Merge branch 'ggml-org:master' into mla--ready-for-review

This commit is contained in:
Juk Armstrong 2025-04-09 05:05:41 +01:00 committed by GitHub
commit 7612566686
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
49 changed files with 11673 additions and 10744 deletions

View File

@ -163,6 +163,8 @@ struct common_hf_file_res {
# if !defined(PATH_MAX)
# define PATH_MAX MAX_PATH
# endif
#elif defined(_AIX)
#include <sys/limits.h>
#else
#include <sys/syslimits.h>
#endif

View File

@ -714,6 +714,9 @@ class Model:
if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
# ref: https://huggingface.co/inclusionAI/Ling-lite
res = "bailingmoe"
if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
# ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
res = "llama4"
if res is None:
logger.warning("\n")
@ -1608,6 +1611,7 @@ class StableLMModel(Model):
@Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
class LlamaModel(Model):
model_arch = gguf.MODEL_ARCH.LLAMA
undo_permute = True
def set_vocab(self):
try:
@ -1672,10 +1676,11 @@ class LlamaModel(Model):
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
if self.undo_permute:
if name.endswith(("q_proj.weight", "q_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight", "k_proj.bias")):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
@ -1752,6 +1757,61 @@ class LlamaModel(Model):
raise ValueError(f"Unprocessed experts: {experts}")
@Model.register("Llama4ForConditionalGeneration")
class Llama4Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA4
has_vision: bool = False
undo_permute = False
# TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
# same with llama, but we need to merge the text_config into the root level of hparams
def __init__(self, *args, **kwargs):
hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
if "text_config" in hparams:
hparams = {**hparams, **hparams["text_config"]}
kwargs["hparams"] = hparams
super().__init__(*args, **kwargs)
if "vision_config" in hparams:
logger.info("Has vision encoder, but it will be ignored")
self.has_vision = True
# IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
def set_vocab(self):
self._set_vocab_gpt2()
self.gguf_writer.add_add_bos_token(True)
def set_gguf_parameters(self):
super().set_gguf_parameters()
self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
name = name.replace("language_model.", "")
name = name.replace("feed_forward.", "mlp.") # a bit hacky for now
name = name.replace(".router.weight", ".gate.weight") # a bit hacky for now
# split the gate_up into gate and up
if "gate_up_proj" in name:
name_up = name.replace("gate_up_proj", "up_proj.weight")
name_gate = name.replace("gate_up_proj", "gate_proj.weight")
dim_half = data_torch.shape[-1] // 2
gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
return [
(self.map_tensor_name(name_gate), gate_proj_weight),
(self.map_tensor_name(name_up), up_proj_weight)
]
if name.endswith("down_proj"):
name += ".weight"
data_torch = data_torch.transpose(-1, -2)
if "multi_modal_projector" in name or "vision_model" in name:
return []
return super().modify_tensors(data_torch, name, bid)
@Model.register("Mistral3ForConditionalGeneration")
class Mistral3Model(LlamaModel):
model_arch = gguf.MODEL_ARCH.LLAMA

View File

@ -113,6 +113,7 @@ models = [
{"name": "superbpe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k", },
{"name": "trillion", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/trillionlabs/Trillion-7B-preview", },
{"name": "bailingmoe", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/inclusionAI/Ling-lite", },
{"name": "llama4", "tokt": TOKENIZER_TYPE.BPE, "repo": "https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct", },
]

View File

@ -380,6 +380,7 @@ struct clip_ctx {
if (backend_cpu != backend) {
ggml_backend_free(backend_cpu);
}
clip_image_size_free(load_image_size);
}
};
@ -1618,6 +1619,12 @@ struct clip_image_f32 * clip_image_f32_init() {
return new clip_image_f32();
}
void clip_image_size_free(struct clip_image_size * load_image_size) {
if (load_image_size == nullptr) {
return;
}
delete load_image_size;
}
void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
@ -2270,6 +2277,9 @@ ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
}
void clip_free(clip_ctx * ctx) {
if (ctx == nullptr) {
return;
}
delete ctx;
}
@ -2840,10 +2850,19 @@ int clip_is_minicpmv(const struct clip_ctx * ctx) {
bool clip_is_glm(const struct clip_ctx * ctx) {
return ctx->has_glm_projector;
}
bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->has_qwen2vl_merger;
}
bool clip_is_llava(const struct clip_ctx * ctx) {
return ctx->has_llava_projector;
}
bool clip_is_gemma3(const struct clip_ctx * ctx) {
return ctx->proj_type == PROJECTOR_TYPE_GEMMA3;
}
// Determine the number of encoder layers to iterate over
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
// Get the index of the second to last layer; this is the

View File

@ -77,6 +77,7 @@ CLIP_API struct clip_image_size * clip_image_size_init();
CLIP_API struct clip_image_u8 * clip_image_u8_init ();
CLIP_API struct clip_image_f32 * clip_image_f32_init();
CLIP_API void clip_image_size_free (struct clip_image_size * img_size);
CLIP_API void clip_image_u8_free (struct clip_image_u8 * img);
CLIP_API void clip_image_f32_free(struct clip_image_f32 * img);
CLIP_API void clip_image_u8_batch_free (struct clip_image_u8_batch * batch);
@ -106,6 +107,8 @@ CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API bool clip_is_llava(const struct clip_ctx * ctx);
CLIP_API bool clip_is_gemma3(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);

View File

@ -851,7 +851,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
LOG_INF("%s : calculating hellaswag score over selected tasks.\n", __func__);
LOG("\ntask\tacc_norm\n");
LOG("\ntask\tacc_norm\t95%% confidence interval\n");
double acc = 0.0f;
@ -985,8 +985,22 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
acc += 1.0;
}
// Print the accumulated accuracy mean x 100
LOG("%zu\t%.8lf\n", i + 1, acc/double(i + 1)*100.0);
double freq = acc / double(i + 1);
const double za = 1.95996398454;
// // Wald normal approx
// double conf =za*sqrt(freq*(1-freq)/double(i + 1));
// LOG("%zu\t%.8lf +/- %.8lf\n", i + 1, freq*100.0, conf*100.0);
// Wilson score interval, more accurate
double z = za * za / double(i + 1);
double cnf = z * sqrt(double(i + 1) * (4.0 * freq * (1 - freq) + z)) / (za + za);
double a = (freq + z * 0.5 - cnf) / (1.0 + z);
double b = (freq + z * 0.5 + cnf) / (1.0 + z);
// Print the accumulated accuracy mean x 100 and confidence interval
LOG("%zu\t%3.8lf%%\t[%3.4lf%%, %3.4lf%%]\n", i + 1, freq * 100.0, a * 100.0, b * 100.0);
}
i0 = i1 - 1;

Binary file not shown.

View File

@ -1705,6 +1705,8 @@ private:
};
struct server_response {
bool running = true;
// for keeping track of all tasks waiting for the result
std::unordered_set<int> waiting_task_ids;
@ -1759,6 +1761,10 @@ struct server_response {
while (true) {
std::unique_lock<std::mutex> lock(mutex_results);
condition_results.wait(lock, [&]{
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
return !queue_results.empty();
});
@ -1789,6 +1795,10 @@ struct server_response {
}
std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
if (!running) {
SRV_DBG("%s : queue result stop\n", __func__);
std::terminate(); // we cannot return here since the caller is HTTP code
}
if (cr_res == std::cv_status::timeout) {
return nullptr;
}
@ -1818,6 +1828,12 @@ struct server_response {
}
}
}
// terminate the waiting loop
void terminate() {
running = false;
condition_results.notify_all();
}
};
struct server_context {
@ -4491,9 +4507,10 @@ int main(int argc, char ** argv) {
svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
// clean up function, to be called before exit
auto clean_up = [&svr]() {
auto clean_up = [&svr, &ctx_server]() {
SRV_INF("%s: cleaning up before exit...\n", __func__);
svr->stop();
ctx_server.queue_results.terminate();
llama_backend_free();
};
@ -4534,7 +4551,7 @@ int main(int argc, char ** argv) {
if (!ctx_server.load_model(params)) {
clean_up();
// t.join(); // FIXME: see below
t.join();
LOG_ERR("%s: exiting due to model loading error\n", __func__);
return 1;
}
@ -4582,7 +4599,7 @@ int main(int argc, char ** argv) {
ctx_server.queue_tasks.start_loop();
clean_up();
// t.join(); // FIXME: http thread may stuck if there is an on-going request. we don't need to care about this for now as the HTTP connection will already be closed at this point, but it's better to fix this
t.join();
return 0;
}

View File

@ -49,6 +49,26 @@ def test_embedding_multiple():
assert len(d['embedding']) > 1
def test_embedding_multiple_with_fa():
server = ServerPreset.bert_bge_small_with_fa()
server.pooling = 'last'
server.start()
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"a "*253,
"b "*254,
"c "*255,
"d "*256,
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1
@pytest.mark.parametrize(
"input,is_multi_prompt",
[

View File

@ -323,6 +323,21 @@ class ServerPreset:
server.server_embeddings = True
return server
@staticmethod
def bert_bge_small_with_fa() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 1024
server.n_batch = 300
server.n_ubatch = 300
server.n_slots = 2
server.fa = True
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()

View File

@ -1,4 +1,4 @@
import { useEffect, useMemo, useRef, useState } from 'react';
import { useEffect, useMemo, useState } from 'react';
import { CallbackGeneratedChunk, useAppContext } from '../utils/app.context';
import ChatMessage from './ChatMessage';
import { CanvasType, Message, PendingMessage } from '../utils/types';
@ -6,6 +6,7 @@ import { classNames, cleanCurrentUrl, throttle } from '../utils/misc';
import CanvasPyInterpreter from './CanvasPyInterpreter';
import StorageUtils from '../utils/storage';
import { useVSCodeContext } from '../utils/llama-vscode';
import { useChatTextarea, ChatTextareaApi } from './useChatTextarea.ts';
/**
* A message display is a message node with additional information for rendering.
@ -99,7 +100,8 @@ export default function ChatScreen() {
canvasData,
replaceMessageAndGenerate,
} = useAppContext();
const textarea = useOptimizedTextarea(prefilledMsg.content());
const textarea: ChatTextareaApi = useChatTextarea(prefilledMsg.content());
const { extraContext, clearExtraContext } = useVSCodeContext(textarea);
// TODO: improve this when we have "upload file" feature
@ -248,14 +250,16 @@ export default function ChatScreen() {
</div>
{/* chat input */}
<div className="flex flex-row items-center pt-8 pb-6 sticky bottom-0 bg-base-100">
<div className="flex flex-row items-end pt-8 pb-6 sticky bottom-0 bg-base-100">
<textarea
className="textarea textarea-bordered w-full"
// Default (mobile): Enable vertical resize, overflow auto for scrolling if needed
// Large screens (lg:): Disable manual resize, apply max-height for autosize limit
className="textarea textarea-bordered w-full resize-vertical lg:resize-none lg:max-h-48 lg:overflow-y-auto" // Adjust lg:max-h-48 as needed (e.g., lg:max-h-60)
placeholder="Type a message (Shift+Enter to add a new line)"
ref={textarea.ref}
onInput={textarea.onInput} // Hook's input handler (will only resize height on lg+ screens)
onKeyDown={(e) => {
if (e.nativeEvent.isComposing || e.keyCode === 229) return;
if (e.key === 'Enter' && e.shiftKey) return;
if (e.key === 'Enter' && !e.shiftKey) {
e.preventDefault();
sendNewMessage();
@ -263,7 +267,11 @@ export default function ChatScreen() {
}}
id="msg-input"
dir="auto"
// Set a base height of 2 rows for mobile views
// On lg+ screens, the hook will calculate and set the initial height anyway
rows={2}
></textarea>
{isGenerating(currConvId ?? '') ? (
<button
className="btn btn-neutral ml-2"
@ -286,43 +294,3 @@ export default function ChatScreen() {
</div>
);
}
export interface OptimizedTextareaValue {
value: () => string;
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
}
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
// See https://github.com/ggml-org/llama.cpp/pull/12299
function useOptimizedTextarea(initValue: string): OptimizedTextareaValue {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
useEffect(() => {
if (textareaRef.current && savedInitValue) {
textareaRef.current.value = savedInitValue;
setSavedInitValue('');
}
}, [textareaRef, savedInitValue, setSavedInitValue]);
return {
value: () => {
return textareaRef.current?.value ?? savedInitValue;
},
setValue: (value: string) => {
if (textareaRef.current) {
textareaRef.current.value = value;
}
},
focus: () => {
if (textareaRef.current) {
// focus and move the cursor to the end
textareaRef.current.focus();
textareaRef.current.selectionStart = textareaRef.current.value.length;
}
},
ref: textareaRef,
};
}

