From d3bd7193ba66c15963fd1c59448f22019a8caf6e Mon Sep 17 00:00:00 2001
From: Bo Zheng <368586905@qq.com>
Date: Wed, 9 Apr 2025 17:47:36 +0800
Subject: [PATCH] llama : Support Qwen3 and Qwen3MoE (#12828)

* add qwen3 & qwen3moe support.

* fix

---------

Co-authored-by: bozheng-hit <dsoul0621@gmail.com>
---
 convert_hf_to_gguf.py     |  10 ++
 gguf-py/gguf/constants.py |  38 +++++
 src/llama-arch.cpp        |  41 +++++
 src/llama-arch.h          |   2 +
 src/llama-model.cpp       | 350 ++++++++++++++++++++++++++++++++++++++
 5 files changed, 441 insertions(+)

diff --git a/convert_hf_to_gguf.py b/convert_hf_to_gguf.py
index 954990020..656dc9877 100755
--- a/convert_hf_to_gguf.py
+++ b/convert_hf_to_gguf.py
@@ -2459,6 +2459,16 @@ class Qwen2MoeModel(Model):
                 raise ValueError(f"Unprocessed experts: {experts}")
 
 
+@Model.register("Qwen3ForCausalLM")
+class Qwen3Model(Qwen2Model):
+    model_arch = gguf.MODEL_ARCH.QWEN3
+
+
+@Model.register("Qwen3MoeForCausalLM")
+class Qwen3MoeModel(Qwen2MoeModel):
+    model_arch = gguf.MODEL_ARCH.QWEN3MOE
+
+
 @Model.register("GPT2LMHeadModel")
 class GPT2Model(Model):
     model_arch = gguf.MODEL_ARCH.GPT2
diff --git a/gguf-py/gguf/constants.py b/gguf-py/gguf/constants.py
index d4f4e1179..0410654dd 100644
--- a/gguf-py/gguf/constants.py
+++ b/gguf-py/gguf/constants.py
@@ -248,6 +248,8 @@ class MODEL_ARCH(IntEnum):
     QWEN2            = auto()
     QWEN2MOE         = auto()
     QWEN2VL          = auto()
+    QWEN3            = auto()
+    QWEN3MOE         = auto()
     PHI2             = auto()
     PHI3             = auto()
     PHIMOE           = auto()
@@ -453,6 +455,8 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
     MODEL_ARCH.QWEN2:            "qwen2",
     MODEL_ARCH.QWEN2MOE:         "qwen2moe",
     MODEL_ARCH.QWEN2VL:          "qwen2vl",
+    MODEL_ARCH.QWEN3:            "qwen3",
+    MODEL_ARCH.QWEN3MOE:         "qwen3moe",
     MODEL_ARCH.PHI2:             "phi2",
     MODEL_ARCH.PHI3:             "phi3",
     MODEL_ARCH.PHIMOE:           "phimoe",
@@ -953,6 +957,40 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
         MODEL_TENSOR.FFN_DOWN_SHEXP,
         MODEL_TENSOR.FFN_UP_SHEXP,
     ],
+    MODEL_ARCH.QWEN3: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ROPE_FREQS,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE,
+        MODEL_TENSOR.FFN_DOWN,
+        MODEL_TENSOR.FFN_UP,
+    ],
+    MODEL_ARCH.QWEN3MOE: [
+        MODEL_TENSOR.TOKEN_EMBD,
+        MODEL_TENSOR.OUTPUT_NORM,
+        MODEL_TENSOR.OUTPUT,
+        MODEL_TENSOR.ATTN_NORM,
+        MODEL_TENSOR.ATTN_Q,
+        MODEL_TENSOR.ATTN_Q_NORM,
+        MODEL_TENSOR.ATTN_K,
+        MODEL_TENSOR.ATTN_K_NORM,
+        MODEL_TENSOR.ATTN_V,
+        MODEL_TENSOR.ATTN_OUT,
+        MODEL_TENSOR.FFN_NORM,
+        MODEL_TENSOR.FFN_GATE_INP,
+        MODEL_TENSOR.FFN_GATE_EXP,
+        MODEL_TENSOR.FFN_DOWN_EXP,
+        MODEL_TENSOR.FFN_UP_EXP,
+    ],
     MODEL_ARCH.PLAMO: [
         MODEL_TENSOR.TOKEN_EMBD,
         MODEL_TENSOR.OUTPUT_NORM,
diff --git a/src/llama-arch.cpp b/src/llama-arch.cpp
index ac997b963..264f8c5b9 100644
--- a/src/llama-arch.cpp
+++ b/src/llama-arch.cpp
@@ -26,6 +26,8 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
     { LLM_ARCH_QWEN2,            "qwen2"            },
     { LLM_ARCH_QWEN2MOE,         "qwen2moe"         },
     { LLM_ARCH_QWEN2VL,          "qwen2vl"          },
+    { LLM_ARCH_QWEN3,            "qwen3"            },
+    { LLM_ARCH_QWEN3MOE,         "qwen3moe"         },
     { LLM_ARCH_PHI2,             "phi2"             },
     { LLM_ARCH_PHI3,             "phi3"             },
