llama : fix FA when KV cache is not used (i.e. embeddings) (#12825)

* ggml : FA supports F32 V

* graph : cast KV to F16 when the KV cache is not used

ggml-ci

* server : add test that exercises embeddings with FA enabled

ggml-ci
This commit is contained in:
Georgi Gerganov 2025-04-08 19:54:51 +03:00 committed by GitHub
parent 78a1ba0a4f
commit a19b5cef16
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 59 additions and 6 deletions

View File

@ -49,6 +49,26 @@ def test_embedding_multiple():
assert len(d['embedding']) > 1
def test_embedding_multiple_with_fa():
server = ServerPreset.bert_bge_small_with_fa()
server.pooling = 'last'
server.start()
# one of these should trigger the FA branch (i.e. context size % 256 == 0)
res = server.make_request("POST", "/v1/embeddings", data={
"input": [
"a "*253,
"b "*254,
"c "*255,
"d "*256,
],
})
assert res.status_code == 200
assert len(res.body['data']) == 4
for d in res.body['data']:
assert 'embedding' in d
assert len(d['embedding']) > 1
@pytest.mark.parametrize(
"input,is_multi_prompt",
[

View File

@ -323,6 +323,21 @@ class ServerPreset:
server.server_embeddings = True
return server
@staticmethod
def bert_bge_small_with_fa() -> ServerProcess:
server = ServerProcess()
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
server.model_alias = "bert-bge-small"
server.n_ctx = 1024
server.n_batch = 300
server.n_ubatch = 300
server.n_slots = 2
server.fa = True
server.seed = 42
server.server_embeddings = True
return server
@staticmethod
def tinyllama_infill() -> ServerProcess:
server = ServerProcess()

View File

@ -15,7 +15,7 @@ async def main():
model_url = "http://127.0.0.1:6900"
responses: list[requests.Response] = await asyncio.gather(*[requests_post_async(
url= f"{model_url}/embedding",
json= {"content": str(0)*1024}
json= {"content": "a "*1022}
) for i in range(n)])
for response in responses:

View File

@ -6721,8 +6721,8 @@ static void ggml_compute_forward_flash_attn_ext_f16(
ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
GGML_ASSERT(q_to_vec_dot && "fattn: unsupported K-type");
GGML_ASSERT(v_to_float && "fattn: unsupported V-type");
GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
// loop over n_batch and n_head
for (int ir = ir0; ir < ir1; ++ir) {
@ -6818,10 +6818,14 @@ static void ggml_compute_forward_flash_attn_ext_f16(
vs = expf(s - M);
}
v_to_float(v_data, V32, DV);
// V += v*expf(s - M)
ggml_vec_mad_f32(DV, VKQ32, V32, vs);
if (v_to_float) {
v_to_float(v_data, V32, DV);
ggml_vec_mad_f32(DV, VKQ32, V32, vs);
} else {
// V is F32
ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
}
}
S = S*ms + vs; // scale and increment sum with partial sum

View File

@ -1345,6 +1345,11 @@ static bool ggml_metal_supports_op(const struct ggml_backend_metal_device_contex
case GGML_OP_ARANGE:
return true;
case GGML_OP_FLASH_ATTN_EXT:
if (op->src[0]->ne[0] == 32) {
// head size == 32 (e.g. bert-bge-small)
// TODO: not sure if it is worth adding kernels for this size
return false;
}
if (op->src[1]->type != op->src[2]->type) {
return false;
}

View File

@ -1215,6 +1215,15 @@ ggml_tensor * llm_graph_context::build_attn_mha(
v = ggml_transpose(ctx0, v);
}
// this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
if (k->type == GGML_TYPE_F32) {
k = ggml_cast(ctx0, k, GGML_TYPE_F16);
}
if (v->type == GGML_TYPE_F32) {
v = ggml_cast(ctx0, v, GGML_TYPE_F16);
}
cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);