View File

@ -0,0 +1,96 @@
import { useEffect, useRef, useState, useCallback } from 'react';
// Media Query for detecting "large" screens (matching Tailwind's lg: breakpoint)
const LARGE_SCREEN_MQ = '(min-width: 1024px)';
// Calculates and sets the textarea height based on its scrollHeight
const adjustTextareaHeight = (textarea: HTMLTextAreaElement | null) => {
if (!textarea) return;
// Only perform auto-sizing on large screens
if (!window.matchMedia(LARGE_SCREEN_MQ).matches) {
// On small screens, reset inline height and max-height styles.
// This allows CSS (e.g., `rows` attribute or classes) to control the height,
// and enables manual resizing if `resize-vertical` is set.
textarea.style.height = ''; // Use 'auto' or '' to reset
textarea.style.maxHeight = '';
return; // Do not adjust height programmatically on small screens
}
const computedStyle = window.getComputedStyle(textarea);
// Get the max-height specified by CSS (e.g., from `lg:max-h-48`)
const currentMaxHeight = computedStyle.maxHeight;
// Temporarily remove max-height to allow scrollHeight to be calculated correctly
textarea.style.maxHeight = 'none';
// Reset height to 'auto' to measure the actual scrollHeight needed
textarea.style.height = 'auto';
// Set the height to the calculated scrollHeight
textarea.style.height = `${textarea.scrollHeight}px`;
// Re-apply the original max-height from CSS to enforce the limit
textarea.style.maxHeight = currentMaxHeight;
};
// Interface describing the API returned by the hook
export interface ChatTextareaApi {
value: () => string;
setValue: (value: string) => void;
focus: () => void;
ref: React.RefObject<HTMLTextAreaElement>;
onInput: (event: React.FormEvent<HTMLTextAreaElement>) => void; // Input handler
}
// This is a workaround to prevent the textarea from re-rendering when the inner content changes
// See https://github.com/ggml-org/llama.cpp/pull/12299
// combined now with auto-sizing logic.
export function useChatTextarea(initValue: string): ChatTextareaApi {
const [savedInitValue, setSavedInitValue] = useState<string>(initValue);
const textareaRef = useRef<HTMLTextAreaElement>(null);
// Effect to set initial value and height on mount or when initValue changes
useEffect(() => {
const textarea = textareaRef.current;
if (textarea) {
if (typeof savedInitValue === 'string' && savedInitValue.length > 0) {
textarea.value = savedInitValue;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
setSavedInitValue(''); // Reset after applying
} else {
// Adjust height even if there's no initial value (for initial render)
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
}
}, [textareaRef, savedInitValue]); // Depend on ref and savedInitValue
const handleInput = useCallback(
(event: React.FormEvent<HTMLTextAreaElement>) => {
// Call adjustTextareaHeight on every input - it will decide whether to act
adjustTextareaHeight(event.currentTarget);
},
[]
);
return {
// Method to get the current value directly from the textarea
value: () => {
return textareaRef.current?.value ?? '';
},
// Method to programmatically set the value and trigger height adjustment
setValue: (value: string) => {
const textarea = textareaRef.current;
if (textarea) {
textarea.value = value;
// Call adjustTextareaHeight - it will check screen size internally
setTimeout(() => adjustTextareaHeight(textarea), 0);
}
},
focus: () => {
if (textareaRef.current) {
textareaRef.current.focus();
}
},
ref: textareaRef,
onInput: handleInput,
};
}

View File

@ -1,6 +1,6 @@
import { useEffect, useState } from 'react';
import { MessageExtraContext } from './types';
import { OptimizedTextareaValue } from '../components/ChatScreen';
import { ChatTextareaApi } from '../components/useChatTextarea.ts';
// Extra context when using llama.cpp WebUI from llama-vscode, inside an iframe
// Ref: https://github.com/ggml-org/llama.cpp/pull/11940
@ -15,7 +15,7 @@ interface SetTextEvData {
* window.postMessage({ command: 'setText', text: 'Spot the syntax error', context: 'def test()\n return 123' }, '*');
*/
export const useVSCodeContext = (textarea: OptimizedTextareaValue) => {
export const useVSCodeContext = (textarea: ChatTextareaApi) => {
const [extraContext, setExtraContext] = useState<MessageExtraContext | null>(
null
);

View File

@ -15,7 +15,7 @@ async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(0)*1024}
json= {"content": "a "*1022}
) for i in range(n)])
for response in responses:

View File

@ -28,6 +28,11 @@ function(ggml_add_cpu_backend_variant_impl tag_name)
ggml-cpu/binary-ops.cpp
ggml-cpu/unary-ops.h
ggml-cpu/unary-ops.cpp
ggml-cpu/simd-mappings.h
ggml-cpu/vec.h
ggml-cpu/vec.cpp
ggml-cpu/ops.h
ggml-cpu/ops.cpp
)
target_compile_features(${GGML_CPU_NAME} PRIVATE c_std_11 cxx_std_17)

View File

@ -4,13 +4,13 @@
#include "ggml.h"
#include "ggml-impl.h"
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
//#include <stddef.h>
#include <stdbool.h>
#include <string.h> // memcpy
#include <math.h> // fabsf
#ifdef __cplusplus
extern "C" {
#endif
@ -69,33 +69,16 @@ struct ggml_compute_params {
#endif
#if defined(__ARM_FEATURE_SVE)
#include <arm_sve.h>
#include <sys/prctl.h>
#endif
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
#if defined(__ARM_NEON)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
// ref: https://github.com/ggml-org/llama.cpp/pull/5404
#ifdef _MSC_VER
typedef uint16_t ggml_fp16_internal_t;
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
#else
typedef __fp16 ggml_fp16_internal_t;
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
#endif // _MSC_VER
#if !defined(__aarch64__)

File diff suppressed because it is too large Load Diff

8723
ggml/src/ggml-cpu/ops.cpp Normal file

File diff suppressed because it is too large Load Diff

128
ggml/src/ggml-cpu/ops.h Normal file
View File

@ -0,0 +1,128 @@
#pragma once
#include "ggml.h"
//
// cache line
//
#if defined(__cpp_lib_hardware_interference_size)
#define CACHE_LINE_SIZE std::hardware_destructive_interference_size
#else
#if defined(__POWER9_VECTOR__)
#define CACHE_LINE_SIZE 128
#elif defined(__VXE__) || defined(__VXE2__)
#define CACHE_LINE_SIZE 256
#else
#define CACHE_LINE_SIZE 64
#endif
#endif
static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
#ifdef __cplusplus
extern "C" {
#endif
void ggml_compute_forward_dup(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_acc(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_sum(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_sum_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_mean(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argmax(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_count_equal(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_repeat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_repeat_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_concat(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_silu_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rms_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rms_norm_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_group_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_l2_norm(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_out_prod(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_scale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_set(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cpy(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cont(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_reshape(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_view(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_permute(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_transpose(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_get_rows(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_get_rows_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_diag(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_diag_mask_inf(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_diag_mask_zero(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_soft_max(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_soft_max_ext_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rope(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rope_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_clamp(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_transpose_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_im2col_back_f32(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_conv_transpose_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pool_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pool_2d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pool_2d_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_upscale(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_pad_reflect_1d(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_arange(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_timestep_embedding(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_argsort(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_leaky_relu(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_ext(
const struct ggml_compute_params * params,
const struct ggml_tensor * q,
const struct ggml_tensor * k,
const struct ggml_tensor * v,
const struct ggml_tensor * mask,
struct ggml_tensor * dst);
void ggml_compute_forward_flash_attn_back(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst);
void ggml_compute_forward_ssm_conv(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_ssm_scan(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_win_part(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_win_unpart(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_unary(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_get_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_add_rel_pos(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rwkv_wkv6(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_rwkv_wkv7(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_gla(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_map_unary(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_unary_op_f32_t fun);
void ggml_compute_forward_map_binary(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_binary_op_f32_t fun);
void ggml_compute_forward_map_custom1_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom1_op_f32_t fun);
void ggml_compute_forward_map_custom2_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom2_op_f32_t fun);
void ggml_compute_forward_map_custom3_f32(
const struct ggml_compute_params * params,
struct ggml_tensor * dst,
const ggml_custom3_op_f32_t fun);
void ggml_compute_forward_map_custom1(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_map_custom2(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_map_custom3(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cross_entropy_loss(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_cross_entropy_loss_back(const struct ggml_compute_params * params, struct ggml_tensor * dst);
void ggml_compute_forward_opt_step_adamw(const struct ggml_compute_params * params, struct ggml_tensor * dst);
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,884 @@
#pragma once
#include "ggml-cpu-impl.h"
//
// simd mappings
//
// we define a common set of C macros which map to specific intrinsics based on the current architecture
// we then implement the fundamental computation operations below using only these macros
// adding support for new architectures requires to define the corresponding SIMD macros
//
// GGML_F32_STEP / GGML_F16_STEP
// number of elements to process in a single step
//
// GGML_F32_EPR / GGML_F16_EPR
// number of elements to fit in a single register
//
#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
#define GGML_SIMD
// F32 NEON
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 float32x4_t
#define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32x4_SET1(x) vdupq_n_f32(x)
#define GGML_F32x4_LOAD vld1q_f32
#define GGML_F32x4_STORE vst1q_f32
#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32x4_ADD vaddq_f32
#define GGML_F32x4_MUL vmulq_f32
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
(res) = (ggml_float) GGML_F32x4_REDUCE_ONE((x)[0]); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 NEON
#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
#define GGML_F16x8 float16x8_t
#define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
#define GGML_F16x8_SET1(x) vdupq_n_f16(x)
#define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
#define GGML_F16x8_STORE vst1q_f16
#define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
#define GGML_F16x8_ADD vaddq_f16
#define GGML_F16x8_MUL vmulq_f16
#define GGML_F16x8_REDUCE(res, x) \
do { \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f16((x)[i], (x)[offset+i]); \
} \
const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 ((x)[0])); \
const float32x4_t t1 = vcvt_f32_f16(vget_high_f16((x)[0])); \
(res) = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
} while (0)
#define GGML_F16_VEC GGML_F16x8
#define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((__fp16 *)(p), (r)[i])
#define GGML_F16_VEC_FMA GGML_F16x8_FMA
#define GGML_F16_VEC_ADD GGML_F16x8_ADD
#define GGML_F16_VEC_MUL GGML_F16x8_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
#else
// if FP16 vector arithmetic is not supported, we use FP32 instead
// and take advantage of the vcvt_ functions to convert to/from FP16
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
#define GGML_F32Cx4 float32x4_t
#define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
#define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
#define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
#define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
#define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
#define GGML_F32Cx4_ADD vaddq_f32
#define GGML_F32Cx4_MUL vmulq_f32
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((__fp16 *)(p), r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#endif
#elif defined(__AVX512F__)
#define GGML_SIMD
// F32 AVX512
#define GGML_F32_STEP 64
#define GGML_F32_EPR 16
#define GGML_F32x16 __m512
#define GGML_F32x16_ZERO _mm512_setzero_ps()
#define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
#define GGML_F32x16_LOAD _mm512_loadu_ps
#define GGML_F32x16_STORE _mm512_storeu_ps
// _mm512_fmadd_ps is defined in AVX512F so no guard is required
#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32x16_ADD _mm512_add_ps
#define GGML_F32x16_MUL _mm512_mul_ps
#define GGML_F32x16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x16
#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x16_SET1
#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
#define GGML_F32_VEC_STORE GGML_F32x16_STORE
#define GGML_F32_VEC_FMA GGML_F32x16_FMA
#define GGML_F32_VEC_ADD GGML_F32x16_ADD
#define GGML_F32_VEC_MUL GGML_F32x16_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
// F16 AVX512
// F16 AVX
#define GGML_F16_STEP 64
#define GGML_F16_EPR 16
// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
#define GGML_F32Cx16 __m512
#define GGML_F32Cx16_ZERO _mm512_setzero_ps()
#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
// so F16C guard isn't required
#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
#define GGML_F32Cx16_ADD _mm512_add_ps
#define GGML_F32Cx16_MUL _mm512_mul_ps
#define GGML_F32Cx16_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm512_add_ps(x[i], x[offset+i]); \
} \
res = (ggml_float) _mm512_reduce_add_ps(x[0]); \
} while (0)
#define GGML_F16_VEC GGML_F32Cx16
#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
#elif defined(__AVX__)
#define GGML_SIMD
// F32 AVX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO _mm256_setzero_ps()
#define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
#define GGML_F32x8_LOAD _mm256_loadu_ps
#define GGML_F32x8_STORE _mm256_storeu_ps
#if defined(__FMA__)
#define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
#else
#define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
#endif
#define GGML_F32x8_ADD _mm256_add_ps
#define GGML_F32x8_MUL _mm256_mul_ps
#define GGML_F32x8_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm256_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
_mm256_extractf128_ps(x[0], 1)); \
const __m128 t1 = _mm_hadd_ps(t0, t0); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 AVX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by AVX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO _mm256_setzero_ps()
#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
#if defined(__F16C__)
// the _mm256_cvt intrinsics require F16C
#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
#else
static inline __m256 __avx_f32cx8_load(const ggml_fp16_t * x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return _mm256_loadu_ps(tmp);
}
static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
float arr[8];
_mm256_storeu_ps(arr, y);
for (int i = 0; i < 8; i++)
x[i] = GGML_FP32_TO_FP16(arr[i]);
}
#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
#endif
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD _mm256_add_ps
#define GGML_F32Cx8_MUL _mm256_mul_ps
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
#elif defined(__POWER9_VECTOR__)
#define GGML_SIMD
// F32 POWER9
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 vector float
#define GGML_F32x4_ZERO 0.0f
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD vec_add
#define GGML_F32x4_MUL vec_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset+i]); \
} \
res = vec_extract(x[0], 0) + \
vec_extract(x[0], 1) + \
vec_extract(x[0], 2) + \
vec_extract(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 POWER9
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR GGML_F32_EPR
#define GGML_F16_VEC GGML_F32x4
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
// Use vec_xl, not vec_ld, in case the load address is not aligned.
#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
vec_extract_fp32_from_shortl(vec_xl(0, p))
#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
#define GGML_F16_VEC_STORE(p, r, i) \
if (i & 0x1) \
vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
r[i - GGML_ENDIAN_BYTE(0)]), \
0, p - GGML_F16_EPR)
#elif defined(__wasm_simd128__)
#define GGML_SIMD
// F32 WASM
#define GGML_F32_STEP 16
#define GGML_F32_EPR 4
#define GGML_F32x4 v128_t
#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F32x4_LOAD wasm_v128_load
#define GGML_F32x4_STORE wasm_v128_store
#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
#define GGML_F32x4_ADD wasm_f32x4_add
#define GGML_F32x4_MUL wasm_f32x4_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 WASM
#define GGML_F16_STEP 16
#define GGML_F16_EPR 4
inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(p[0]);
tmp[1] = GGML_FP16_TO_FP32(p[1]);
tmp[2] = GGML_FP16_TO_FP32(p[2]);
tmp[3] = GGML_FP16_TO_FP32(p[3]);
return wasm_v128_load(tmp);
}
inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
float tmp[4];
wasm_v128_store(tmp, x);
p[0] = GGML_FP32_TO_FP16(tmp[0]);
p[1] = GGML_FP32_TO_FP16(tmp[1]);
p[2] = GGML_FP32_TO_FP16(tmp[2]);
p[3] = GGML_FP32_TO_FP16(tmp[3]);
}
#define GGML_F16x4 v128_t
#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
#define GGML_F16x4_FMA GGML_F32x4_FMA
#define GGML_F16x4_ADD wasm_f32x4_add
#define GGML_F16x4_MUL wasm_f32x4_mul
#define GGML_F16x4_REDUCE(res, x) \
{ \
int offset = GGML_F16_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
} \
res = (ggml_float) (wasm_f32x4_extract_lane(x[0], 0) + \
wasm_f32x4_extract_lane(x[0], 1) + \
wasm_f32x4_extract_lane(x[0], 2) + \
wasm_f32x4_extract_lane(x[0], 3)); \
}
#define GGML_F16_VEC GGML_F16x4
#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F16x4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F16x4_FMA
#define GGML_F16_VEC_ADD GGML_F16x4_ADD
#define GGML_F16_VEC_MUL GGML_F16x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
#elif defined(__SSE3__)
#define GGML_SIMD
// F32 SSE
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO _mm_setzero_ps()
#define GGML_F32x4_SET1(x) _mm_set1_ps(x)
#define GGML_F32x4_LOAD _mm_loadu_ps
#define GGML_F32x4_STORE _mm_storeu_ps
#if defined(__FMA__)
// TODO: Does this work?
#define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
#else
#define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
#endif
#define GGML_F32x4_ADD _mm_add_ps
#define GGML_F32x4_MUL _mm_mul_ps
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = _mm_add_ps(x[i], x[offset+i]); \
} \
const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
}
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 SSE
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __sse_f16x4_load(const ggml_fp16_t * x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
tmp[1] = GGML_FP16_TO_FP32(x[1]);
tmp[2] = GGML_FP16_TO_FP32(x[2]);
tmp[3] = GGML_FP16_TO_FP32(x[3]);
return _mm_loadu_ps(tmp);
}
static inline void __sse_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4];
_mm_storeu_ps(arr, y);
x[0] = GGML_FP32_TO_FP16(arr[0]);
x[1] = GGML_FP32_TO_FP16(arr[1]);
x[2] = GGML_FP32_TO_FP16(arr[2]);
x[3] = GGML_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO _mm_setzero_ps()
#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD _mm_add_ps
#define GGML_F32Cx4_MUL _mm_mul_ps
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#elif defined(__loongarch_asx)
#define GGML_SIMD
// F32 LASX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 8
#define GGML_F32x8 __m256
#define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
#define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
#define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
#define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
#define GGML_F32x8_ADD __lasx_xvfadd_s
#define GGML_F32x8_MUL __lasx_xvfmul_s
#define GGML_F32x8_REDUCE(res, x) \
do { \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
} \
float *tmp_p = (float *)&x[0]; \
res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
} while (0)
// TODO: is this optimal ?
#define GGML_F32_VEC GGML_F32x8
#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x8_SET1
#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
#define GGML_F32_VEC_STORE GGML_F32x8_STORE
#define GGML_F32_VEC_FMA GGML_F32x8_FMA
#define GGML_F32_VEC_ADD GGML_F32x8_ADD
#define GGML_F32_VEC_MUL GGML_F32x8_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
// F16 LASX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 8
// F16 arithmetic is not supported by LASX, so we use F32 instead
#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
__m256i a;
memcpy(&a, x, sizeof(ggml_fp16_t) * 8);
a = __lasx_xvpermi_d(a, 0 | (1 << 4));
return __lasx_xvfcvtl_s_h(a);
}
static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
__m256i a = __lasx_xvfcvt_h_s(y, y);
a = __lasx_xvpermi_d(a, 0 | (2 << 2));
memcpy(x, &a, sizeof(ggml_fp16_t) * 8);
}
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
#define GGML_F32Cx8_FMA GGML_F32x8_FMA
#define GGML_F32Cx8_ADD __lasx_xvfadd_s
#define GGML_F32Cx8_MUL __lasx_xvfmul_s
#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
#define GGML_F16_VEC GGML_F32Cx8
#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
#elif defined(__loongarch_sx)
#define GGML_SIMD
// F32 LSX
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __m128
#define GGML_F32x4_ZERO __lsx_vldi(0)
#define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
#define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
#define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
#define GGML_F32x4_ADD __lsx_vfadd_s
#define GGML_F32x4_MUL __lsx_vfmul_s
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = __lsx_vfadd_s(x[i], x[offset + i]); \
} \
__m128i tmp = __lsx_vsrli_d((__m128i) x[0], 32); \
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, x[0]); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
tmp = __lsx_vsrli_d((__m128i) t0, 32); \
tmp = (__m128i) __lsx_vfadd_s((__m128) tmp, t0); \
tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 LSX
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
tmp[1] = GGML_FP16_TO_FP32(x[1]);
tmp[2] = GGML_FP16_TO_FP32(x[2]);
tmp[3] = GGML_FP16_TO_FP32(x[3]);
return __lsx_vld(tmp, 0);
}
static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4];
__lsx_vst(y, arr, 0);
x[0] = GGML_FP32_TO_FP16(arr[0]);
x[1] = GGML_FP32_TO_FP16(arr[1]);
x[2] = GGML_FP32_TO_FP16(arr[2]);
x[3] = GGML_FP32_TO_FP16(arr[3]);
}
#define GGML_F32Cx4 __m128
#define GGML_F32Cx4_ZERO __lsx_vldi(0)
#define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
#define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
#define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
#define GGML_F32Cx4_FMA GGML_F32x4_FMA
#define GGML_F32Cx4_ADD __lsx_vfadd_s
#define GGML_F32Cx4_MUL __lsx_vfmul_s
#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
#define GGML_F16_VEC GGML_F32Cx4
#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
#elif defined(__VXE__) || defined(__VXE2__)
#define GGML_SIMD
// F32 s390x
#define GGML_F32_STEP 32
#define GGML_F32_EPR 4
#define GGML_F32x4 __vector float
#define GGML_F32x4_ZERO vec_splats(0.0f)
#define GGML_F32x4_SET1 vec_splats
#define GGML_F32x4_LOAD(p) vec_xl(0, p)
#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
#define GGML_F32x4_ADD vec_add
#define GGML_F32x4_MUL vec_mul
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset + i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
x[i] = vec_add(x[i], x[offset + i]); \
} \
res = vec_extract(x[0], 0) + \
vec_extract(x[0], 1) + \
vec_extract(x[0], 2) + \
vec_extract(x[0], 3); \
}
#define GGML_F32_VEC GGML_F32x4
#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F32_VEC_SET1 GGML_F32x4_SET1
#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
#define GGML_F32_VEC_STORE GGML_F32x4_STORE
#define GGML_F32_VEC_FMA GGML_F32x4_FMA
#define GGML_F32_VEC_ADD GGML_F32x4_ADD
#define GGML_F32_VEC_MUL GGML_F32x4_MUL
#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
// F16 s390x
#define GGML_F16_STEP GGML_F32_STEP
#define GGML_F16_EPR GGML_F32_EPR
static inline __vector float __lzs_f16cx4_load(const ggml_fp16_t * x) {
float tmp[4];
for (int i = 0; i < 4; i++) {
tmp[i] = GGML_FP16_TO_FP32(x[i]);
}
return vec_xl(0, tmp);
}
static inline void __lzs_f16cx4_store(ggml_fp16_t * x, __vector float y) {
float arr[4];
vec_xst(y, 0, arr);
for (int i = 0; i < 4; i++) {
x[i] = GGML_FP32_TO_FP16(arr[i]);
}
}
#define GGML_F16_VEC GGML_F32x4
#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
#define GGML_F16_VEC_SET1 GGML_F32x4_SET1
#define GGML_F16_VEC_LOAD(p, i) __lzs_f16cx4_load(p)
#define GGML_F16_VEC_STORE(p, r, i) __lzs_f16cx4_store(p, r[i])
#define GGML_F16_VEC_FMA GGML_F32x4_FMA
#define GGML_F16_VEC_ADD GGML_F32x4_ADD
#define GGML_F16_VEC_MUL GGML_F32x4_MUL
#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
#endif
// GGML_F32_ARR / GGML_F16_ARR
// number of registers to use per step
#ifdef GGML_SIMD
#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
#endif

