but return a OOM status), as agreeed with Diego in the ggml repo, upgrade the init_tensor() and view_init() APIs to return a ggml_status. * misc fixes --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
c43a3e7996
commit
70680c48e5
2
.gitignore
vendored
2
.gitignore
vendored
@ -45,6 +45,8 @@ lcov-report/
|
||||
tags
|
||||
.build/
|
||||
build*
|
||||
release
|
||||
debug
|
||||
!build-info.cmake
|
||||
!build-info.cpp.in
|
||||
!build-info.sh
|
||||
|
@ -39,7 +39,7 @@
|
||||
|
||||
_(NOTE: this guideline is yet to be applied to the `llama.cpp` codebase. New code should follow this guideline.)_
|
||||
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` to format the added code
|
||||
- Try to follow the existing patterns in the code (indentation, spaces, etc.). In case of doubt use `clang-format` (from clang-tools v15+) to format the added code
|
||||
- For anything not covered in the current guidelines, refer to the [C++ Core Guidelines](https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines)
|
||||
- Tensors store data in row-major order. We refer to dimension 0 as columns, 1 as rows, 2 as matrices
|
||||
- Matrix multiplication is unconventional: [`C = ggml_mul_mat(ctx, A, B)`](https://github.com/ggml-org/llama.cpp/blob/880e352277fc017df4d5794f0c21c44e1eae2b84/ggml.h#L1058-L1064) means $C^T = A B^T \Leftrightarrow C = B A^T.$
|
||||
|
@ -19,7 +19,7 @@ struct ggml_tallocr {
|
||||
};
|
||||
|
||||
GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor);
|
||||
|
||||
// Graph allocator
|
||||
/*
|
||||
|
@ -56,7 +56,7 @@ extern "C" {
|
||||
GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer);
|
||||
GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_status ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer);
|
||||
GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
@ -342,8 +342,8 @@ extern "C" {
|
||||
GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data);
|
||||
|
||||
// Tensor initialization
|
||||
GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API void ggml_backend_view_init(struct ggml_tensor * tensor);
|
||||
GGML_API enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr);
|
||||
GGML_API enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor);
|
||||
|
||||
// CPU buffer types are always available
|
||||
GGML_API ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size);
|
||||
|
@ -89,7 +89,7 @@ struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) {
|
||||
return talloc;
|
||||
}
|
||||
|
||||
void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
|
||||
enum ggml_status ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) {
|
||||
size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor);
|
||||
size = GGML_PAD(size, talloc->alignment);
|
||||
|
||||
@ -104,7 +104,7 @@ void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tenso
|
||||
|
||||
assert(((uintptr_t)addr % talloc->alignment) == 0);
|
||||
|
||||
ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
|
||||
return ggml_backend_tensor_alloc(talloc->buffer, tensor, addr);
|
||||
}
|
||||
|
||||
// dynamic tensor allocator
|
||||
@ -933,42 +933,51 @@ size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) {
|
||||
|
||||
// utils
|
||||
|
||||
static void free_buffers(ggml_backend_buffer_t ** buffers, const size_t * n_buffers) {
|
||||
for (size_t i = 0; i < *n_buffers; i++) {
|
||||
ggml_backend_buffer_free((*buffers)[i]);
|
||||
}
|
||||
free(*buffers);
|
||||
}
|
||||
|
||||
static bool alloc_tensor_range(struct ggml_context * ctx,
|
||||
struct ggml_tensor * first, struct ggml_tensor * last,
|
||||
ggml_backend_buffer_type_t buft, size_t size,
|
||||
ggml_backend_buffer_t ** buffers, size_t * n_buffers) {
|
||||
|
||||
ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size);
|
||||
if (buffer == NULL) {
|
||||
#ifndef NDEBUG
|
||||
GGML_LOG_DEBUG("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
|
||||
#endif
|
||||
for (size_t i = 0; i < *n_buffers; i++) {
|
||||
ggml_backend_buffer_free((*buffers)[i]);
|
||||
}
|
||||
free(*buffers);
|
||||
GGML_LOG_ERROR("%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size);
|
||||
free_buffers(buffers, n_buffers);
|
||||
return false;
|
||||
}
|
||||
|
||||
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
|
||||
|
||||
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
||||
if (t->data == NULL) {
|
||||
if (t->view_src == NULL) {
|
||||
ggml_tallocr_alloc(&tallocr, t);
|
||||