     { LLM_ARCH_PHIMOE,           "phimoe"           },
@@ -595,6 +597,45 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
             { LLM_TENSOR_FFN_UP_SHEXP,       "blk.%d.ffn_up_shexp" },
         },
     },
+    {
+        LLM_ARCH_QWEN3,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,      "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,     "output_norm" },
+            { LLM_TENSOR_OUTPUT,          "output" },
+            { LLM_TENSOR_ATTN_NORM,       "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,          "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_Q_NORM,     "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K,          "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_K_NORM,     "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_V,          "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,        "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,        "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE,        "blk.%d.ffn_gate" },
+            { LLM_TENSOR_FFN_DOWN,        "blk.%d.ffn_down" },
+            { LLM_TENSOR_FFN_UP,          "blk.%d.ffn_up" },
+        },
+    },
+    {
+        LLM_ARCH_QWEN3MOE,
+        {
+            { LLM_TENSOR_TOKEN_EMBD,         "token_embd" },
+            { LLM_TENSOR_OUTPUT_NORM,        "output_norm" },
+            { LLM_TENSOR_OUTPUT,             "output" },
+            { LLM_TENSOR_ATTN_NORM,          "blk.%d.attn_norm" },
+            { LLM_TENSOR_ATTN_Q,             "blk.%d.attn_q" },
+            { LLM_TENSOR_ATTN_Q_NORM,        "blk.%d.attn_q_norm" },
+            { LLM_TENSOR_ATTN_K,             "blk.%d.attn_k" },
+            { LLM_TENSOR_ATTN_K_NORM,        "blk.%d.attn_k_norm" },
+            { LLM_TENSOR_ATTN_V,             "blk.%d.attn_v" },
+            { LLM_TENSOR_ATTN_OUT,           "blk.%d.attn_output" },
+            { LLM_TENSOR_FFN_NORM,           "blk.%d.ffn_norm" },
+            { LLM_TENSOR_FFN_GATE_INP,       "blk.%d.ffn_gate_inp" },
+            { LLM_TENSOR_FFN_GATE_EXPS,      "blk.%d.ffn_gate_exps" },
+            { LLM_TENSOR_FFN_DOWN_EXPS,      "blk.%d.ffn_down_exps" },
+            { LLM_TENSOR_FFN_UP_EXPS,        "blk.%d.ffn_up_exps" },
+        },
+    },
     {
         LLM_ARCH_PHI2,
         {
diff --git a/src/llama-arch.h b/src/llama-arch.h
index 42e4a3ef9..201935281 100644
--- a/src/llama-arch.h
+++ b/src/llama-arch.h
@@ -30,6 +30,8 @@ enum llm_arch {
     LLM_ARCH_QWEN2,
     LLM_ARCH_QWEN2MOE,
     LLM_ARCH_QWEN2VL,
+    LLM_ARCH_QWEN3,
+    LLM_ARCH_QWEN3MOE,
     LLM_ARCH_PHI2,
     LLM_ARCH_PHI3,
     LLM_ARCH_PHIMOE,
diff --git a/src/llama-model.cpp b/src/llama-model.cpp
index 4546e9cf9..9e4166a71 100644
--- a/src/llama-model.cpp
+++ b/src/llama-model.cpp
@@ -787,6 +787,22 @@ void llama_model::load_hparams(llama_model_loader & ml) {
                     default: type = LLM_TYPE_UNKNOWN;
                 }
             } break;
+        case LLM_ARCH_QWEN3:
+            {
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
+        case LLM_ARCH_QWEN3MOE:
+            {
+                ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH,        hparams.n_ff_exp, false);
+
+                ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
+                switch (hparams.n_layer) {
+                    default: type = LLM_TYPE_UNKNOWN;
+                }
+            } break;
         case LLM_ARCH_PHI2:
             {
                 ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
@@ -2360,6 +2376,77 @@ bool llama_model::load_tensors(llama_model_loader & ml) {
