llava : Add Granite Vision Support (#11794)

* Add super wip scripts for multimodal granite gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add example for converting mmgranite to gguf

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* remove hardcoded path

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add vision feature layer to gguf params

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clean up llava surgery and remove name substitution hacks

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add transformers llava next tensor name mapping

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Make siglip / openclip mutuall exclusive

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix projector linear substitution

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix linear 2 substitution index

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Increase max flattened gridpoints to 64

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix hardcoded concat for multiple feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Pull vision feature layers out of gguf keys

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* fix num gridpoints and use all layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Avoid dropping last image encoder layer in llava models

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use 10 for max number of patches

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Standardize vision feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Cleanup logs

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update comment for vision feature layer init

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update notes for alternative to legacy llm conversion script

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix notes rendering

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add v prefix to vision feature layer log

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use current defaults for feature layer

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use constant for max gridpoints / feat layers, style fixes

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* clarify non-negative feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Remove CLIP_API from func signature

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* USE MAX_IMAGE_FEATURE_LAYERS const in layer calc

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Clarify feature layers are non negative ints and not uint

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix condition for reading feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* pop last llava layer when feature layers are unset

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix unset vision layer 0

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Update examples/llava/clip.cpp

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>

* Reenable assertion for out of bounds get_rows

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use std vector for gridpoints and feature layers

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Caculate max feature layer at load time

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Include base patch for granite vision allocation

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Fix trailing whitespace

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Add max num patches = 10 back for minicpmv

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use unordered set to store feature layers

Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Use max feature layer for postnorm

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>

* Apply suggestions from code review

---------

Signed-off-by: Alex-Brooks <Alex.Brooks@ibm.com>
Co-authored-by: Xuan-Son Nguyen <thichthat@gmail.com>
This commit is contained in:
Alex Brooks 2025-02-24 09:09:51 -07:00 committed by GitHub
parent 08d5986290
commit 7a2c913e66
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 235 additions and 42 deletions