} else if (t->buffer == NULL) {
|
||||
ggml_backend_view_init(t);
|
||||
}
|
||||
} else {
|
||||
if (t->view_src != NULL && t->buffer == NULL) {
|
||||
// view of a pre-allocated tensor
|
||||
ggml_backend_view_init(t);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
*buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1));
|
||||
(*buffers)[(*n_buffers)++] = buffer;
|
||||
|
||||
struct ggml_tallocr tallocr = ggml_tallocr_new(buffer);
|
||||
|
||||
for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) {
|
||||
enum ggml_status status = GGML_STATUS_SUCCESS;
|
||||
if (t->data == NULL) {
|
||||
if (t->view_src == NULL) {
|
||||
status = ggml_tallocr_alloc(&tallocr, t);
|
||||
} else if (t->buffer == NULL) {
|
||||
status = ggml_backend_view_init(t);
|
||||
}
|
||||
} else {
|
||||
if (t->view_src != NULL && t->buffer == NULL) {
|
||||
// view of a pre-allocated tensor
|
||||
status = ggml_backend_view_init(t);
|
||||
}
|
||||
}
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
GGML_LOG_ERROR("%s: failed to initialize tensor %s\n", __func__, t->name);
|
||||
free_buffers(buffers, n_buffers);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -44,7 +44,7 @@ extern "C" {
|
||||
// base address of the buffer
|
||||
void * (*get_base) (ggml_backend_buffer_t buffer);
|
||||
// (optional) initialize a tensor in the buffer (eg. add tensor extras)
|
||||
void (*init_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
enum ggml_status (*init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor);
|
||||
// tensor data access
|
||||
void (*memset_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, uint8_t value, size_t offset, size_t size);
|
||||
void (*set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size);
|
||||
|
@ -126,11 +126,12 @@ void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return base;
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
enum ggml_status ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
// init_tensor is optional
|
||||
if (buffer->iface.init_tensor) {
|
||||
buffer->iface.init_tensor(buffer, tensor);
|
||||
return buffer->iface.init_tensor(buffer, tensor);
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
|
||||
@ -1641,7 +1642,7 @@ ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched,
|
||||
|
||||
// utils
|
||||
|
||||
void ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
enum ggml_status ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->view_src != NULL);
|
||||
GGML_ASSERT(tensor->view_src->buffer != NULL);
|
||||
@ -1649,10 +1650,10 @@ void ggml_backend_view_init(struct ggml_tensor * tensor) {
|
||||
|
||||
tensor->buffer = tensor->view_src->buffer;
|
||||
tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
|
||||
ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
|
||||
return ggml_backend_buffer_init_tensor(tensor->buffer, tensor);
|
||||
}
|
||||
|
||||
void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
||||
enum ggml_status ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
|
||||
GGML_ASSERT(tensor->buffer == NULL);
|
||||
GGML_ASSERT(tensor->data == NULL);
|
||||
GGML_ASSERT(tensor->view_src == NULL);
|
||||
@ -1662,7 +1663,7 @@ void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor
|
||||
|
||||
tensor->buffer = buffer;
|
||||
tensor->data = addr;
|
||||
ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
return ggml_backend_buffer_init_tensor(buffer, tensor);
|
||||
}
|
||||
|
||||
static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
|
||||
@ -1708,7 +1709,8 @@ static void graph_copy_init_tensor(struct ggml_hash_set * hash_set, struct ggml_
|
||||
struct ggml_tensor * dst = node_copies[id];
|
||||
if (dst->view_src != NULL) {
|
||||
graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
|
||||
ggml_backend_view_init(dst);
|
||||
enum ggml_status status = ggml_backend_view_init(dst);
|
||||
GGML_ASSERT(status == GGML_STATUS_SUCCESS);
|
||||
}
|
||||
else {
|
||||
ggml_backend_tensor_copy(src, dst);
|
||||
@ -1823,7 +1825,6 @@ bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t
|
||||
assert(g1->n_nodes == g2->n_nodes);
|
||||
|
||||
for (int i = 0; i < g1->n_nodes; i++) {
|
||||
//printf("eval %d/%d\n", i, g1->n_nodes);
|
||||
struct ggml_tensor * t1 = g1->nodes[i];
|
||||
struct ggml_tensor * t2 = g2->nodes[i];
|
||||
|
||||
|
@ -796,11 +796,11 @@ static bool need_transform(ggml_type type) {
|
||||
* @param buffer The CANN buffer from which to initialize the tensor.
|
||||
* @param tensor Pointer to the tensor to be initialized.
|
||||
*/
|
||||
static void ggml_backend_cann_buffer_init_tensor(
|
||||
static enum ggml_status ggml_backend_cann_buffer_init_tensor(
|
||||
ggml_backend_buffer_t buffer, ggml_tensor* tensor) {
|
||||
if (tensor->view_src != NULL && tensor->view_offs == 0) {
|
||||
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
|
||||
return;
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// TODO: can backend doesn't support quantized yet. Just leave the code
|
||||
@ -817,6 +817,7 @@ static void ggml_backend_cann_buffer_init_tensor(
|
||||
memset_size, 0, memset_size));
|
||||
}
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// TODO: need handle tensor which has paddings.
|
||||
|
@ -50,10 +50,11 @@ static void * ggml_backend_amx_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return (void *) (buffer->context);
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_amx_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) ggml::cpu::amx::get_tensor_traits(buffer, tensor);
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_amx_buffer_memset_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
|
@ -4135,10 +4135,11 @@ static const ggml::cpu::tensor_traits * ggml_aarch64_get_optimal_repack_type(con
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_cpu_aarch64_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
|
||||
tensor->extra = (void *) const_cast<ggml::cpu::tensor_traits *>(ggml_aarch64_get_optimal_repack_type(tensor));
|
||||
|
||||
GGML_UNUSED(buffer);
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_cpu_aarch64_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor,
|
||||
|
@ -540,12 +540,12 @@ static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return ctx->dev_ptr;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
|
||||
|
||||
if (tensor->view_src != NULL) {
|
||||
assert(tensor->view_src->buffer->buft == buffer->buft);
|
||||
return;
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
if (ggml_is_quantized(tensor->type) && tensor->view_src == nullptr && ggml_backend_buffer_get_usage(buffer) != GGML_BACKEND_BUFFER_USAGE_COMPUTE) {
|
||||
@ -558,6 +558,7 @@ static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, g
|
||||
CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
|
||||
}
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
@ -792,7 +793,7 @@ static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buff
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||||
|
||||
ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
|
||||
@ -838,6 +839,7 @@ static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buf
|
||||
}
|
||||
}
|
||||
tensor->extra = extra;
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
|
@ -1211,7 +1211,7 @@ static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer)
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
|
||||
|
||||
ggml_cl2_init(buffer->buft->device);
|
||||
@ -1251,6 +1251,7 @@ static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
tensor->extra = extra;
|
||||
}
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
// The optimized gemm and gemv kernels are used for large matrices without batch.
|
||||
|
@ -464,7 +464,7 @@ static rpc_tensor serialize_tensor(const ggml_tensor * tensor) {
|
||||
return result;
|
||||
}
|
||||
|
||||
static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
ggml_backend_rpc_buffer_context * ctx = (ggml_backend_rpc_buffer_context *)buffer->context;
|
||||
|
||||
// CUDA backend on the server pads everything to 512 due to CUDA limitations.
|
||||
@ -478,6 +478,7 @@ static void ggml_backend_rpc_buffer_init_tensor(ggml_backend_buffer_t buffer, gg
|
||||
bool status = send_rpc_cmd(ctx->sock, RPC_CMD_INIT_TENSOR, &request, sizeof(request), nullptr, 0);
|
||||
GGML_ASSERT(status);
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_rpc_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
|
||||
|
@ -323,14 +323,14 @@ static void * ggml_backend_sycl_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
return ctx->dev_ptr;
|
||||
}
|
||||
|
||||
static void
|
||||
static enum ggml_status
|
||||
ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
ggml_tensor *tensor) try {
|
||||
ggml_backend_sycl_buffer_context * ctx = (ggml_backend_sycl_buffer_context *)buffer->context;
|
||||
|
||||
if (tensor->view_src != NULL) {
|
||||
assert(tensor->view_src->buffer->buft == buffer->buft);
|
||||
return;
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
|
||||
@ -348,6 +348,7 @@ ggml_backend_sycl_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
padded_size - original_size).wait()));
|
||||
}
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
catch (sycl::exception const &exc) {
|
||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||
@ -729,7 +730,7 @@ static void * ggml_backend_sycl_split_buffer_get_base(ggml_backend_buffer_t buff
|
||||
GGML_UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void
|
||||
static enum ggml_status
|
||||
ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
ggml_tensor *tensor) try {
|
||||
GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
|
||||
@ -804,6 +805,7 @@ ggml_backend_sycl_split_buffer_init_tensor(ggml_backend_buffer_t buffer,
|
||||
}
|
||||
}
|
||||
tensor->extra = extra;
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
catch (sycl::exception const &exc) {
|
||||
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
|
||||
|
@ -7923,11 +7923,12 @@ static void * ggml_backend_vk_buffer_get_base(ggml_backend_buffer_t buffer) {
|
||||
UNUSED(buffer);
|
||||
}
|
||||
|
||||
static void ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
static enum ggml_status ggml_backend_vk_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
|
||||
VK_LOG_DEBUG("ggml_backend_vk_buffer_init_tensor(" << buffer << " (" << buffer->context << "), " << tensor << ")");
|
||||
if (tensor->view_src != nullptr) {
|
||||
GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
|
||||
}
|
||||
return GGML_STATUS_SUCCESS;
|
||||
}
|
||||
|
||||
static void ggml_backend_vk_buffer_memset_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, uint8_t value, size_t offset, size_t size) {
|
||||
|
@ -18,6 +18,7 @@
|
||||
#include <ggml.h>
|
||||
#include <ggml-alloc.h>
|
||||
#include <ggml-backend.h>
|
||||
#include <ggml-cpp.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
@ -467,6 +468,7 @@ struct test_case {
|
||||
|
||||
// allocate
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend1);
|
||||
|
||||
if (buf == NULL) {
|
||||
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend1));
|
||||
ggml_free(ctx);
|
||||
@ -588,14 +590,13 @@ struct test_case {
|
||||
/* .mem_base = */ NULL,
|
||||
/* .no_alloc = */ true,
|
||||
};
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx(ggml_init(params)); // smart ptr
|
||||
GGML_ASSERT(ctx);
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
ggml_tensor * out = build_graph(ctx.get());
|
||||
|
||||
if (op_name != nullptr && op_desc(out) != op_name) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -605,7 +606,6 @@ struct test_case {
|
||||
// check if backends support op
|
||||
if (!ggml_backend_supports_op(backend, out)) {
|
||||
printf("not supported\n");
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -618,22 +618,26 @@ struct test_case {
|
||||
printf("%*s", last - len, "");
|
||||
|
||||
// allocate
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
|
||||
|
||||
if (buf == NULL) {
|
||||
printf("failed to allocate tensors\n");
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
// randomize tensors
|
||||
initialize_tensors(ctx);
|
||||
initialize_tensors(ctx.get());
|
||||
|
||||
// build graph
|
||||
ggml_cgraph * gf = ggml_new_graph_custom(ctx, graph_nodes, false);
|
||||
ggml_cgraph * gf = ggml_new_graph_custom(ctx.get(), graph_nodes, false);
|
||||
ggml_build_forward_expand(gf, out);
|
||||
|
||||
// warmup run
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
ggml_status status = ggml_backend_graph_compute(backend, gf);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
|
||||
// determine number of runs
|
||||
int n_runs;
|
||||
@ -684,7 +688,11 @@ struct test_case {
|
||||
int total_runs = 0;
|
||||
do {
|
||||
int64_t start_time = ggml_time_us();
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
ggml_status status = ggml_backend_graph_compute(backend, gf);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
int64_t end_time = ggml_time_us();
|
||||
|
||||
total_time_us += end_time - start_time;
|
||||
@ -722,10 +730,6 @@ struct test_case {
|
||||
}
|
||||
printf("\n");
|
||||
|
||||
ggml_backend_buffer_free(buf);
|
||||
|
||||
ggml_free(ctx);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -738,17 +742,16 @@ struct test_case {
|
||||
/* .mem_base = */ NULL,
|
||||
/* .no_alloc = */ true,
|
||||
};
|
||||
ggml_context * ctx = ggml_init(params);
|
||||
ggml_context_ptr ctx(ggml_init(params)); // smart ptr
|
||||
GGML_ASSERT(ctx);
|
||||
|
||||
gf = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
|
||||
gb = ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, true);
|
||||
gf = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
|
||||
gb = ggml_new_graph_custom(ctx.get(), GGML_DEFAULT_GRAPH_SIZE, true);
|
||||
|
||||
ggml_tensor * out = build_graph(ctx);
|
||||
ggml_tensor * out = build_graph(ctx.get());
|
||||
|
||||
if ((op_name != nullptr && op_desc(out) != op_name) || out->op == GGML_OP_OPT_STEP_ADAMW) {
|
||||
//printf(" %s: skipping\n", op_desc(out).c_str());
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -756,7 +759,6 @@ struct test_case {
|
||||
fflush(stdout);
|
||||
|
||||
if (out->type != GGML_TYPE_F32) {
|
||||
ggml_free(ctx);
|
||||
printf("not supported [%s->type != FP32]\n", out->name);
|
||||
return true;
|
||||
}
|
||||
@ -764,7 +766,7 @@ struct test_case {
|
||||
// check if the backend supports the ops
|
||||
bool supported = true;
|
||||
bool any_params = false;
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
|
||||
if (!ggml_backend_supports_op(backend, t)) {
|
||||
printf("not supported [%s] ", ggml_backend_name(backend));
|
||||
supported = false;
|
||||
@ -785,40 +787,38 @@ struct test_case {
|
||||
}
|
||||
if (!supported) {
|
||||
printf("\n");
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
int64_t ngrads = 0;
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
|
||||
if (t->flags & GGML_TENSOR_FLAG_PARAM) {
|
||||
ngrads += ggml_nelements(t);
|
||||
}
|
||||
}
|
||||
if (ngrads > grad_nmax()) {
|
||||
printf("skipping large tensors for speed \n");
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
if (!ggml_is_scalar(out)) {
|
||||
out = ggml_sum(ctx, out);
|
||||
out = ggml_sum(ctx.get(), out);
|
||||
ggml_set_name(out, "sum_of_out");
|
||||
}
|
||||
ggml_set_loss(out);
|
||||
|
||||
ggml_build_forward_expand(gf, out);
|
||||
ggml_graph_cpy(gf, gb);
|
||||
ggml_build_backward_expand(ctx, ctx, gb, false);
|
||||
ggml_build_backward_expand(ctx.get(), ctx.get(), gb, false);
|
||||
if (expect.size() != 1 || expect[0] != 0.0f) {
|
||||
GGML_ASSERT(ggml_graph_n_nodes(gb) > ggml_graph_n_nodes(gf));
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
|
||||
GGML_ASSERT(!(t->flags & GGML_TENSOR_FLAG_PARAM) || ggml_graph_get_grad(gb, t)->op != GGML_OP_NONE);
|
||||
}
|
||||
}
|
||||
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx); t != NULL; t = ggml_get_next_tensor(ctx, t)) {
|
||||
for (ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != NULL; t = ggml_get_next_tensor(ctx.get(), t)) {
|
||||
if (!ggml_backend_supports_op(backend, t)) {
|
||||
printf("not supported [%s] ", ggml_backend_name(backend));
|
||||
supported = false;
|
||||
@ -832,27 +832,32 @@ struct test_case {
|
||||
}
|
||||
if (!supported) {
|
||||
printf("\n");
|
||||
ggml_free(ctx);
|
||||
return true;
|
||||
}
|
||||
|
||||
// allocate
|
||||
ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors(ctx, backend);
|
||||
ggml_backend_buffer_ptr buf(ggml_backend_alloc_ctx_tensors(ctx.get(), backend)); // smart ptr
|
||||
if (buf == NULL) {
|
||||
printf("failed to allocate tensors [%s] ", ggml_backend_name(backend));
|
||||
ggml_free(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
initialize_tensors(ctx); // Randomizes all tensors (including gradients).
|
||||
initialize_tensors(ctx.get()); // Randomizes all tensors (including gradients).
|
||||
ggml_graph_reset(gb); // Sets gradients to 1 if loss, 0 otherwise.
|
||||
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
ggml_backend_graph_compute(backend, gb);
|
||||
ggml_status status = ggml_backend_graph_compute(backend, gf);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
status = ggml_backend_graph_compute(backend, gb);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
|
||||
bool ok = true;
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx); t != nullptr; t = ggml_get_next_tensor(ctx, t)) {
|
||||
for (struct ggml_tensor * t = ggml_get_first_tensor(ctx.get()); t != nullptr; t = ggml_get_next_tensor(ctx.get(), t)) {
|
||||
if (!(t->flags & GGML_TENSOR_FLAG_PARAM)) {
|
||||
continue;
|
||||
}
|
||||
@ -897,20 +902,36 @@ struct test_case {
|
||||
float fu, fuh, fdh, fd; // output values for xiu, xiuh, xid, xidh
|
||||
|
||||
ggml_backend_tensor_set(t, &xiu, i*sizeof(float), sizeof(float));
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
status = ggml_backend_graph_compute(backend, gf);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
ggml_backend_tensor_get(out, &fu, 0, ggml_nbytes(out));
|
||||
|
||||
ggml_backend_tensor_set(t, &xid, i*sizeof(float), sizeof(float));
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
status = ggml_backend_graph_compute(backend, gf);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
ggml_backend_tensor_get(out, &fd, 0, ggml_nbytes(out));
|
||||
|
||||
if (grad_precise()) {
|
||||
ggml_backend_tensor_set(t, &xiuh, i*sizeof(float), sizeof(float));
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
status = ggml_backend_graph_compute(backend, gf);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
ggml_backend_tensor_get(out, &fuh, 0, ggml_nbytes(out));
|
||||
|
||||
ggml_backend_tensor_set(t, &xidh, i*sizeof(float), sizeof(float));
|
||||
ggml_backend_graph_compute(backend, gf);
|
||||
status = ggml_backend_graph_compute(backend, gf);
|
||||
if (status != GGML_STATUS_SUCCESS) {
|
||||
fprintf(stderr, "%s: ggml_backend_graph_compute failed. status=%s \n", __func__, ggml_status_to_string(status));
|
||||
return false;
|
||||
}
|
||||
ggml_backend_tensor_get(out, &fdh, 0, ggml_nbytes(out));
|
||||
|
||||
gn[i] = (8.0*(double)fuh + (double)fd - (8.0*(double)fdh + (double)fu)) / (6.0*(double)eps);
|
||||
@ -936,10 +957,6 @@ struct test_case {
|
||||
printf("compare failed ");
|
||||
}
|
||||
|
||||
ggml_backend_buffer_free(buf);
|
||||
|
||||
ggml_free(ctx);
|
||||
|
||||
if (ok) {
|
||||
printf("\033[1;32mOK\033[0m\n");
|
||||
return true;
|
||||
|
Loading…
x
Reference in New Issue
Block a user