                         layer.ffn_up_shexp   = create_tensor(tn(LLM_TENSOR_FFN_UP_SHEXP,   "weight", i), {    n_embd, n_ff_shexp}, 0);
                     }
                 } break;
+            case LLM_ARCH_QWEN3:
+                {
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, TENSOR_NOT_REQUIRED);
+                    // if output is NULL, init from the input tok embed
+                    if (output == NULL) {
+                        output = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, TENSOR_DUPLICATED);
+                    }
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+                        layer.ffn_gate = create_tensor(tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd,   n_ff}, 0);
+                        layer.ffn_down = create_tensor(tn(LLM_TENSOR_FFN_DOWN, "weight", i), {  n_ff, n_embd}, 0);
+                        layer.ffn_up   = create_tensor(tn(LLM_TENSOR_FFN_UP,   "weight", i), {n_embd,   n_ff}, 0);
+                    }
+                } break;
+            case LLM_ARCH_QWEN3MOE:
+                {
+                    tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
+
+                    // output
+                    output_norm = create_tensor(tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, 0);
+                    output      = create_tensor(tn(LLM_TENSOR_OUTPUT,      "weight"), {n_embd, n_vocab}, 0);
+
+                    for (int i = 0; i < n_layer; ++i) {
+                        auto & layer = layers[i];
+
+                        layer.attn_norm = create_tensor(tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.wq = create_tensor(tn(LLM_TENSOR_ATTN_Q,   "weight", i), {n_embd, n_embd_head_k * n_head}, 0);
+                        layer.wk = create_tensor(tn(LLM_TENSOR_ATTN_K,   "weight", i), {n_embd, n_embd_gqa}, 0);
+                        layer.wv = create_tensor(tn(LLM_TENSOR_ATTN_V,   "weight", i), {n_embd, n_embd_gqa}, 0);
+                        layer.wo = create_tensor(tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd}, 0);
+
+                        layer.attn_k_norm = create_tensor(tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd_head_k}, 0);
+                        layer.attn_q_norm = create_tensor(tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd_head_k}, 0);
+
+                        layer.ffn_norm = create_tensor(tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, 0);
+
+                        layer.ffn_gate_inp = create_tensor(tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}, 0);
+
+                        if (n_expert == 0) {
+                            throw std::runtime_error("n_expert must be > 0 for QWEN3MOE");
+                        }
+                        if (n_expert_used == 0) {
+                            throw std::runtime_error("n_expert_used must be > 0 for QWEN3MOE");
+                        }
+
+                        // MoE branch
+                        const int64_t n_ff_exp = hparams.n_ff_exp ? hparams.n_ff_exp : n_ff / n_expert_used;
+
+                        layer.ffn_gate_exps = create_tensor(tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
+                        layer.ffn_down_exps = create_tensor(tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp,   n_embd, n_expert}, 0);
+                        layer.ffn_up_exps   = create_tensor(tn(LLM_TENSOR_FFN_UP_EXPS,   "weight", i), {  n_embd, n_ff_exp, n_expert}, 0);
+                    }
+                } break;
             case LLM_ARCH_PHI2:
                 {
                     tok_embd = create_tensor(tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, 0);
@@ -4168,6 +4255,10 @@ void llama_model::print_info() const {