View File

@ -101,8 +101,27 @@ python ./examples/convert_legacy_llama.py ../llava-v1.6-vicuna-7b/ --skip-unknow
```
**note** llava-1.6 needs more context than llava-1.5, at least 3000 is needed (just run it at -c 4096)
**note** llava-1.6 greatly benefits from batched prompt processing (defaults work)
**note** if the language model in step `6)` is incompatible with the legacy conversion script, the easiest way handle the LLM model conversion is to load the model in transformers, and export only the LLM from the llava next model.
```python
import os
import transformers
model_path = ...
llm_export_path = ...
tokenizer = transformers.AutoTokenizer.from_pretrained(model_path)
model = transformers.AutoModelForImageTextToText.from_pretrained(model_path)
tokenizer.save_pretrained(llm_export_path)
model.language_model.save_pretrained(llm_export_path)
```
Then, you can convert the LLM using the `convert_hf_to_gguf.py` script, which handles more LLM architectures.
## llava-cli templating and llava-1.6 prompting
llava-1.5 models all use the same vicuna prompt, here you can just add your image question like `-p "Provide a full description."`

View File

@ -40,6 +40,7 @@
#include <map>
#include <regex>
#include <stdexcept>
#include <unordered_set>
#include <vector>
#include <sstream>
#include <cinttypes>
@ -120,6 +121,7 @@ static std::string format(const char * fmt, ...) {
#define KEY_IMAGE_MEAN "clip.vision.image_mean"
#define KEY_IMAGE_STD "clip.vision.image_std"
#define KEY_PROJ_TYPE "clip.projector_type"
#define KEY_FEATURE_LAYER "clip.vision.feature_layer"
#define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
#define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
@ -444,8 +446,9 @@ struct clip_hparams {
char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
int32_t image_grid_pinpoints[32];
std::vector<int32_t> image_grid_pinpoints;
int32_t image_crop_resolution;
std::unordered_set<int32_t> vision_feature_layer;
};
struct clip_layer {
@ -585,6 +588,7 @@ struct clip_ctx {
struct clip_vision_model vision_model;
projector_type proj_type = PROJECTOR_TYPE_MLP;
int32_t max_feature_layer;
float image_mean[3];
float image_std[3];
bool use_gelu = false;
@ -651,7 +655,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
const int hidden_size = hparams.hidden_size;
const int n_head = hparams.n_head;
const int d_head = hidden_size / n_head;
int n_layer = hparams.n_layer;
const float eps = hparams.eps;
int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
@ -752,13 +755,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
}
std::vector<struct ggml_tensor *> embedding_stack;
const auto & vision_feature_layer = hparams.vision_feature_layer;
// loop over layers
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
n_layer += 1;
}
for (int il = 0; il < n_layer - 1; il++) {
for (int il = 0; il < ctx->max_feature_layer; il++) {
struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
// If this is an embedding feature layer, save the output.
// NOTE: 0 index here refers to the input to the encoder.
if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
//const size_t nb_q_w = model.layers[il].q_w->nb[0];
// layernorm1
@ -846,7 +855,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
cur = ggml_add(ctx0, embeddings, cur);
embeddings = cur;
}
// post-layernorm
@ -857,6 +865,19 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
}
// final layer is a vision feature layer
if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) {
embedding_stack.push_back(embeddings);
}
// If feature layers are explicitly set, stack them (if we have multiple)
if (!embedding_stack.empty()) {
embeddings = embedding_stack[0];
for (size_t i = 1; i < embedding_stack.size(); i++) {
embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
}
}
// llava projector
if (ctx->has_llava_projector) {
embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
@ -1443,14 +1464,26 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
hparams.image_grid_pinpoints[i] = pinpoints[i];
for (int i = 0; i < n; ++i) {
hparams.image_grid_pinpoints.push_back(pinpoints[i]);
}
if (n < 32)
hparams.image_grid_pinpoints[n] = 0;
} catch (std::runtime_error & /*e*/) {
hparams.image_grid_pinpoints[0]=0;
}
} catch (std::runtime_error & /*e*/) { }
// Load the vision feature layer indices if they are explicitly provided;
// if multiple vision feature layers are present, the values will be concatenated
// to form the final visual features.
// NOTE: gguf conversions should standardize the values of the vision feature layer to
// be non-negative, since we use -1 to mark values as unset here.
try {
int idx = get_key_idx(ctx, KEY_FEATURE_LAYER);
int n = gguf_get_arr_n(ctx, idx);
const int32_t * vision_feature_layer = (const int32_t *)gguf_get_arr_data(ctx, idx);
for (int i = 0; i < n; ++i) {
hparams.vision_feature_layer.insert(vision_feature_layer[i]);
}
} catch (std::runtime_error & /*e*/) { }
try {
int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
@ -1476,6 +1509,9 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
new_clip->image_std[i] = std_data[i];
}
// Calculate the deepest feature layer based on hparams and projector type
new_clip->max_feature_layer = get_deepest_feature_layer(new_clip);
if (verbosity >= 2) {
LOG_INF("\n%s: vision model hparams\n", __func__);
LOG_INF("image_size %d\n", hparams.image_size);
@ -1489,8 +1525,13 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
LOG_INF("v_image_grid_pinpoints: ");
for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
for (const auto & pp : hparams.image_grid_pinpoints) {
LOG_INF("%d ", pp);
}
LOG_INF("\n");
LOG_INF("v_vision_feature_layer: ");
for (const auto & feature_layer: hparams.vision_feature_layer) {
LOG_INF("%d ", feature_layer);
}
LOG_INF("\n");
LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
@ -2235,10 +2276,10 @@ bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, cli
}
}
} else {
if (params.image_grid_pinpoints[0] != 0) {
if (!params.image_grid_pinpoints.empty()) {
// "spatial_unpad" with "anyres" processing for llava-1.6
std::vector<std::pair<int, int>> possible_resolutions;
for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) {
possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
}
std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
@ -2404,7 +2445,14 @@ const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
}
const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints;
if (ctx->vision_model.hparams.image_grid_pinpoints.size()) {
return &ctx->vision_model.hparams.image_grid_pinpoints.front();
}
return nullptr;
}
size_t get_clip_image_grid_size(const struct clip_ctx * ctx) {
return ctx->vision_model.hparams.image_grid_pinpoints.size();
}
int clip_n_patches(const struct clip_ctx * ctx) {
@ -2929,6 +2977,28 @@ bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
return ctx->has_qwen2vl_merger;
}
// Determine the number of encoder layers to iterate over
int get_deepest_feature_layer(const struct clip_ctx * ctx) {
// Get the index of the second to last layer; this is the
// default for models that have a llava projector
const auto & hparams = ctx->vision_model.hparams;
int n_layer = hparams.n_layer - 1;
int deepest_feature_layer = -1;
// Handle other projectors; incrementing here indicates that we
// should use the last encoder layer for the vision features.
if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) {
n_layer += 1;
}
// If we set explicit vision feature layers, only go up to the deepest one
for (const auto & feature_layer : hparams.vision_feature_layer) {
if (feature_layer > deepest_feature_layer) {
deepest_feature_layer = feature_layer;
}
}
return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer;
}
bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
clip_image_f32 clip_img;

View File

@ -55,6 +55,7 @@ CLIP_API int32_t clip_hidden_size(const struct clip_ctx * ctx);
CLIP_API const char * clip_patch_merge_type(const struct clip_ctx * ctx);
CLIP_API const int32_t * clip_image_grid(const struct clip_ctx * ctx);
CLIP_API size_t get_clip_image_grid_size(const struct clip_ctx * ctx);
CLIP_API int clip_n_patches (const struct clip_ctx * ctx);
CLIP_API int clip_n_patches_by_img (const struct clip_ctx * ctx, struct clip_image_f32 * img);
@ -92,11 +93,13 @@ CLIP_API bool clip_image_batch_encode(struct clip_ctx * ctx, int n_threads, cons
CLIP_API bool clip_model_quantize(const char * fname_inp, const char * fname_out, int itype);
CLIP_API int clip_is_minicpmv(const struct clip_ctx * ctx);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
CLIP_API bool clip_is_qwen2vl(const struct clip_ctx * ctx);
CLIP_API int get_deepest_feature_layer(const struct clip_ctx * ctx);
CLIP_API bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec);
CLIP_API bool clip_is_glm(const struct clip_ctx * ctx);
#ifdef __cplusplus
}

View File

@ -6,7 +6,7 @@ import re
import torch
import numpy as np
from gguf import *
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel
from transformers import CLIPModel, CLIPProcessor, CLIPVisionModel, SiglipVisionModel
TEXT = "clip.text"
VISION = "clip.vision"
@ -37,6 +37,18 @@ def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: b
def get_tensor_name(name: str) -> str:
# Standardize the transformers llava next keys for
# image newline / mm projector with the classes in haotian-liu LLaVA
if name == "image_newline":
return "model.image_newline"
if name.startswith("multi_modal_projector"):
name = name.replace("multi_modal_projector", "mm")
if "linear_1" in name:
name = name.replace("linear_1", "0")
if "linear_2" in name:
name = name.replace("linear_2", "2")
return name
if "projection" in name:
return name
if "mm_projector" in name:
@ -83,8 +95,14 @@ ap.add_argument("--vision-only", action="store_true", required=False,
help="Save a vision-only model. It can't be used to encode texts")
ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
# Selectable visual encoders that are compatible with this script
encoder_group = ap.add_mutually_exclusive_group()
encoder_group.add_argument("--clip-model-is-openclip", action="store_true", required=False,
help="The clip model is from openclip (for ViT-SO400M type))")
encoder_group.add_argument("--clip-model-is-siglip", action="store_true", required=False,
help="the visual encoder is Siglip.")
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
@ -109,7 +127,12 @@ if args.use_f32:
# output in the same directory as the model if output_dir is None
dir_model = args.model_dir
if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
if (
args.clip_model_is_vision or
not os.path.exists(dir_model + "/vocab.json") or
args.clip_model_is_openclip or
args.clip_model_is_siglip
):
vocab = None
tokens = None
else:
@ -137,7 +160,10 @@ ftype = 1
if args.use_f32:
ftype = 0
if args.clip_model_is_vision or args.clip_model_is_openclip:
if args.clip_model_is_siglip:
model = SiglipVisionModel.from_pretrained(dir_model)
processor = None
elif args.clip_model_is_vision or args.clip_model_is_openclip:
model = CLIPVisionModel.from_pretrained(dir_model)
processor = None
else:
@ -187,26 +213,71 @@ else:
if has_text_encoder:
assert t_hparams is not None
assert tokens is not None
if args.clip_model_is_siglip:
text_projection_dim = 0
else:
text_projection_dim = t_hparams.get("projection_dim", config["projection_dim"])
# text_model hparams
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
fout.add_uint32("clip.text.projection_dim", text_projection_dim)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
fout.add_token_list(tokens)
def get_non_negative_vision_feature_layers(v_hparams):
"""
Determine the vision feature layer(s) for the llava model, which are indices into the
hidden states of the visual encoder. Note that the hidden states array generally takes the
form:
[<emb input>, <output of enc block 0>, ... <output of enc block num_hidden_layers>]
so feature indices should be offset as n+1 to get the output of encoder block n.
We convert all vision feature layers to non-negative so that -1 can be used in
the model as an unset value. If no vision feature layer is found, we leave it unset.
"""
num_hidden_layers = v_hparams["num_hidden_layers"]
to_non_negative = lambda layer_idx: layer_idx if layer_idx >= 0 else num_hidden_layers + layer_idx + 1
feature_layers_key = None
# Key used for llava models in transformers
if "vision_feature_layer" in config:
feature_layers_key = "vision_feature_layer"
# Key used for llava models in the original format
elif "mm_vision_select_layer" in config:
feature_layers_key = "mm_vision_select_layer"
if feature_layers_key is not None:
feature_layers = config[feature_layers_key]
if isinstance(feature_layers, int):
feature_layers = [feature_layers]
return [to_non_negative(feature_layer) for feature_layer in feature_layers]
# Determine if we have explicitly specified vision feature layers in our config
feature_layers = get_non_negative_vision_feature_layers(v_hparams)
if has_vision_encoder:
# vision_model hparams
# Siglip does not have a visual projector; set projection dim to 0
if args.clip_model_is_siglip:
visual_projection_dim = 0
else:
visual_projection_dim = v_hparams.get("projection_dim", config["projection_dim"])
# set vision_model hparams
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
fout.add_uint32("clip.vision.projection_dim", visual_projection_dim)
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
if feature_layers:
block_count = max(feature_layers)
else:
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
# /**
# "image_grid_pinpoints": [
@ -258,7 +329,8 @@ if has_vision_encoder:
fout.add_string("clip.vision.mm_patch_merge_type", v_hparams["mm_patch_merge_type"])
if "mm_projector_type" in v_hparams:
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
if feature_layers:
fout.add_array("clip.vision.feature_layer", feature_layers)
if processor is not None:
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean # pyright: ignore[reportAttributeAccessIssue]
@ -274,7 +346,13 @@ fout.add_bool("clip.use_gelu", use_gelu)
if has_llava_projector:
model.vision_model.encoder.layers.pop(-1)
# By default, we drop the last layer for llava projector
# models unless we have explicitly set vision feature layers
if feature_layers is None:
model.vision_model.encoder.layers.pop(-1)
else:
model.vision_model.encoder.layers = model.vision_model.encoder.layers[:max(feature_layers)]
projector = torch.load(args.llava_projector)
for name, data in projector.items():
name = get_tensor_name(name)

View File

@ -353,9 +353,10 @@ static bool encode_image_with_clip(clip_ctx * ctx_clip, int n_threads, const cli
LOG_INF("%s: %d segments encoded in %8.2f ms\n", __func__, (int)img_res_v.size, (t_img_enc_batch_us - t_img_enc_start_us) / 1000.0);
const int32_t * image_grid = clip_image_grid(ctx_clip);
const size_t num_gridpoints = get_clip_image_grid_size(ctx_clip);
std::vector<std::pair<int, int>> grid_pinpoints;
for (int i = 0; i < 32 && image_grid[i] != 0; i += 2) {
for (size_t i = 0; i < num_gridpoints; i += 2) {
grid_pinpoints.push_back({image_grid[i], image_grid[i+1]});
}
@ -405,7 +406,8 @@ bool llava_validate_embed_size(const llama_context * ctx_llama, const clip_ctx *
}
bool llava_image_embed_make_with_clip_img(clip_ctx * ctx_clip, int n_threads, const clip_image_u8 * img, float ** image_embd_out, int * n_img_pos_out) {
int num_max_patches = 6;
// Granite vision uses up to 10 patches + base patch
int num_max_patches = 11;
if (clip_is_minicpmv(ctx_clip)) {
num_max_patches = 10;
}

View File

@ -33,6 +33,33 @@ def save_model(model, file_path, file_type):
else:
torch.save(model, file_path)
# Helpers to match weight names from specific components or
# determine if a saved shard contains that component
def is_vision_tower(weight_name):
return (
weight_name.startswith("model.vision_tower") or
weight_name.startswith("vit.") or
weight_name.startswith("vision_tower")
)
def is_newline(weight_name):
return (
weight_name.startswith("model.image_newline") or
weight_name.startswith("image_newline")
)
def is_mm_projector(weight_name):
return (
weight_name.startswith("model.mm_projector") or
weight_name.startswith("vision_proj.") or
weight_name.startswith("multi_modal_projector")
)
def newline_criteria(checkpoint):
return any(is_newline(k) for k in checkpoint.keys())
def proj_criteria(checkpoint):
return any(is_mm_projector(k) for k in checkpoint.keys())
# Adapted function to clean vision tower from checkpoint
def clean_vision_tower_from_checkpoint(checkpoint_path):
@ -40,7 +67,7 @@ def clean_vision_tower_from_checkpoint(checkpoint_path):
# file_type = 'pytorch'
model_path = os.path.dirname(checkpoint_path)
print(f"Searching for vision tower tensors in {checkpoint_path}")
clip_tensors = [k for k, v in checkpoint.items() if (k.startswith("model.vision_tower") or k.startswith("vit."))]
clip_tensors = [k for k, v in checkpoint.items() if is_vision_tower(k)]
if len(clip_tensors) > 0:
print(f"Found {len(clip_tensors)} tensors to extract from {checkpoint_path}")
@ -84,12 +111,6 @@ def find_relevant_checkpoints(checkpoint_paths, newline_criteria, projector):
return newline_checkpoint_path, projector_checkpoint_path
def newline_criteria(checkpoint):
return any(k.startswith("model.image_newline") for k in checkpoint.keys())
def proj_criteria(checkpoint):
return any(k.startswith("model.mm_projector") or k.startswith("vision_proj.") for k in checkpoint.keys())
# Command-line interface setup
ap = argparse.ArgumentParser()
@ -123,14 +144,14 @@ first_checkpoint = None
if newline_checkpoint_path is not None:
print(f"Taking newline from {newline_checkpoint_path}")
first_checkpoint, file_type = load_model(newline_checkpoint_path)
first_mm_tensors = [k for k, v in first_checkpoint.items() if k.startswith("model.image_newline")]
first_mm_tensors = [k for k, v in first_checkpoint.items() if is_newline(k)]
# Load the checkpoint
mm_tensors = []
last_checkpoint = None
if projector_checkpoint_path is not None:
last_checkpoint, file_type = load_model(projector_checkpoint_path)
mm_tensors = [k for k, v in last_checkpoint.items() if k.startswith("model.mm_projector") or k.startswith("vision_proj.")]
mm_tensors = [k for k, v in last_checkpoint.items() if is_mm_projector(k)]
if len(mm_tensors) == 0:
if last_checkpoint is not None:
@ -155,5 +176,5 @@ if len(projector) > 0:
save_model(projector, f"{args.model}/llava.projector", 'pytorch')
print("Done!")
print(f"Now you can convert {args.model} to a a regular LLaMA GGUF file.")
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.")
print(f"Also, use {args.model}/llava.projector to prepare a llava-encoder.gguf file.")