258
ggml/src/ggml-cpu/vec.cpp Normal file
View File

@ -0,0 +1,258 @@
#include "vec.h"
#include <cassert>
#if defined(_MSC_VER)
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
#endif
// precomputed gelu table for f16 (128 KB)
ggml_fp16_t ggml_table_gelu_f16[1 << 16];
// precomputed quick gelu table for f16 (128 KB)
ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc) {
assert(nrc == 1);
GGML_UNUSED(nrc);
GGML_UNUSED(bx);
GGML_UNUSED(by);
GGML_UNUSED(bs);
#if defined(GGML_SIMD)
float sumf = 0.0f;
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F32_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += x[i]*y[i];
}
#else
// scalar
ggml_float sumf = 0.0;
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(x[i]*y[i]);
}
#endif
*s = sumf;
}
void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc) {
assert(nrc == 1);
GGML_UNUSED(nrc);
GGML_UNUSED(bx);
GGML_UNUSED(by);
GGML_UNUSED(bs);
int i = 0;
ggml_float sumf = 0;
#if defined(__AVX512BF16__)
__m512 c1 = _mm512_setzero_ps();
__m512 c2 = _mm512_setzero_ps();
for (; i + 64 <= n; i += 64) {
c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
m512bh(_mm512_loadu_si512((y + i))));
c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
m512bh(_mm512_loadu_si512((y + i + 32))));
}
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
#elif defined(__AVX512F__)
#define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
__m512 c1 = _mm512_setzero_ps();
__m512 c2 = _mm512_setzero_ps();
for (; i + 32 <= n; i += 32) {
c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
}
sumf += (ggml_float)_mm512_reduce_add_ps(c1);
sumf += (ggml_float)_mm512_reduce_add_ps(c2);
#undef LOAD
#elif defined(__AVX2__) || defined(__AVX__)
#if defined(__AVX2__)
#define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
#else
#define LOAD(p) _mm256_castsi256_ps(_mm256_insertf128_si256(_mm256_castsi128_si256(_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16)), (_mm_slli_epi32(_mm_cvtepu16_epi32(_mm_bsrli_si128(_mm_loadu_si128((const __m128i *)(p)), 8)), 16)), 1))
#endif
__m256 c1 = _mm256_setzero_ps();
__m256 c2 = _mm256_setzero_ps();
__m256 c3 = _mm256_setzero_ps();
__m256 c4 = _mm256_setzero_ps();
for (; i + 32 <= n; i += 32) {
c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
}
__m128 g;
c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
_mm256_add_ps(c2, c4));
g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
_mm256_castps256_ps128(c1));
g = _mm_add_ps(g, _mm_movehl_ps(g, g));
g = _mm_add_ss(g, _mm_movehdup_ps(g));
sumf += (ggml_float)_mm_cvtss_f32(g);
#undef LOAD
#endif
for (; i < n; ++i) {
sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
GGML_BF16_TO_FP32(y[i]));
}
*s = sumf;
}
void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc) {
assert(nrc == 1);
GGML_UNUSED(nrc);
GGML_UNUSED(bx);
GGML_UNUSED(by);
GGML_UNUSED(bs);
ggml_float sumf = 0.0;
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
}
}
// reduce sum0..sum3 to sum0
GGML_F16_VEC_REDUCE(sumf, sum);
// leftovers
for (int i = np; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#else
for (int i = 0; i < n; ++i) {
sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
}
#endif
*s = sumf;
}
void ggml_vec_silu_f32(const int n, float * y, const float * x) {
int i = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
for (; i + 15 < n; i += 16) {
_mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
}
#elif defined(__AVX2__) && defined(__FMA__)
for (; i + 7 < n; i += 8) {
_mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
}
#elif defined(__SSE2__)
for (; i + 3 < n; i += 4) {
_mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
}
#endif
for (; i < n; ++i) {
y[i] = ggml_silu_f32(x[i]);
}
}
ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
int i = 0;
ggml_float sum = 0;
#if defined(__AVX512F__) && defined(__AVX512DQ__)
for (; i + 15 < n; i += 16) {
__m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
_mm512_set1_ps(max)));
_mm512_storeu_ps(y + i, val);
sum += (ggml_float)_mm512_reduce_add_ps(val);
}
#elif defined(__AVX2__) && defined(__FMA__)
for (; i + 7 < n; i += 8) {
__m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
_mm256_set1_ps(max)));
_mm256_storeu_ps(y + i, val);
__m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
_mm256_castps256_ps128(val));
val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
sum += (ggml_float)_mm_cvtss_f32(val2);
}
#elif defined(__SSE2__)
for (; i + 3 < n; i += 4) {
__m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
_mm_set1_ps(max)));
_mm_storeu_ps(y + i, val);
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
val = _mm_add_ps(val, _mm_movehl_ps(val, val));
val = _mm_add_ss(val, _mm_movehdup_ps(val));
#else
__m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
val = _mm_add_ps(val, tmp);
tmp = _mm_movehl_ps(tmp, val);
val = _mm_add_ss(val, tmp);
#endif
sum += (ggml_float)_mm_cvtss_f32(val);
}
#elif defined(__ARM_NEON) && defined(__aarch64__)
for (; i + 3 < n; i += 4) {
float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
vdupq_n_f32(max)));
vst1q_f32(y + i, val);
sum += (ggml_float)vaddvq_f32(val);
}
#endif
for (; i < n; ++i) {
float val = expf(x[i] - max);
sum += (ggml_float)val;
y[i] = val;
}
return sum;
}
ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max) {
// log(soft_max) = log(soft_max_i / soft_max_sum) = log(soft_max_i) - log(soft_max_sum) = (logit_i - max) - log(soft_max_i)
int i = 0;
ggml_float sum = 0;
for (; i < n; ++i) {
float val = x[i] - max;
y[i] = val;
sum += (ggml_float)expf(val);
}
return sum = (ggml_float)logf(sum);
}

802
ggml/src/ggml-cpu/vec.h Normal file
View File

@ -0,0 +1,802 @@
// Vectorized functions for fundamental operations
#pragma once
#include "ggml-impl.h"
#include "simd-mappings.h"
#include "ggml.h"
#if defined(GGML_USE_ACCELERATE)
#include <Accelerate/Accelerate.h>
#endif
// floating point type used to accumulate sums
typedef double ggml_float;
#define GGML_GELU_FP16
#define GGML_GELU_QUICK_FP16
#define GGML_SOFT_MAX_UNROLL 4
#define GGML_VEC_DOT_UNROLL 2
#define GGML_VEC_MAD_UNROLL 32
#ifdef __cplusplus
extern "C" {
#endif
//
// global data
//
// precomputed gelu table for f16 (128 KB)
extern ggml_fp16_t ggml_table_gelu_f16[1 << 16];
// precomputed quick gelu table for f16 (128 KB)
extern ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
//
// fundamental operations
//
void ggml_vec_dot_f32(int n, float * GGML_RESTRICT s, size_t bs, const float * GGML_RESTRICT x, size_t bx, const float * GGML_RESTRICT y, size_t by, int nrc);
void ggml_vec_dot_bf16(int n, float * GGML_RESTRICT s, size_t bs, ggml_bf16_t * GGML_RESTRICT x, size_t bx, ggml_bf16_t * GGML_RESTRICT y, size_t by, int nrc);
void ggml_vec_dot_f16(int n, float * GGML_RESTRICT s, size_t bs, ggml_fp16_t * GGML_RESTRICT x, size_t bx, ggml_fp16_t * GGML_RESTRICT y, size_t by, int nrc);
void ggml_vec_silu_f32(const int n, float * y, const float * x);
ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max);
ggml_float ggml_vec_log_soft_max_f32(const int n, float * y, const float * x, float max);
inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_cpy_i32(const int n, int32_t * y, const int32_t * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const ggml_fp16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
inline static void ggml_vec_add_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
for (int i = 0; i < n; ++i) {
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) + GGML_FP16_TO_FP32(y[i]));
}
}
inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
inline static void ggml_vec_sub_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
for (int i = 0; i < n; ++i) {
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) - GGML_FP16_TO_FP32(y[i]));
}
}
inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
inline static void ggml_vec_neg_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(-GGML_FP16_TO_FP32(x[i]));
}
}
inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
inline static void ggml_vec_mul_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
for (int i = 0; i < n; ++i) {
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) * GGML_FP16_TO_FP32(y[i]));
}
}
inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
inline static void ggml_vec_div_f16 (const int n, ggml_fp16_t * z, const ggml_fp16_t * x, const ggml_fp16_t * y) {
for (int i = 0; i < n; ++i) {
z[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(x[i]) / GGML_FP16_TO_FP32(y[i]));
}
}
// compute GGML_VEC_DOT_UNROLL dot products at once
// xs - x row stride in bytes
inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * GGML_RESTRICT s, void * GGML_RESTRICT xv, ggml_fp16_t * GGML_RESTRICT y) {
ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
ggml_fp16_t * GGML_RESTRICT x[GGML_VEC_DOT_UNROLL];
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
}
}
}
// reduce sum0..sum3 to sum0
for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
}
// leftovers
for (int i = np; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#else
for (int i = 0; i < n; ++i) {
for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
}
}
#endif
for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
s[i] = (float)sumf[i];
}
}
inline static void ggml_vec_mad_f32(const int n, float * GGML_RESTRICT y, const float * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ax[GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] += x[i]*v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] += x[i]*v;
}
#endif
}
inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * GGML_RESTRICT y, const ggml_fp16_t * GGML_RESTRICT x, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ax[GGML_F16_ARR];
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
}
#endif
}
// xs and vs are byte strides of x and v
inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * GGML_RESTRICT y, const float * GGML_RESTRICT xv, const float * GGML_RESTRICT vv) {
const float * GGML_RESTRICT x[GGML_VEC_MAD_UNROLL];
const float * GGML_RESTRICT v[GGML_VEC_MAD_UNROLL];
for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
x[i] = (const float *) ((const char *) xv + i*xs);
v[i] = (const float *) ((const char *) vv + i*vs);
}
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
vx[k] = GGML_F32_VEC_SET1(v[k][0]);
}
GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
}
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = np; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#else
// scalar
for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
for (int i = 0; i < n; ++i) {
y[i] += x[k][i]*v[k][0];
}
}
#endif
}
//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
#if defined(GGML_USE_ACCELERATE)
vDSP_vsmul(y, 1, &v, y, 1, n);
#elif defined(GGML_SIMD)
const int np = (n & ~(GGML_F32_STEP - 1));
GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
GGML_F32_VEC ay[GGML_F32_ARR];
for (int i = 0; i < np; i += GGML_F32_STEP) {
for (int j = 0; j < GGML_F32_ARR; j++) {
ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] *= v;
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] *= v;
}
#endif
}
inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
#if defined(GGML_SIMD)
const int np = (n & ~(GGML_F16_STEP - 1));
GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
GGML_F16_VEC ay[GGML_F16_ARR];
for (int i = 0; i < np; i += GGML_F16_STEP) {
for (int j = 0; j < GGML_F16_ARR; j++) {
ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
}
}
// leftovers
for (int i = np; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#else
// scalar
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
}
#endif
}
inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
inline static void ggml_vec_sqr_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
float v = GGML_FP16_TO_FP32(x[i]);
y[i] = GGML_FP32_TO_FP16(v*v);
}
}
inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
inline static void ggml_vec_sqrt_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(sqrtf(GGML_FP16_TO_FP32(x[i])));
}
}
inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
inline static void ggml_vec_log_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(logf(GGML_FP16_TO_FP32(x[i])));
}
}
inline static void ggml_vec_sin_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sinf(x[i]); }
inline static void ggml_vec_sin_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(sinf(GGML_FP16_TO_FP32(x[i])));
}
}
inline static void ggml_vec_cos_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = cosf(x[i]); }
inline static void ggml_vec_cos_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(cosf(GGML_FP16_TO_FP32(x[i])));
}
}
inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
inline static void ggml_vec_abs_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(fabsf(GGML_FP16_TO_FP32(x[i])));
}
}
inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
inline static void ggml_vec_sgn_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
float v = GGML_FP16_TO_FP32(x[i]);
y[i] = GGML_FP32_TO_FP16((v > 0.f) ? 1.f : ((v < 0.f) ? -1.f : 0.f));
}
}
inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
inline static void ggml_vec_step_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16((GGML_FP16_TO_FP32(x[i]) > 0.f) ? 1.f : 0.f);
}
}
inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
inline static void ggml_vec_tanh_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(tanhf(GGML_FP16_TO_FP32(x[i])));
}
}
inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
inline static void ggml_vec_elu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(expm1f(GGML_FP16_TO_FP32(x[i])));
}
}
inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
inline static void ggml_vec_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
float v = GGML_FP16_TO_FP32(x[i]);
y[i] = GGML_FP32_TO_FP16((v > 0.f) ? v : 0.f);
}
}
inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
inline static void ggml_vec_leaky_relu_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x, const float ns) {
for (int i = 0; i < n; ++i) {
float v = GGML_FP16_TO_FP32(x[i]);
y[i] = GGML_FP32_TO_FP16(((v > 0.f) ? v : 0.f) + ns * ((v < 0.0f) ? v : 0.f));
}
}
inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
inline static void ggml_vec_sigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(1.f / (1.f + expf(-GGML_FP16_TO_FP32(x[i]))));
}
}
// TODO: optimize performance
inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
inline static void ggml_vec_hardswish_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
float v = GGML_FP16_TO_FP32(x[i]);
y[i] = GGML_FP32_TO_FP16(v * fminf(1.0f, fmaxf(0.0f, (v + 3.0f) / 6.0f)));
}
}
inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
inline static void ggml_vec_hardsigmoid_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(fminf(1.0f, fmaxf(0.0f, (GGML_FP16_TO_FP32(x[i]) + 3.0f) / 6.0f)));
}
}
inline static void ggml_vec_exp_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = expf(x[i]); }
inline static void ggml_vec_exp_f16 (const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = GGML_FP32_TO_FP16(expf(GGML_FP16_TO_FP32(x[i])));
}
}
static const float GELU_COEF_A = 0.044715f;
static const float GELU_QUICK_COEF = -1.702f;
static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
inline static float ggml_gelu_f32(float x) {
return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
}
inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
const uint16_t * i16 = (const uint16_t *) x;
for (int i = 0; i < n; ++i) {
y[i] = ggml_table_gelu_f16[i16[i]];
}
}
#ifdef GGML_GELU_FP16
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
if (x[i] <= -10.0f) {
y[i] = 0.0f;
} else if (x[i] >= 10.0f) {
y[i] = x[i];
} else {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
}
}
}
#else
inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_f32(x[i]);
}
}
#endif
inline static float ggml_gelu_quick_f32(float x) {
return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
}
//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
// const uint16_t * i16 = (const uint16_t *) x;
// for (int i = 0; i < n; ++i) {
// y[i] = ggml_table_gelu_quick_f16[i16[i]];
// }
//}
#ifdef GGML_GELU_QUICK_FP16
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
uint16_t t;
for (int i = 0; i < n; ++i) {
ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
memcpy(&t, &fp16, sizeof(uint16_t));
y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
}
}
#else
inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_gelu_quick_f32(x[i]);
}
}
#endif
inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
float v = GGML_FP16_TO_FP32(x[i]);
y[i] = GGML_FP32_TO_FP16(v*(1.0f/(1.0f+expf(GELU_QUICK_COEF*v))));
}
}
// Sigmoid Linear Unit (SiLU) function
inline static float ggml_silu_f32(float x) {
return x/(1.0f + expf(-x));
}
inline static ggml_fp16_t ggml_silu_f16(ggml_fp16_t x) {
float v = GGML_FP16_TO_FP32(x);
return GGML_FP32_TO_FP16(v/(1.0f + expf(-v)));
}
#if __FINITE_MATH_ONLY__
#error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
#error "ref: https://github.com/ggml-org/llama.cpp/pull/7154#issuecomment-2143844461"
#endif
#if defined(__ARM_NEON) && defined(__aarch64__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static float32x4_t ggml_v_expf(float32x4_t x) {
const float32x4_t r = vdupq_n_f32(0x1.8p23f);
const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
const float32x4_t n = vsubq_f32(z, r);
const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
vdupq_n_f32(0x1.7f7d1cp-20f));
const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
const float32x4_t u = vmulq_f32(b, b);
const float32x4_t j = vfmaq_f32(
vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
return vfmaq_f32(k, j, k);
const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static float32x4_t ggml_v_silu(float32x4_t x) {
const float32x4_t one = vdupq_n_f32(1.0f);
const float32x4_t zero = vdupq_n_f32(0.0f);
const float32x4_t neg_x = vsubq_f32(zero, x);
const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
return vdivq_f32(x, one_plus_exp_neg_x);
}
#elif defined(__AVX512F__) && defined(__AVX512DQ__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static __m512 ggml_v_expf(__m512 x) {
const __m512 r = _mm512_set1_ps(0x1.8p23f);
const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
const __m512 n = _mm512_sub_ps(z, r);
const __m512 b =
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
_mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
const __mmask16 d =
_mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
const __m512 u = _mm512_mul_ps(b, b);
const __m512 j = _mm512_fmadd_ps(
_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
_mm512_set1_ps(0x1.573e2ep-5f)),
u,
_mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
_mm512_set1_ps(0x1.fffdb6p-2f))),
u,
_mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
const __m512 res = _mm512_scalef_ps(j, n);
if (_mm512_kortestz(d, d))
return res;
const __m512 zero = _mm512_setzero_ps();
const __m512 alt = _mm512_mask_blend_ps(
_mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
return _mm512_mask_blend_ps(d, res, alt);
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static __m512 ggml_v_silu(__m512 x) {
const __m512 one = _mm512_set1_ps(1);
const __m512 zero = _mm512_setzero_ps();
const __m512 neg_x = _mm512_sub_ps(zero, x);
const __m512 exp_neg_x = ggml_v_expf(neg_x);
const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
return _mm512_div_ps(x, one_plus_exp_neg_x);
}
#elif defined(__AVX2__) && defined(__FMA__)
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static __m256 ggml_v_expf(__m256 x) {
const __m256 r = _mm256_set1_ps(0x1.8p23f);
const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
const __m256 n = _mm256_sub_ps(z, r);
const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
_mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
const __m256 k = _mm256_castsi256_ps(
_mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
const __m256i c = _mm256_castps_si256(
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
_mm256_set1_ps(126), _CMP_GT_OQ));
const __m256 u = _mm256_mul_ps(b, b);
const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
_mm256_set1_ps(0x1.573e2ep-5f)), u,
_mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
_mm256_set1_ps(0x1.fffdb6p-2f))),
u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
return _mm256_fmadd_ps(j, k, k);
const __m256i g = _mm256_and_si256(
_mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
_mm256_set1_epi32(0x82000000u));
const __m256 s1 =
_mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
const __m256i d = _mm256_castps_si256(
_mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
_mm256_set1_ps(192), _CMP_GT_OQ));
return _mm256_or_ps(
_mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
_mm256_andnot_ps(
_mm256_castsi256_ps(d),
_mm256_or_ps(
_mm256_and_ps(_mm256_castsi256_ps(c),
_mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
_mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static __m256 ggml_v_silu(__m256 x) {
const __m256 one = _mm256_set1_ps(1);
const __m256 zero = _mm256_setzero_ps();
const __m256 neg_x = _mm256_sub_ps(zero, x);
const __m256 exp_neg_x = ggml_v_expf(neg_x);
const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
return _mm256_div_ps(x, one_plus_exp_neg_x);
}
#elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
#if defined(__FMA__)
#define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
#define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
#else
#define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
#define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
#endif
// adapted from arm limited optimized routine
// the maximum error is 1.45358 plus 0.5 ulps
// numbers above 88.38 will flush to infinity
// numbers beneath -103.97 will flush to zero
inline static __m128 ggml_v_expf(__m128 x) {
const __m128 r = _mm_set1_ps(0x1.8p23f);
const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
const __m128 n = _mm_sub_ps(z, r);
const __m128 b =
NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
const __m128i c =
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
const __m128 u = _mm_mul_ps(b, b);
const __m128 j =
MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
if (!_mm_movemask_epi8(c))
return MADD128(j, k, k);
const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
_mm_set1_epi32(0x82000000u));
const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
const __m128i d =
_mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
return _mm_or_ps(
_mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
_mm_andnot_ps(_mm_castsi128_ps(d),
_mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
_mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
}
// computes silu x/(1+exp(-x)) in single precision vector
inline static __m128 ggml_v_silu(__m128 x) {
const __m128 one = _mm_set1_ps(1);
const __m128 zero = _mm_setzero_ps();
const __m128 neg_x = _mm_sub_ps(zero, x);
const __m128 exp_neg_x = ggml_v_expf(neg_x);
const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
return _mm_div_ps(x, one_plus_exp_neg_x);
}
#endif // __ARM_NEON / __AVX2__ / __SSE2__
inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
for (int i = 0; i < n; ++i) {
y[i] = ggml_silu_f16(x[i]);
}
}
inline static float ggml_silu_backward_f32(float x, float dy) {
const float s = 1.0f/(1.0f + expf(-x));
return dy*s*(1.0f + x*(1.0f - s));
}
inline static ggml_fp16_t ggml_silu_backward_f16(ggml_fp16_t x, ggml_fp16_t dy) {
const float v = GGML_FP16_TO_FP32(x);
const float s = 1.0f/(1.0f + expf(-v));
return GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(dy)*s*(1.0f + v*(1.0f - s)));
}
inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
for (int i = 0; i < n; ++i) {
dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
}
}
inline static void ggml_vec_silu_backward_f16(const int n, ggml_fp16_t * dx, const ggml_fp16_t * x, const ggml_fp16_t * dy) {
for (int i = 0; i < n; ++i) {
dx[i] = ggml_silu_backward_f16(x[i], dy[i]);
}
}
inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = (float)sum;
#else
vDSP_sve(x, 1, s, n);
#endif
}
inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
ggml_float sum = 0.0;
for (int i = 0; i < n; ++i) {
sum += (ggml_float)x[i];
}
*s = sum;
}
inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
float sum = 0.0f;
for (int i = 0; i < n; ++i) {
sum += GGML_FP16_TO_FP32(x[i]);
}
*s = sum;
}
inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
float sum = 0.0f;
for (int i = 0; i < n; ++i) {
sum += GGML_BF16_TO_FP32(x[i]);
}
*s = sum;
}
inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
#ifndef GGML_USE_ACCELERATE
float max = -INFINITY;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
}
*s = max;
#else
vDSP_maxv(x, 1, s, n);
#endif
}
inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
ggml_vec_norm_f32(n, s, x);
*s = 1.f/(*s);
}
inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
float max = -INFINITY;
int idx = 0;
for (int i = 0; i < n; ++i) {
max = MAX(max, x[i]);
if (max == x[i]) { idx = i; }
}
*s = idx;
}
#ifdef __cplusplus
}
#endif

View File

@ -579,7 +579,7 @@ static __global__ void convert_unary(const void * __restrict__ vx, dst_t * __res
const src_t * x = (const src_t *) vx;
y[i] = x[i];
y[i] = float(x[i]);
}
template <typename src_t, typename dst_t>
@ -588,6 +588,17 @@ static void convert_unary_cuda(const void * __restrict__ vx, dst_t * __restrict_
convert_unary<src_t><<<num_blocks, CUDA_DEQUANTIZE_BLOCK_SIZE, 0, stream>>>(vx, y, k);
}
to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_F32:
return convert_unary_cuda<float>;
case GGML_TYPE_F16:
return convert_unary_cuda<half>;
default:
return nullptr;
}
}
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
switch (type) {
case GGML_TYPE_Q4_0:
@ -633,6 +644,8 @@ to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type) {
return dequantize_row_iq3_s_cuda;
case GGML_TYPE_F32:
return convert_unary_cuda<float>;
case GGML_TYPE_BF16:
return convert_unary_cuda<nv_bfloat16>;
default:
return nullptr;
}

View File

@ -7,7 +7,10 @@ using to_t_cuda_t = void (*)(const void * __restrict__ x, T * __restrict__ y, in
typedef to_t_cuda_t<float> to_fp32_cuda_t;
typedef to_t_cuda_t<half> to_fp16_cuda_t;
typedef to_t_cuda_t<nv_bfloat16> to_bf16_cuda_t;
to_fp16_cuda_t ggml_get_to_fp16_cuda(ggml_type type);
to_bf16_cuda_t ggml_get_to_bf16_cuda(ggml_type type);
to_fp32_cuda_t ggml_get_to_fp32_cuda(ggml_type type);

View File

@ -10,6 +10,13 @@ static __device__ void cpy_1_f32_f32(const char * cxi, char * cdsti) {
*dsti = *xi;
}
static __device__ void cpy_1_f32_bf16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
nv_bfloat16 * dsti = (nv_bfloat16 *) cdsti;
*dsti = *xi;
}
static __device__ void cpy_1_f32_f16(const char * cxi, char * cdsti) {
const float * xi = (const float *) cxi;
half * dsti = (half *) cdsti;
@ -386,6 +393,16 @@ static void ggml_cpy_f32_f32_cuda(
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_bf16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
const int nb03, const int ne10, const int ne11, const int ne12, const int nb10, const int nb11, const int nb12, const int nb13, cudaStream_t stream, char ** cdst_indirect, int & graph_cpynode_index) {
const int num_blocks = (ne + CUDA_CPY_BLOCK_SIZE - 1) / CUDA_CPY_BLOCK_SIZE;
cpy_f32_f16<cpy_1_f32_bf16><<<num_blocks, CUDA_CPY_BLOCK_SIZE, 0, stream>>>
(cx, cdst, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, cdst_indirect, graph_cpynode_index++);
}
static void ggml_cpy_f32_f16_cuda(
const char * cx, char * cdst, const int ne,
const int ne00, const int ne01, const int ne02, const int nb00, const int nb01, const int nb02,
@ -581,6 +598,8 @@ void ggml_cuda_cpy(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, gg
CUDA_CHECK(cudaMemcpyAsync(src1_ddc, src0_ddc, ggml_nbytes(src0), cudaMemcpyDeviceToDevice, main_stream));
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
ggml_cpy_f32_f32_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
ggml_cpy_f32_bf16_cuda(src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
ggml_cpy_f32_f16_cuda (src0_ddc, src1_ddc, ne, ne00, ne01, ne02, nb00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb13, main_stream, dest_ptrs_d, graph_cpynode_index);
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {
@ -634,6 +653,8 @@ void* ggml_cuda_cpy_fn(const ggml_tensor * src0, ggml_tensor * src1) {
return nullptr;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32) {
return (void*) cpy_f32_f16<cpy_1_f32_f32>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_BF16) {
return (void*) cpy_f32_f16<cpy_1_f32_bf16>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F16) {
return (void*) cpy_f32_f16<cpy_1_f32_f16>;
} else if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_Q8_0) {

View File

@ -1194,7 +1194,35 @@ static void ggml_cuda_op_mul_mat_cublas(
const bool use_fp16 = (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT;
if (((GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) || GGML_CUDA_CC_IS_AMD(cc)) && use_fp16) {
if (src0->type == GGML_TYPE_BF16 && ggml_is_contiguous(src0) && row_diff == src0->ne[1]) {
ggml_cuda_pool_alloc<nv_bfloat16> src1_as_bf16(ctx.pool(id));
if (src1->type != GGML_TYPE_BF16) {
const to_bf16_cuda_t to_bf16_cuda = ggml_get_to_bf16_cuda(src1->type);
GGML_ASSERT(to_bf16_cuda != nullptr);
size_t ne = src1_ncols*ne10;
src1_as_bf16.alloc(ne);
to_bf16_cuda(src1_ddf_i, src1_as_bf16.get(), ne, stream);
}
const nv_bfloat16 * src1_ptr = src1->type == GGML_TYPE_BF16 ? (const nv_bfloat16 *) src1_ddf_i : src1_as_bf16.get();
const nv_bfloat16 * src0_ptr = (const nv_bfloat16 *)src0_dd_i;
ggml_cuda_pool_alloc<nv_bfloat16> dst_bf16(ctx.pool(id), row_diff*src1_ncols);
const float alpha_f32 = 1.0f;
const float beta_f32 = 0.0f;
CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
CUBLAS_CHECK(
cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
row_diff, src1_ncols, ne10,
&alpha_f32, src0_ptr, CUDA_R_16BF, ne00,
src1_ptr, CUDA_R_16BF, ne10,
&beta_f32, dst_bf16.get(), CUDA_R_16BF, ldc,
CUBLAS_COMPUTE_32F,
CUBLAS_GEMM_DEFAULT_TENSOR_OP));
const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_BF16);
to_fp32_cuda(dst_bf16.get(), dst_dd_i, row_diff*src1_ncols, stream);
} else if (((GGML_CUDA_CC_IS_NVIDIA(cc) && cc >= GGML_CUDA_CC_VOLTA) || GGML_CUDA_CC_IS_AMD(cc)) && use_fp16) {
// convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool(id));
if (src0->type != GGML_TYPE_F16) {
@ -3051,6 +3079,9 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_BF16) {
return true;
}
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return true;
}

View File

@ -20,6 +20,7 @@
#define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH 0
#define CUDA_R_16F HIPBLAS_R_16F
#define CUDA_R_16BF HIPBLAS_R_16B
#define CUDA_R_32F HIPBLAS_R_32F
#define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED hipDeviceAttributeVirtualMemoryManagementSupported
#define CU_MEM_ALLOC_GRANULARITY_RECOMMENDED hipMemAllocationGranularityRecommended

View File

@ -15,6 +15,7 @@
#define CUBLAS_STATUS_SUCCESS MUBLAS_STATUS_SUCCESS
#define CUBLAS_TF32_TENSOR_OP_MATH MUBLAS_MATH_MODE_DEFAULT
#define CUDA_R_16F MUSA_R_16F
#define CUDA_R_16BF MUSA_R_16BF
#define CUDA_R_32F MUSA_R_32F
#define cublasComputeType_t cudaDataType_t
#define cublasCreate mublasCreate

View File

@ -16,14 +16,6 @@
#include <arm_sve.h>
#endif // __ARM_FEATURE_SVE
#if defined(__ARM_NEON) && !defined(__CUDACC__) && !defined(__MUSACC__)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#endif
#if defined(__F16C__)
#include <immintrin.h>
#endif
@ -311,29 +303,35 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size);
// FP16 to FP32 conversion
#if defined(__ARM_NEON)
#if defined(_MSC_VER) || (defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11)
typedef uint16_t ggml_fp16_internal_t;
#else
typedef __fp16 ggml_fp16_internal_t;
#endif
#endif
// 16-bit float
// on Arm, we use __fp16
// on x86, we use uint16_t
//
// for old CUDA compilers (<= 11), we use uint16_t: ref https://github.com/ggml-org/llama.cpp/pull/10616
// for MUSA compilers , we use uint16_t: ref https://github.com/ggml-org/llama.cpp/pull/11843
//
#if defined(__ARM_NEON) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11) && !defined(__MUSACC__)
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
//
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
//
#include <arm_neon.h>
#if defined(__ARM_NEON) && !defined(_MSC_VER) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11)
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
ggml_fp16_internal_t tmp;
__fp16 tmp;
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
return (float)tmp;
}
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
ggml_fp16_t res;
ggml_fp16_internal_t tmp = f;
__fp16 tmp = f;
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
return res;
}
@ -485,7 +483,7 @@ GGML_API void ggml_aligned_free(void * ptr, size_t size);
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
#endif // defined(__ARM_NEON) && !(defined(__CUDACC__) && __CUDACC_VER_MAJOR__ <= 11) && !defined(__MUSACC__)
// precomputed f32 table for f16 (256 KB)
// defined in ggml.c, initialized in ggml_init()

View File

@ -1345,6 +1345,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_ARANGE:
return true;
case GGML_OP_FLASH_ATTN_EXT:
if (op->src[0]->ne[0] == 32) {
// head size == 32 (e.g. bert-bge-small)
// TODO: not sure if it is worth adding kernels for this size
return false;
}
if (op->src[1]->type != op->src[2]->type) {
return false;
}

View File

@ -415,6 +415,7 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
unsigned number;
cl_device_type type;
char name[128];
char version[128];
};
enum { NPLAT = 16, NDEV = 16 };
@ -455,6 +456,7 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
d->platform = p;
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_VERSION, sizeof(d->version), &d->version, NULL));
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
p->default_device = d;
@ -547,7 +549,7 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
}
GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
GGML_LOG_INFO("ggml_opencl: selecting device: '%s'\n", default_device->name);
GGML_LOG_INFO("ggml_opencl: selecting device: '%s (%s)'\n", default_device->name, default_device->version);
if (default_device->type != CL_DEVICE_TYPE_GPU) {
GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
}
@ -556,9 +558,15 @@ static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
dev_ctx->device = default_device->id;
backend_ctx->device = default_device->id;
if (strstr(default_device->name, "Adreno")) {
if (strstr(default_device->name, "Adreno") ||
strstr(default_device->name, "Qualcomm") ||
strstr(default_device->version, "Adreno")) {
backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
// Usually device version contains the detailed device name
backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->version);
if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::ADRENO_UNKNOWN) {
backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
}
// Use wave size of 64 for all Adreno GPUs.
backend_ctx->adreno_wave_size = 64;

View File

@ -372,6 +372,8 @@ static void ggml_backend_sycl_buffer_set_tensor(ggml_backend_buffer_t buffer,
auto stream = &(dpct::dev_mgr::instance().get_device(ctx->device).default_queue());
SYCL_CHECK(
CHECK_TRY_ERROR(dpct::dev_mgr::instance().get_device(ctx->device).queues_wait_and_throw()));
// Note: Use host buffer to save the data from mmap(), then copy to device. It's workaround for mmap() issue on PVC GPU.
// This function will be called during load model from disk. Use memory buffer replace dynamic won't save more time and brings potential memory leak risk here.
char* host_buf = (char*)malloc(size);
memcpy(host_buf, data, size);
SYCL_CHECK(

View File

@ -116,6 +116,7 @@ class Keys:
RESIDUAL_SCALE = "{arch}.residual_scale"
EMBEDDING_SCALE = "{arch}.embedding_scale"
TOKEN_SHIFT_COUNT = "{arch}.token_shift_count"
INTERLEAVE_MOE_LAYER_STEP = "{arch}.interleave_moe_layer_step"
class Attention:
HEAD_COUNT = "{arch}.attention.head_count"
@ -229,6 +230,7 @@ class GGUFType:
class MODEL_ARCH(IntEnum):
LLAMA = auto()
LLAMA4 = auto()
DECI = auto()
FALCON = auto()
BAICHUAN = auto()
@ -435,6 +437,7 @@ class MODEL_TENSOR(IntEnum):
MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.LLAMA: "llama",
MODEL_ARCH.LLAMA4: "llama4",
MODEL_ARCH.DECI: "deci",
MODEL_ARCH.FALCON: "falcon",
MODEL_ARCH.BAICHUAN: "baichuan",
@ -660,6 +663,29 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
MODEL_ARCH.LLAMA4: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
MODEL_TENSOR.FFN_GATE_SHEXP,
MODEL_TENSOR.FFN_DOWN_SHEXP,
MODEL_TENSOR.FFN_UP_SHEXP,
],
MODEL_ARCH.DECI: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,

View File

@ -752,6 +752,9 @@ class GGUFWriter:
def add_token_shift_count(self, count: int) -> None:
self.add_uint32(Keys.LLM.TOKEN_SHIFT_COUNT.format(arch=self.arch), count)
def add_interleave_moe_layer_step(self, value: int) -> None:
self.add_uint32(Keys.LLM.INTERLEAVE_MOE_LAYER_STEP.format(arch=self.arch), value)
def add_layer_norm_eps(self, value: float) -> None:
self.add_float32(Keys.Attention.LAYERNORM_EPS.format(arch=self.arch), value)

View File

@ -139,6 +139,16 @@ class LazyBase(ABC, metaclass=LazyMeta):
if isinstance(res, cls._tensor_type):
return cls(meta=cls.eager_to_meta(res), args=args, kwargs=kwargs, func=fn)
elif isinstance(res, tuple) and all(isinstance(t, cls._tensor_type) for t in res):
# share the evaluation between lazy tuple elements
shared_args: list = [args, None]
def eager_tuple_element(a: list[Any], i: int = 0, /, **kw) -> LazyBase:
assert len(a) == 2
if a[1] is None:
a[1] = fn(*a[0], **kw)
return a[1][i]
return tuple(cls(meta=cls.eager_to_meta(res[i]), args=(shared_args, i), kwargs=kwargs, func=eager_tuple_element) for i in range(len(res)))
else:
del res # not needed
# non-tensor return likely relies on the contents of the args

View File

@ -110,6 +110,7 @@ extern "C" {
LLAMA_VOCAB_PRE_TYPE_SUPERBPE = 30,
LLAMA_VOCAB_PRE_TYPE_TRILLION = 31,
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE = 32,
LLAMA_VOCAB_PRE_TYPE_LLAMA4 = 33,
};
enum llama_rope_type {

View File

@ -0,0 +1,112 @@
ied 4 ½ months
__ggml_vocab_test__
Führer
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello world
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World
__ggml_vocab_test__
Hello World!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
Hello, world!
__ggml_vocab_test__
this is 🦙.cpp
__ggml_vocab_test__
w048 7tuijk dsdfhu
__ggml_vocab_test__
нещо на Български
__ggml_vocab_test__
កាន់តែពិសេសអាចខលចេញ
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ (only emoji that has its own token)
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
__ggml_vocab_test__
Hello
Hello
__ggml_vocab_test__
(
__ggml_vocab_test__
=
__ggml_vocab_test__
' era
__ggml_vocab_test__
Hello, y'all! How are you 😁 ?我想在apple工作1314151天
__ggml_vocab_test__
!!!!!!
__ggml_vocab_test__
3
__ggml_vocab_test__
33
__ggml_vocab_test__
333
__ggml_vocab_test__
3333
__ggml_vocab_test__
33333
__ggml_vocab_test__
333333
__ggml_vocab_test__
3333333
__ggml_vocab_test__
33333333
__ggml_vocab_test__
333333333
__ggml_vocab_test__
Cửa Việt
__ggml_vocab_test__
discards
__ggml_vocab_test__
🚀 (normal) 😶‍🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天 ------======= нещо на Български ''''''```````""""......!!!!!!?????? I've been 'told he's there, 'RE you sure? 'M not sure I'll make it, 'D you like some tea? We'Ve a'lL
__ggml_vocab_test__

View File

@ -0,0 +1,46 @@
1190 220 32 220 18215 7112
50 16800 258
220
256
277
197
198
368
2946
3271
19873 3817
39715 3817
19873 7353
39715 7353
39715 7353 13
19873 24 3817 13
39715 24 3817 13
544 373 9522 112 247 26 36315
99 39923 220 35 9607 21498 21470 3679 9433
1595 7653 633 79829 34051 1636
8755 102595 115960 21125 148305 96819 102816 39048 14105 22528 160234
114590 222 330 14879 21 51358 127 12817 93293 117 24204 330 68239 881 120327 170428 21 89101 330 7384 88230 511 947 1492 3742 7233 21
19873
39715
220 39715
256 39715
277 39715
277 39715 198 277 39715
330
198 319
19 7359
19873 24 386 87799 13 2403 583 650 51358 223 1663 155736 1522 42056 7544 13336 28785 29 4412 20645
17931 4959
31
1922
12325
12325 31
12325 1922
12325 12325
12325 12325 31
12325 12325 1922
12325 12325 12325
47 19811 12077
3260 3579
198 7283 51499 191231 20192 3271 3322 9287 2143 17860 114590 222 330 14879 21 51358 127 12817 93293 117 24204 330 68239 881 120327 170428 21 89101 9522 112 247 172394 247 220 31 220 1922 220 12325 220 12325 31 220 12325 1922 220 12325 12325 220 12325 12325 31 220 12325 12325 1922 220 31 26 31 220 31 396 31 220 31 1043 31 117131 102595 115960 21125 148305 96819 102816 80883 223 1663 155736 1522 42056 7544 13336 28785 29 4412 20645 79745 150278 117079 633 79829 34051 1636 25611 41990 109428 1488 91054 24072 17931 4959 29795 9296 16517 1806 481 96 1386 36633 1609 24 481 1109 650 5074 43 481 57 702 5074 27088 2170 536 24 481 48 650 1933 1696 30262 43 1665 19 32818 262 27236 56

View File

@ -1 +1 @@
f06264eda2e2bf6e814db5a32bbf42e0b2b1ed98
70e85f61f1fdcd1064a1e032ff564d5b5e67560c

View File

@ -6,6 +6,7 @@
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
{ LLM_ARCH_LLAMA, "llama" },
{ LLM_ARCH_LLAMA4, "llama4" },
{ LLM_ARCH_DECI, "deci" },
{ LLM_ARCH_FALCON, "falcon" },
{ LLM_ARCH_GROK, "grok" },
@ -114,6 +115,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
{ LLM_KV_RESIDUAL_SCALE, "%s.residual_scale" },
{ LLM_KV_EMBEDDING_SCALE, "%s.embedding_scale" },
{ LLM_KV_TOKEN_SHIFT_COUNT, "%s.token_shift_count" },
{ LLM_KV_INTERLEAVE_MOE_LAYER_STEP, "%s.interleave_moe_layer_step" },
{ LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
{ LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
@ -235,6 +237,35 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
},
},
{
LLM_ARCH_LLAMA4,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
{ LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
{ LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
{ LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
{ LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
{ LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
{ LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
{ LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
},
},
{
LLM_ARCH_DECI,
{

View File

@ -10,6 +10,7 @@
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_LLAMA4,
LLM_ARCH_DECI,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
@ -118,6 +119,7 @@ enum llm_kv {
LLM_KV_RESIDUAL_SCALE,
LLM_KV_EMBEDDING_SCALE,
LLM_KV_TOKEN_SHIFT_COUNT,
LLM_KV_INTERLEAVE_MOE_LAYER_STEP,
LLM_KV_ATTENTION_HEAD_COUNT,
LLM_KV_ATTENTION_HEAD_COUNT_KV,

View File

@ -61,6 +61,7 @@ static const std::map<std::string, llm_chat_template> LLM_CHAT_TEMPLATES = {
{ "megrez", LLM_CHAT_TEMPLATE_MEGREZ },
{ "yandex", LLM_CHAT_TEMPLATE_YANDEX },
{ "bailing", LLM_CHAT_TEMPLATE_BAILING },
{ "llama4", LLM_CHAT_TEMPLATE_LLAMA4 },
};
llm_chat_template llm_chat_template_from_str(const std::string & name) {
@ -174,6 +175,8 @@ llm_chat_template llm_chat_detect_template(const std::string & tmpl) {
return LLM_CHAT_TEMPLATE_YANDEX;
} else if (tmpl_contains("<role>ASSISTANT</role>") && tmpl_contains("'HUMAN'")) {
return LLM_CHAT_TEMPLATE_BAILING;
} else if (tmpl_contains("<|header_start|>") && tmpl_contains("<|header_end|>")) {
return LLM_CHAT_TEMPLATE_LLAMA4;
}
return LLM_CHAT_TEMPLATE_UNKNOWN;
}
@ -608,7 +611,16 @@ int32_t llm_chat_apply_template(
if (add_ass) {
ss << "<role>ASSISTANT</role>";
}
} else {
} else if (tmpl == LLM_CHAT_TEMPLATE_LLAMA4) {
// Llama 4
for (auto message : chat) {
std::string role(message->role);
ss << "<|header_start|>" << role << "<|header_end|>\n\n" << trim(message->content) << "<|eot|>";
}
if (add_ass) {
ss << "<|header_start|>assistant<|header_end|>\n\n";
}
} else {
// template not supported
return -1;
}

View File

@ -40,6 +40,7 @@ enum llm_chat_template {
LLM_CHAT_TEMPLATE_MEGREZ,
LLM_CHAT_TEMPLATE_YANDEX,
LLM_CHAT_TEMPLATE_BAILING,
LLM_CHAT_TEMPLATE_LLAMA4,
LLM_CHAT_TEMPLATE_UNKNOWN,
};

View File

@ -59,6 +59,22 @@ void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
}
}
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && attn_scale) {
const int64_t n_tokens = ubatch->n_tokens;
std::vector<float> attn_scale_data(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const float pos = ubatch->pos[i];
attn_scale_data[i] = std::log(
std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
) * f_attn_temp_scale + 1.0;
}
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*n_pos_per_token*ggml_element_size(attn_scale));
}
}
void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
if (pos_bucket) {
const int64_t n_tokens = ubatch->n_tokens;
@ -458,9 +474,17 @@ void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
}
// may need to cut off old tokens for sliding window
// TODO @ngxson : we are currently re-using the swa logic to store the chunked mask, we should rename SWA to something more generic like "aux mask"
if (data_swa) {
if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
if (hparams.n_attn_chunk) {
llama_pos pos_chunk_start = (pos / hparams.n_attn_chunk) * hparams.n_attn_chunk;
if (kv_self->cells[i].pos < pos_chunk_start || pos < pos_chunk_start) {
f = -INFINITY;
}
} else {
if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
}
}
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
@ -812,8 +836,9 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
float w_scale,
llama_expert_gating_func_type gating_op,
int il) const {
int64_t n_embd = cur->ne[0];
int64_t n_tokens = cur->ne[1];
const int64_t n_embd = cur->ne[0];
const int64_t n_tokens = cur->ne[1];
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
cb(logits, "ffn_moe_logits", il);
@ -841,6 +866,12 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
cb(selection_probs, "ffn_moe_probs_biased", il);
}
// llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
// see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
if (arch == LLM_ARCH_LLAMA4) {
selection_probs = logits;
}
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
@ -867,6 +898,15 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
}
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
if (weight_before_ffn) {
// TODO: this is a workaround as we don't yet have a repeat op that takes custom dim (ggml_repeat_4d)
ggml_tensor * repeated = ggml_new_tensor_3d(ctx0, cur->type, n_embd, n_expert_used, n_tokens);
repeated = ggml_repeat(ctx0, cur, repeated); // [n_embd, n_expert_used, n_tokens]
cur = ggml_mul(ctx0, repeated, weights);
cb(cur, "ffn_moe_weighted", il);
}
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
@ -894,7 +934,10 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * experts = build_lora_mm_id(down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);
experts = ggml_mul(ctx0, experts, weights);
if (!weight_before_ffn) {
experts = ggml_mul(ctx0, experts, weights);
cb(cur, "ffn_moe_weighted", il);
}
// aggregate experts
ggml_tensor * moe_out = nullptr;
@ -914,6 +957,8 @@ ggml_tensor * llm_graph_context::build_moe_ffn(
moe_out = ggml_cont(ctx0, moe_out);
}
cb(moe_out, "ffn_moe_out", il);
return moe_out;
}
@ -981,6 +1026,19 @@ ggml_tensor * llm_graph_context::build_inp_pos() const {
return cur;
}
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
auto inp = std::make_unique<llm_graph_input_attn_temp>(n_pos_per_token(), hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto & cur = inp->attn_scale;
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens*n_pos_per_token());
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_out_ids() const {
auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
@ -1165,6 +1223,15 @@ ggml_tensor * llm_graph_context::build_attn_mha(
v = ggml_transpose(ctx0, v);
}
// this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
if (k->type == GGML_TYPE_F32) {
k = ggml_cast(ctx0, k, GGML_TYPE_F16);
}
if (v->type == GGML_TYPE_F32) {
v = ggml_cast(ctx0, v, GGML_TYPE_F16);
}
cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);

View File

@ -100,6 +100,23 @@ public:
const int64_t n_pos_per_token = 1;
};
// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
llm_graph_input_attn_temp(int64_t n_pos_per_token, uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
: n_pos_per_token(n_pos_per_token), n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
virtual ~llm_graph_input_attn_temp() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * attn_scale = nullptr; // F32 [n_batch]
const int64_t n_pos_per_token = 1;
const uint32_t n_attn_temp_floor_scale;
const float f_attn_temp_scale;
};
class llm_graph_input_pos_bucket : public llm_graph_input_i {
public:
llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
@ -470,6 +487,7 @@ struct llm_graph_context {
ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
ggml_tensor * build_inp_pos() const;
ggml_tensor * build_inp_attn_scale() const;
ggml_tensor * build_inp_out_ids() const;
ggml_tensor * build_inp_mean() const;
ggml_tensor * build_inp_cls() const;

View File

@ -116,6 +116,14 @@ struct llama_hparams {
bool use_alibi = false;
bool attn_soft_cap = false;
uint32_t n_moe_layer_step = 0;
bool use_kq_norm = true;
uint32_t n_attn_chunk = 0;
// values below seems to be fixed on llama4
uint32_t n_no_rope_layer_step = 4;
uint32_t n_attn_temp_floor_scale = 8192;
float f_attn_temp_scale = 0.1;
// needed by encoder-decoder models (e.g. T5, FLAN-T5)
// ref: https://github.com/ggerganov/llama.cpp/pull/8141
llama_token dec_start_token_id = LLAMA_TOKEN_NULL;

View File

@ -90,6 +90,8 @@ const char * llm_type_name(llm_type type) {
case LLM_TYPE_57B_A14B: return "57B.A14B";
case LLM_TYPE_27B: return "27B";
case LLM_TYPE_290B: return "290B";
case LLM_TYPE_17B_16E: return "17Bx16E (Scout)";
case LLM_TYPE_17B_128E: return "17Bx128E (Maverick)";
default: return "?B";
}
}
@ -550,6 +552,25 @@ void llama_model::load_hparams(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_LLAMA4:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
ml.get_key(LLM_KV_INTERLEAVE_MOE_LAYER_STEP, hparams.n_moe_layer_step);
hparams.n_swa_pattern = 4; // pattern: 3 chunked - 1 full
hparams.n_attn_chunk = 8192; // should this be a gguf kv? currently it's the same for Scout and Maverick
hparams.n_swa = 1; // TODO @ngxson : this is added to trigger the SWA branch (we store the chunked attn mask in the SWA tensor), will need to clean this up later
switch (hparams.n_expert) {
case 16: type = LLM_TYPE_17B_16E; break;
case 128: type = LLM_TYPE_17B_128E; break;
default: type = LLM_TYPE_UNKNOWN;
}
if (type == LLM_TYPE_17B_128E) {
hparams.use_kq_norm = false;
}
} break;
case LLM_ARCH_DECI:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
@ -1692,6 +1713,56 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
}
}
} break;
case LLM_ARCH_LLAMA4:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
// output
output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
output = create_tensor(tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
// if output is NULL, init from the input tok embed
if (output == NULL) {
output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
}
GGML_ASSERT(hparams.n_moe_layer_step > 0 && "Llama 4 requires n_moe_layer_step > 0");
for (int i = 0; i < n_layer; ++i) {
bool is_moe_layer = (i + 1) % hparams.n_moe_layer_step == 0;
auto & layer = layers[i];
layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}, 0);
layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}, 0);
layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
layer.rope_freqs = create_tensor(tn(LLM_TENSOR_ROPE_FREQS, "weight", i), {n_rot/2}, TENSOR_NOT_REQUIRED | (i != 0 ? TENSOR_DUPLICATED : 0));
if (is_moe_layer) {
int n_ff_exp = hparams.n_ff_exp;
layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff_exp, n_embd, n_expert}, 0);
layer.ffn_up_exps = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff_exp, n_expert}, 0);
// Shared expert
const int64_t n_ff_shexp = n_ff_exp;
layer.ffn_gate_shexp = create_tensor(tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
layer.ffn_down_shexp = create_tensor(tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), {n_ff_shexp, n_embd }, 0);
layer.ffn_up_shexp = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), { n_embd, n_ff_shexp}, 0);
} else {
layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, 0);
layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, 0);
layer.ffn_up = create_tensor(tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, 0);
}
}
} break;
case LLM_ARCH_DECI:
{
tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@ -4221,12 +4292,22 @@ struct llm_build_llama : public llm_graph_context {
// inp_pos - contains the positions
ggml_tensor * inp_pos = build_inp_pos();
// temperature tuning
ggml_tensor * inp_attn_scale = nullptr;
if (arch == LLM_ARCH_LLAMA4) {
inp_attn_scale = build_inp_attn_scale();
}
auto * inp_attn = build_attn_inp_kv_unified();
const float kq_scale = hparams.f_attention_scale == 0.0f ? 1.0f/sqrtf(float(n_embd_head)) : hparams.f_attention_scale;
for (int il = 0; il < n_layer; ++il) {
ggml_tensor * inpSA = inpL;
bool use_rope = arch == LLM_ARCH_LLAMA4
? (il + 1) % hparams.n_no_rope_layer_step != 0
: true;
// norm
cur = build_norm(inpL,
model.layers[il].attn_norm, NULL,
@ -4264,25 +4345,38 @@ struct llm_build_llama : public llm_graph_context {
Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
if (use_rope) {
Qcur = ggml_rope_ext(
ctx0, Qcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
Kcur = ggml_rope_ext(
ctx0, Kcur, inp_pos, rope_factors,
n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
ext_factor, attn_factor, beta_fast, beta_slow
);
} else if (inp_attn_scale) {
Qcur = ggml_mul(ctx0, Qcur, inp_attn_scale);
}
cb(Qcur, "Qcur", il);
cb(Kcur, "Kcur", il);
cb(Vcur, "Vcur", il);
if (arch == LLM_ARCH_LLAMA4 && use_rope && hparams.use_kq_norm) {
// Llama4TextL2Norm
Qcur = ggml_rms_norm(ctx0, Qcur, 1e-6);
Kcur = ggml_rms_norm(ctx0, Kcur, 1e-6);
cb(Qcur, "Qcur_normed", il);
cb(Kcur, "Kcur_normed", il);
}
cur = build_attn(inp_attn, gf,
model.layers[il].wo, model.layers[il].bo,
Qcur, Kcur, Vcur, nullptr, kq_scale, il);
cb(cur, "attn_out", il);
}
if (il == n_layer - 1) {
@ -4300,7 +4394,7 @@ struct llm_build_llama : public llm_graph_context {
ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
cb(ffn_inp, "ffn_inp", il);
// feed-forward network
// feed-forward network (non-MoE)
if (model.layers[il].ffn_gate_inp == nullptr) {
cur = build_norm(ffn_inp,
@ -4315,6 +4409,38 @@ struct llm_build_llama : public llm_graph_context {
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(cur, "ffn_out", il);
} else if (arch == LLM_ARCH_LLAMA4) {
// llama4 MoE
ggml_tensor * ffn_inp_normed = build_norm(ffn_inp,
model.layers[il].ffn_norm, NULL,
LLM_NORM_RMS, il);
cb(cur, "ffn_norm", il);
ggml_tensor * moe_out = build_moe_ffn(ffn_inp_normed,
model.layers[il].ffn_gate_inp,
model.layers[il].ffn_up_exps,
model.layers[il].ffn_gate_exps,
model.layers[il].ffn_down_exps,
nullptr,
n_expert, n_expert_used,
LLM_FFN_SILU, false,
false, 0.0,
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID,
il);
// Shared experts
ggml_tensor * shexp_out = build_ffn(ffn_inp_normed,
model.layers[il].ffn_up_shexp, NULL, NULL,
model.layers[il].ffn_gate_shexp, NULL, NULL,
model.layers[il].ffn_down_shexp, NULL, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, il);
cb(shexp_out, "ffn_moe_shexp", il);
cur = ggml_add(ctx0, moe_out, shexp_out);
cb(cur, "ffn_moe_out_merged", il);
} else {
// MoE branch
cur = build_norm(ffn_inp,
@ -12166,6 +12292,7 @@ llm_graph_result_ptr llama_model::build_graph(
switch (arch) {
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4:
case LLM_ARCH_MINICPM:
case LLM_ARCH_GRANITE:
case LLM_ARCH_GRANITE_MOE:
@ -12515,6 +12642,7 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
// use what we call a normal RoPE, operating on pairs of consecutive head values
case LLM_ARCH_LLAMA:
case LLM_ARCH_LLAMA4:
case LLM_ARCH_DECI:
case LLM_ARCH_BAICHUAN:
case LLM_ARCH_STARCODER:

View File

@ -86,6 +86,8 @@ enum llm_type {
LLM_TYPE_57B_A14B,
LLM_TYPE_27B,
LLM_TYPE_290B,
LLM_TYPE_17B_16E, // llama4 Scout
LLM_TYPE_17B_128E, // llama4 Maverick
};
struct llama_layer_posnet {

View File

@ -1616,7 +1616,8 @@ void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) {
tokenizer_pre == "megrez") {
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2;
} else if (
tokenizer_pre == "gpt-4o") {
tokenizer_pre == "gpt-4o" ||
tokenizer_pre == "llama4") {
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT4O;
clean_spaces = false;
} else if (