         LLAMA_LOG_INFO("%s: n_ff_shexp       = %d\n",     __func__, hparams.n_ff_shexp);
     }
 
+    if (arch == LLM_ARCH_QWEN3MOE) {
+        LLAMA_LOG_INFO("%s: n_ff_exp         = %d\n",     __func__, hparams.n_ff_exp);
+    }
+
     if (arch == LLM_ARCH_MINICPM || arch == LLM_ARCH_GRANITE || arch == LLM_ARCH_GRANITE_MOE) {
         LLAMA_LOG_INFO("%s: f_embedding_scale = %f\n", __func__, hparams.f_embedding_scale);
         LLAMA_LOG_INFO("%s: f_residual_scale  = %f\n", __func__, hparams.f_residual_scale);
@@ -6582,6 +6673,255 @@ struct llm_build_qwen2moe : public llm_graph_context {
     }
 };
 
+struct llm_build_qwen3 : public llm_graph_context {
+    llm_build_qwen3(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv_unified();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self-attention
+            {
+                // compute Q and K and RoPE them
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+                cb(Qcur, "Qcur_normed", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+                cb(Kcur, "Kcur_normed", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // feed-forward network
+            cur = build_norm(ffn_inp,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "ffn_norm", il);
+
+            cur = build_ffn(cur,
+                    model.layers[il].ffn_up,   NULL, NULL,
+                    model.layers[il].ffn_gate, NULL, NULL,
+                    model.layers[il].ffn_down, NULL, NULL,
+                    NULL,
+                    LLM_FFN_SILU, LLM_FFN_PAR, il);
+            cb(cur, "ffn_out", il);
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
+struct llm_build_qwen3moe : public llm_graph_context {
+    llm_build_qwen3moe(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
+        const int64_t n_embd_head = hparams.n_embd_head_v;
+
+        GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
+        GGML_ASSERT(n_embd_head == hparams.n_rot);
+
+        ggml_tensor * cur;
+        ggml_tensor * inpL;
+
+        inpL = build_inp_embd(model.tok_embd);
+
+        // inp_pos - contains the positions
+        ggml_tensor * inp_pos = build_inp_pos();
+
+        auto * inp_attn = build_attn_inp_kv_unified();
+
+        for (int il = 0; il < n_layer; ++il) {
+            ggml_tensor * inpSA = inpL;
+
+            // norm
+            cur = build_norm(inpL,
+                    model.layers[il].attn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "attn_norm", il);
+
+            // self_attention
+            {
+                // compute Q and K and RoPE them
+                ggml_tensor * Qcur = build_lora_mm(model.layers[il].wq, cur);
+                cb(Qcur, "Qcur", il);
+
+                ggml_tensor * Kcur = build_lora_mm(model.layers[il].wk, cur);
+                cb(Kcur, "Kcur", il);
+
+                ggml_tensor * Vcur = build_lora_mm(model.layers[il].wv, cur);
+                cb(Vcur, "Vcur", il);
+
+                Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head,    n_tokens);
+                Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
+                Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, n_tokens);
+
+                Qcur = build_norm(Qcur, model.layers[il].attn_q_norm, NULL, LLM_NORM_RMS, il);
+                cb(Qcur, "Qcur_normed", il);
+
+                Qcur = ggml_rope_ext(
+                        ctx0, Qcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                Kcur = build_norm(Kcur, model.layers[il].attn_k_norm, NULL, LLM_NORM_RMS, il);
+                cb(Kcur, "Kcur_normed", il);
+
+                Kcur = ggml_rope_ext(
+                        ctx0, Kcur, inp_pos, nullptr,
+                        n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
+                        ext_factor, attn_factor, beta_fast, beta_slow
+                        );
+
+                cb(Qcur, "Qcur", il);
+                cb(Kcur, "Kcur", il);
+                cb(Vcur, "Vcur", il);
+
+                cur = build_attn(inp_attn, gf,
+                        model.layers[il].wo, model.layers[il].bo,
+                        Qcur, Kcur, Vcur, nullptr, 1.0f/sqrtf(float(n_embd_head)), il);
+            }
+
+            if (il == n_layer - 1) {
+                // skip computing output for unused tokens
+                ggml_tensor * inp_out_ids = build_inp_out_ids();
+                cur   = ggml_get_rows(ctx0,   cur, inp_out_ids);
+                inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
+            }
+
+            ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
+            cb(ffn_inp, "ffn_inp", il);
+
+            // MoE branch
+            cur = build_norm(ffn_inp,
+                    model.layers[il].ffn_norm, NULL,
+                    LLM_NORM_RMS, il);
+            cb(cur, "ffn_norm", il);
+
+            ggml_tensor * moe_out =
+                build_moe_ffn(cur,
+                        model.layers[il].ffn_gate_inp,
+                        model.layers[il].ffn_up_exps,
+                        model.layers[il].ffn_gate_exps,
+                        model.layers[il].ffn_down_exps,
+                        nullptr,
+                        n_expert, n_expert_used,
+                        LLM_FFN_SILU, true,
+                        false, 0.0,
+                        LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX,
+                        il);
+            cb(moe_out, "ffn_moe_out", il);
+            cur = moe_out;
+
+            cur = ggml_add(ctx0, cur, ffn_inp);
+
+            cur = build_cvec(cur, il);
+            cb(cur, "l_out", il);
+
+            // input for next layer
+            inpL = cur;
+        }
+
+        cur = inpL;
+
+        cur = build_norm(cur,
+                model.output_norm, NULL,
+                LLM_NORM_RMS, -1);
+
+        cb(cur, "result_norm", -1);
+        res->t_embd = cur;
+
+        // lm_head
+        cur = build_lora_mm(model.output, cur);
+
+        cb(cur, "result_output", -1);
+        res->t_logits = cur;
+
+        ggml_build_forward_expand(gf, cur);
+    }
+};
+
 struct llm_build_phi2 : public llm_graph_context {
     llm_build_phi2(const llama_model & model, const llm_graph_params & params, ggml_cgraph * gf) : llm_graph_context(params) {
         const int64_t n_embd_head = hparams.n_embd_head_v;
@@ -12282,6 +12622,14 @@ llm_graph_result_ptr llama_model::build_graph(
             {
                 llm = std::make_unique<llm_build_qwen2moe>(*this, params, gf);
             } break;
+        case LLM_ARCH_QWEN3:
+            {
+                llm = std::make_unique<llm_build_qwen3>(*this, params, gf);
+            } break;
+        case LLM_ARCH_QWEN3MOE:
+            {
+                llm = std::make_unique<llm_build_qwen3moe>(*this, params, gf);
+            } break;
         case LLM_ARCH_PHI2:
             {
                 llm = std::make_unique<llm_build_phi2>(*this, params, gf);
@@ -12601,6 +12949,8 @@ llama_rope_type llama_model_rope_type(const llama_model * model) {
         case LLM_ARCH_QWEN:
         case LLM_ARCH_QWEN2:
         case LLM_ARCH_QWEN2MOE:
+        case LLM_ARCH_QWEN3:
+        case LLM_ARCH_QWEN3MOE:
         case LLM_ARCH_OLMO2:
         case LLM_ARCH_OLMOE:
         case LLM_ARCH_PHI2: