llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)

* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
This commit is contained in:
Georgi Gerganov 2025-03-13 12:35:44 +02:00 committed by GitHub
parent 2048b5913d
commit e0dbec0bc6
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
46 changed files with 13903 additions and 12190 deletions

View File

@ -955,8 +955,8 @@ struct common_init_result common_init_from_params(common_params & params) {
return iparams;
}
if (params.ctx_shift && !llama_kv_cache_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this model, disabling KV cache shifting\n", __func__);
if (params.ctx_shift && !llama_kv_self_can_shift(lctx)) {
LOG_WRN("%s: KV cache shifting is not supported for this context, disabling KV cache shifting\n", __func__);
params.ctx_shift = false;
}
@ -1060,7 +1060,7 @@ struct common_init_result common_init_from_params(common_params & params) {
if (llama_model_has_decoder(model)) {
llama_decode(lctx, llama_batch_get_one(tmp.data(), std::min(tmp.size(), (size_t) params.n_batch)));
}
llama_kv_cache_clear(lctx);
llama_kv_self_clear(lctx);
llama_synchronize(lctx);
llama_perf_context_reset(lctx);
}

View File

@ -173,7 +173,7 @@ llama_tokens common_speculative_gen_draft(
result.reserve(params.n_draft);
if (reuse_n == 0) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
prompt.clear();
} else {
@ -192,14 +192,14 @@ llama_tokens common_speculative_gen_draft(
}
if (reuse_i > 0) {
llama_kv_cache_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_cache_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
llama_kv_self_seq_rm (ctx, 0, 0, reuse_i);
llama_kv_self_seq_add(ctx, 0, reuse_i, -1, -reuse_i);
prompt.erase(prompt.begin(), prompt.begin() + reuse_i);
}
if (reuse_n < (int) prompt.size()) {
llama_kv_cache_seq_rm (ctx, 0, reuse_n, -1);
llama_kv_self_seq_rm (ctx, 0, reuse_n, -1);
prompt.erase(prompt.begin() + reuse_n, prompt.end());
}

View File

@ -132,7 +132,7 @@ int main(int argc, char ** argv) {
const auto t_pp_start = ggml_time_us();
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (!decode_helper(ctx, batch, ctx_params.n_batch)) {
LOG_ERR("%s: llama_decode() failed\n", __func__);
@ -141,7 +141,7 @@ int main(int argc, char ** argv) {
if (is_pp_shared) {
for (int32_t i = 1; i < pl; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
}

View File

@ -116,7 +116,7 @@ if llama_decode(context, batch) != 0 {
}
for i in 1 ..< n_parallel {
llama_kv_cache_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
llama_kv_self_seq_cp(context, 0, Int32(i), 0, batch.n_tokens)
}
if n_parallel > 1 {

View File

@ -342,7 +342,7 @@ static bool cb_eval(struct ggml_tensor * t, bool ask, void * user_data) {
}
static bool get_hidden_layers(llama_context * ctx, std::vector<llama_token> & tokens) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
if (llama_decode(ctx, llama_batch_get_one(tokens.data(), tokens.size()))) {
fprintf(stderr, "%s : failed to eval\n", __func__);
return false;

View File

@ -38,7 +38,7 @@ static void batch_decode(llama_context * ctx, llama_batch & batch, float * outpu
const struct llama_model * model = llama_get_model(ctx);
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@ -45,7 +45,7 @@ static std::vector<std::vector<float>> encode(llama_context * ctx, const std::ve
}
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, true);
llama_set_causal_attn(ctx, false);
@ -102,7 +102,7 @@ static std::string generate(llama_context * ctx, llama_sampler * smpl, const std
llama_token eos_token = llama_vocab_eos(vocab);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_set_embeddings(ctx, false);
llama_set_causal_attn(ctx, true);

View File

@ -495,7 +495,7 @@ static bool compute_imatrix(llama_context * ctx, const common_params & params) {
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);

View File

@ -332,8 +332,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
llama_kv_self_seq_add(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
n_past -= n_discard;

View File

@ -1578,7 +1578,7 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// cool off before the test
if (params.delay) {
@ -1618,7 +1618,7 @@ int main(int argc, char ** argv) {
}
for (int i = 0; i < params.reps; i++) {
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
uint64_t t_start = get_time_ns();

View File

@ -194,7 +194,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
}
batch->logits[batch->n_tokens - 1] = true;
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp_start = ggml_time_us();
if (llama_decode(context, *batch) != 0) {
@ -206,7 +206,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
LOGi("Benchmark text generation (tg)");
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_tg_start = ggml_time_us();
for (i = 0; i < tg; i++) {
@ -223,7 +223,7 @@ Java_android_llama_cpp_LLamaAndroid_bench_1model(
const auto t_tg_end = ggml_time_us();
llama_kv_cache_clear(context);
llama_kv_self_clear(context);
const auto t_pp = double(t_pp_end - t_pp_start) / 1000000.0;
const auto t_tg = double(t_tg_end - t_tg_start) / 1000000.0;
@ -448,5 +448,5 @@ Java_android_llama_cpp_LLamaAndroid_completion_1loop(
extern "C"
JNIEXPORT void JNICALL
Java_android_llama_cpp_LLamaAndroid_kv_1cache_1clear(JNIEnv *, jobject, jlong context) {
llama_kv_cache_clear(reinterpret_cast<llama_context *>(context));
llama_kv_self_clear(reinterpret_cast<llama_context *>(context));
}

View File

@ -210,7 +210,7 @@ actor LlamaContext {
}
batch.logits[Int(batch.n_tokens) - 1] = 1 // true
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp_start = DispatchTime.now().uptimeNanoseconds / 1000;
@ -223,7 +223,7 @@ actor LlamaContext {
// bench text generation
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_tg_start = DispatchTime.now().uptimeNanoseconds / 1000;
@ -242,7 +242,7 @@ actor LlamaContext {
let t_tg_end = DispatchTime.now().uptimeNanoseconds / 1000;
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
let t_pp = Double(t_pp_end - t_pp_start) / 1000000.0
let t_tg = Double(t_tg_end - t_tg_start) / 1000000.0
@ -292,7 +292,7 @@ actor LlamaContext {
func clear() {
tokens_list.removeAll()
temporary_invalid_cchars.removeAll()
llama_kv_cache_clear(context)
llama_kv_self_clear(context)
}
private func tokenize(text: String, add_bos: Bool) -> [llama_token] {

View File

@ -309,7 +309,7 @@ int main(int argc, char ** argv) {
}
if (line == "/clear") {
ctx.n_past = 0;
llama_kv_cache_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
LOG("Chat history cleared\n\n");
continue;
}

View File

@ -96,7 +96,7 @@ int main(int argc, char ** argv) {
llama_decode(ctx, llama_batch_get_one(&inp.back(), 1));
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
}
const auto t_enc_end = ggml_time_us();
@ -438,17 +438,17 @@ int main(int argc, char ** argv) {
// KV cache management
// if no verification token matched, we simply remove all cells from this batch -> no fragmentation
llama_kv_cache_seq_rm(ctx, -1, n_past, -1);
llama_kv_self_seq_rm(ctx, -1, n_past, -1);
if (seq_id_best != 0) {
// if a verification token matched, we keep the best sequence and remove the rest
// this leads to some KV cache fragmentation
llama_kv_cache_seq_keep(ctx, seq_id_best);
llama_kv_cache_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_cache_seq_rm (ctx, seq_id_best, -1, -1);
llama_kv_self_seq_keep(ctx, seq_id_best);
llama_kv_self_seq_cp (ctx, seq_id_best, 0, -1, -1);
llama_kv_self_seq_rm (ctx, seq_id_best, -1, -1);
for (int s = 1; s < W + G + 1; ++s) {
llama_kv_cache_seq_cp(ctx, 0, s, -1, -1);
llama_kv_self_seq_cp(ctx, 0, s, -1, -1);
}
}
}

View File

@ -192,7 +192,7 @@ int main(int argc, char ** argv){
// KV cache management
// clean the cache of draft tokens that weren't accepted
llama_kv_cache_seq_rm(ctx, 0, n_past, -1);
llama_kv_self_seq_rm(ctx, 0, n_past, -1);
common_batch_clear(batch_tgt);
common_batch_add(batch_tgt, draft[0], n_past, { 0 }, true);

View File

@ -354,7 +354,7 @@ int main(int argc, char ** argv) {
}
// remove any "future" tokens that we might have inherited from the previous session
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
llama_kv_self_seq_rm(ctx, -1, n_matching_session_tokens, -1);
}
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n",
@ -602,8 +602,8 @@ int main(int argc, char ** argv) {
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
n_past, n_left, n_ctx, params.n_keep, n_discard);
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
llama_kv_self_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard);
n_past -= n_discard;
@ -626,9 +626,9 @@ int main(int argc, char ** argv) {
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n);
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd);
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
llama_kv_self_seq_add(ctx, 0, ga_i, n_past, ib*bd);
llama_kv_self_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n);
llama_kv_self_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd);
n_past -= bd;

View File

@ -202,7 +202,7 @@ int main(int argc, char ** argv) {
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
LOG_INF("\n");
@ -234,9 +234,9 @@ int main(int argc, char ** argv) {
if (batch.n_tokens == 0) {
// all sequences have ended - clear the entire KV cache
for (int i = 1; i <= n_clients; ++i) {
llama_kv_cache_seq_rm(ctx, i, -1, -1);
llama_kv_self_seq_rm(ctx, i, -1, -1);
// but keep the system prompt
llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
llama_kv_self_seq_cp(ctx, 0, i, -1, -1);
}
LOG_INF("%s: clearing the KV cache\n", __func__);
@ -372,8 +372,8 @@ int main(int argc, char ** argv) {
}
// delete only the generated part of the sequence, i.e. keep the system prompt in the cache
llama_kv_cache_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_cache_seq_cp(ctx, 0, client.id + 1, -1, -1);
llama_kv_self_seq_rm(ctx, client.id + 1, -1, -1);
llama_kv_self_seq_cp(ctx, 0, client.id + 1, -1, -1);
const auto t_main_end = ggml_time_us();

View File

@ -133,11 +133,11 @@ int main(int argc, char ** argv) {
const int ib = i/n_batch - 1;
const int bd = n_batch_grp*(n_grp - 1);
llama_kv_cache_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_cache_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_cache_update (ctx);
llama_kv_self_seq_add (ctx, 0, n_past - n_batch, n_past, ib*bd);
llama_kv_self_seq_div (ctx, 0, n_past - n_batch + ib*bd, n_past + ib*bd, n_grp);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
common_batch_clear(batch);
@ -167,12 +167,12 @@ int main(int argc, char ** argv) {
LOG_INF("%s: shifting KV cache with %d\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
common_batch_clear(batch);
@ -198,12 +198,12 @@ int main(int argc, char ** argv) {
if (n_discard > 0) {
LOG_INF("%s: shifting KV cache with %d to free space for the answer\n", __func__, n_discard);
llama_kv_cache_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_cache_defrag (ctx);
llama_kv_cache_update (ctx);
llama_kv_self_seq_rm (ctx, 0, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, 0, n_keep + n_discard, n_ctx, -n_discard);
//llama_kv_self_defrag (ctx);
llama_kv_self_update (ctx);
n_past = llama_kv_cache_seq_pos_max(ctx, 0) + 1;
n_past = llama_kv_self_seq_pos_max(ctx, 0) + 1;
}
}

View File

@ -361,7 +361,7 @@ static results_perplexity perplexity_v2(llama_context * ctx, const common_params
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);
@ -547,7 +547,7 @@ static results_perplexity perplexity(llama_context * ctx, const common_params &
const auto t_start = std::chrono::high_resolution_clock::now();
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
for (int j = 0; j < num_batches; ++j) {
const int batch_start = start + j * n_batch;
@ -924,7 +924,7 @@ static void hellaswag_score(llama_context * ctx, const common_params & params) {
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@ -1203,7 +1203,7 @@ static void winogrande_score(llama_context * ctx, const common_params & params)
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@ -1575,7 +1575,7 @@ static void multiple_choice_score(llama_context * ctx, const common_params & par
return;
}
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// decode all tasks [i0, i1)
if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) {
@ -1765,7 +1765,7 @@ static void kl_divergence(llama_context * ctx, const common_params & params) {
}
// clear the KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
llama_batch batch = llama_batch_init(n_batch, 0, 1);

View File

@ -1,6 +1,6 @@
#include "ggml.h"
#include "llama.h"
#include "llama-context.h"
#include "llama-model.h"
#include "common.h"
#include <algorithm>
@ -328,7 +328,7 @@ int main(int argc, char ** argv) {
}
}
const auto & tensors = llama_internal_get_tensor_map(ctx);
const auto & tensors = llama_internal_get_tensor_map(model);
// check layer tensors
int included_layers = 0;

View File

@ -83,7 +83,7 @@ static void batch_add_seq(llama_batch & batch, const std::vector<int32_t> & toke
static void batch_decode(llama_context * ctx, llama_batch & batch, float * output, int n_seq, int n_embd) {
// clear previous kv_cache values (irrelevant for embeddings)
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
// run model
LOG_INF("%s: n_tokens = %d, n_seq = %d\n", __func__, batch.n_tokens, n_seq);

View File

@ -891,7 +891,7 @@ static int apply_chat_template(const struct common_chat_templates * tmpls, Llama
// Function to tokenize the prompt
static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt,
std::vector<llama_token> & prompt_tokens, const LlamaData & llama_data) {
const bool is_first = llama_get_kv_cache_used_cells(llama_data.context.get()) == 0;
const bool is_first = llama_kv_self_used_cells(llama_data.context.get()) == 0;
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
prompt_tokens.resize(n_prompt_tokens);
@ -907,7 +907,7 @@ static int tokenize_prompt(const llama_vocab * vocab, const std::string & prompt
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
const int n_ctx_used = llama_kv_self_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf(LOG_COL_DEFAULT "\n");
printe("context size exceeded\n");

View File

@ -15,7 +15,7 @@ int main(int argc, char ** argv) {
return 1;
}
print_build_info();
common_init();
if (params.n_predict < 0) {
params.n_predict = 16;
@ -196,7 +196,7 @@ int main(int argc, char ** argv) {
fprintf(stderr, "%s : seq 0 copied, %zd bytes\n", __func__, ncopy);
// erase whole kv
llama_kv_cache_clear(ctx3);
llama_kv_self_clear(ctx3);
fprintf(stderr, "%s : kv cache cleared\n", __func__);
// restore kv into seq 1

View File

@ -2113,7 +2113,7 @@ struct server_context {
SRV_DBG("%s", "clearing KV cache\n");
// clear the entire KV cache
llama_kv_cache_clear(ctx);
llama_kv_self_clear(ctx);
clean_kv_cache = false;
}
@ -2655,8 +2655,8 @@ struct server_context {
res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
res->t_start = metrics.t_start;
res->kv_cache_tokens_count = llama_get_kv_cache_token_count(ctx);
res->kv_cache_used_cells = llama_get_kv_cache_used_cells(ctx);
res->kv_cache_tokens_count = llama_kv_self_n_tokens(ctx);
res->kv_cache_used_cells = llama_kv_self_used_cells(ctx);
res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
res->t_prompt_processing_total = metrics.t_prompt_processing_total;
@ -2772,7 +2772,7 @@ struct server_context {
// Erase token cache
const size_t n_erased = slot->cache_tokens.size();
llama_kv_cache_seq_rm(ctx, slot->id, -1, -1);
llama_kv_self_seq_rm(ctx, slot->id, -1, -1);
slot->cache_tokens.clear();
auto res = std::make_unique<server_task_result_slot_erase>();
@ -2840,8 +2840,8 @@ struct server_context {
SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
llama_kv_self_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_self_seq_add(ctx, slot.id, n_keep + n_discard, slot.n_past, -n_discard);
if (slot.params.cache_prompt) {
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++) {
@ -3032,8 +3032,8 @@ struct server_context {
const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
llama_kv_cache_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_cache_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
llama_kv_self_seq_rm (ctx, slot.id, head_p, head_c);
llama_kv_self_seq_add(ctx, slot.id, head_c, head_c + n_match, kv_shift);
for (size_t i = 0; i < n_match; i++) {
slot.cache_tokens[head_p + i] = slot.cache_tokens[head_c + i];
@ -3071,9 +3071,9 @@ struct server_context {
}
// keep only the common part
if (!llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1)) {
if (!llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1)) {
// could not partially delete (likely using a non-Transformer model)
llama_kv_cache_seq_rm(ctx, slot.id, -1, -1);
llama_kv_self_seq_rm(ctx, slot.id, -1, -1);
// there is no common part left
slot.n_past = 0;
@ -3313,7 +3313,7 @@ struct server_context {
slot.cache_tokens.push_back(id);
slot.cache_tokens.insert(slot.cache_tokens.end(), ids.begin(), ids.end() - 1);
llama_kv_cache_seq_rm(ctx, slot.id, slot.n_past, -1);
llama_kv_self_seq_rm(ctx, slot.id, slot.n_past, -1);
for (size_t i = 0; i < ids.size(); ++i) {
completion_token_output result;

View File

@ -302,7 +302,7 @@ class ServerPreset:
server.model_hf_repo = "ggml-org/models"
server.model_hf_file = "tinyllamas/stories260K.gguf"
server.model_alias = "tinyllama-2"
server.n_ctx = 256
server.n_ctx = 512
server.n_batch = 32
server.n_slots = 2
server.n_predict = 64

View File

@ -98,7 +98,7 @@ int main(int argc, char ** argv) {
auto generate = [&](const std::string & prompt) {
std::string response;
const bool is_first = llama_get_kv_cache_used_cells(ctx) == 0;
const bool is_first = llama_kv_self_used_cells(ctx) == 0;
// tokenize the prompt
const int n_prompt_tokens = -llama_tokenize(vocab, prompt.c_str(), prompt.size(), NULL, 0, is_first, true);
@ -113,7 +113,7 @@ int main(int argc, char ** argv) {
while (true) {
// check if we have enough space in the context to evaluate this batch
int n_ctx = llama_n_ctx(ctx);
int n_ctx_used = llama_get_kv_cache_used_cells(ctx);
int n_ctx_used = llama_kv_self_used_cells(ctx);
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");

View File

@ -217,7 +217,7 @@ int main(int argc, char ** argv) {
{
LOG_DBG("clear kv cache from any extra tokens, n_past = %d\n", n_past);
llama_kv_cache_seq_rm(ctx_tgt, 0, n_past, -1);
llama_kv_self_seq_rm(ctx_tgt, 0, n_past, -1);
}
if ((params.n_predict >= 0 && n_predict > params.n_predict) || has_eos) {

View File

@ -420,14 +420,14 @@ int main(int argc, char ** argv) {
{
LOG_DBG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
llama_kv_cache_seq_keep(ctx_dft, s_keep);
llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
llama_kv_cache_seq_keep(ctx_dft, 0);
llama_kv_self_seq_keep(ctx_dft, s_keep);
llama_kv_self_seq_cp (ctx_dft, s_keep, 0, -1, -1);
llama_kv_self_seq_keep(ctx_dft, 0);
llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
llama_kv_cache_seq_keep(ctx_tgt, s_keep);
llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
llama_kv_cache_seq_keep(ctx_tgt, 0);
llama_kv_self_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
llama_kv_self_seq_keep(ctx_tgt, s_keep);
llama_kv_self_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
llama_kv_self_seq_keep(ctx_tgt, 0);
}
for (int s = 0; s < n_seq_dft; ++s) {
@ -444,7 +444,7 @@ int main(int argc, char ** argv) {
common_batch_clear(batch_dft);
common_batch_add (batch_dft, token_id, n_past_dft, { 0 }, true);
llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
llama_kv_self_seq_rm(ctx_dft, 0, n_past_dft, -1);
// LOG_DBG("dft batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_dft, batch_dft).c_str());
llama_decode(ctx_dft, batch_dft);
@ -503,8 +503,8 @@ int main(int argc, char ** argv) {
if (n_seq_cur < n_seq_dft && cur_p->data[f].p > p_draft_split) {
LOG_DBG("splitting seq %3d into %3d\n", s, n_seq_cur);
llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
llama_kv_self_seq_rm(ctx_dft, n_seq_cur, -1, -1);
llama_kv_self_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
// all previous tokens from this branch are now also part of the new branch
for (int t = 0; t < batch_tgt.n_tokens; ++t) {
@ -585,9 +585,9 @@ int main(int argc, char ** argv) {
// evaluate the target model on the drafted tokens
{
llama_kv_cache_seq_keep(ctx_tgt, 0);
llama_kv_self_seq_keep(ctx_tgt, 0);
for (int s = 1; s < n_seq_dft; ++s) {
llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
llama_kv_self_seq_cp(ctx_tgt, 0, s, -1, -1);
}
// LOG_DBG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt).c_str());

View File

@ -60,6 +60,7 @@ extern "C" {
struct llama_model;
struct llama_context;
struct llama_sampler;
struct llama_kv_cache;
typedef int32_t llama_pos;
typedef int32_t llama_token;
@ -469,7 +470,8 @@ extern "C" {
DEPRECATED(LLAMA_API int32_t llama_n_vocab (const struct llama_vocab * vocab), "use llama_vocab_n_tokens instead");
LLAMA_API const struct llama_model * llama_get_model (const struct llama_context * ctx);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
LLAMA_API struct llama_kv_cache * llama_get_kv_self ( struct llama_context * ctx);
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx); // TODO: rename to llama_get_pooling_type
LLAMA_API const struct llama_vocab * llama_model_get_vocab(const struct llama_model * model);
LLAMA_API enum llama_rope_type llama_model_rope_type(const struct llama_model * model);
@ -586,7 +588,7 @@ extern "C" {
// KV cache
//
// TODO: remove llama_kv_cache_view_* API
// TODO: start using struct llama_kv_cache
// Information associated with an individual cell in the KV cache view.
struct llama_kv_cache_view_cell {
@ -641,13 +643,19 @@ extern "C" {
// Returns the number of tokens in the KV cache (slow, use only for debug)
// If a KV cell has multiple sequences assigned to it, it will be counted multiple times
LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
LLAMA_API int32_t llama_kv_self_n_tokens(const struct llama_context * ctx);
DEPRECATED(LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx),
"use llama_kv_self_n_tokens instead");
// Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
LLAMA_API int32_t llama_kv_self_used_cells(const struct llama_context * ctx);
DEPRECATED(LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx),
"use llama_kv_self_used_cells instead");
// Clear the KV cache - both cell info is erased and KV data is zeroed
LLAMA_API void llama_kv_cache_clear(
LLAMA_API void llama_kv_self_clear(
struct llama_context * ctx);
// Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
@ -655,7 +663,7 @@ extern "C" {
// seq_id < 0 : match any sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API bool llama_kv_cache_seq_rm(
LLAMA_API bool llama_kv_self_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
@ -665,7 +673,7 @@ extern "C" {
// Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_cp(
LLAMA_API void llama_kv_self_seq_cp(
struct llama_context * ctx,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
@ -673,17 +681,17 @@ extern "C" {
llama_pos p1);
// Removes all tokens that do not belong to the specified sequence
LLAMA_API void llama_kv_cache_seq_keep(
LLAMA_API void llama_kv_self_seq_keep(
struct llama_context * ctx,
llama_seq_id seq_id);
// Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
// - explicitly with llama_kv_self_update()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_add(
LLAMA_API void llama_kv_self_seq_add(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
@ -693,10 +701,10 @@ extern "C" {
// Integer division of the positions by factor of `d > 1`
// If the KV cache is RoPEd, the KV data is updated accordingly:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
// - explicitly with llama_kv_self_update()
// p0 < 0 : [0, p1]
// p1 < 0 : [p0, inf)
LLAMA_API void llama_kv_cache_seq_div(
LLAMA_API void llama_kv_self_seq_div(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
@ -704,24 +712,76 @@ extern "C" {
int d);
// Returns the largest position present in the KV cache for the specified sequence
LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
LLAMA_API llama_pos llama_kv_self_seq_pos_max(
struct llama_context * ctx,
llama_seq_id seq_id);
// TODO: the llama_kv_cache_defrag and llama_kv_cache_update API tightly couples llama_context with llama_kv_cache
// how to avoid this?
llama_seq_id seq_id);
// Defragment the KV cache
// This will be applied:
// - lazily on next llama_decode()
// - explicitly with llama_kv_cache_update()
LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx);
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
LLAMA_API void llama_kv_cache_update(struct llama_context * ctx);
// - explicitly with llama_kv_self_update()
LLAMA_API void llama_kv_self_defrag(struct llama_context * ctx);
// Check if the context supports KV cache shifting
LLAMA_API bool llama_kv_cache_can_shift(struct llama_context * ctx);
LLAMA_API bool llama_kv_self_can_shift(const struct llama_context * ctx);
// Apply the KV cache updates (such as K-shifts, defragmentation, etc.)
LLAMA_API void llama_kv_self_update(struct llama_context * ctx);
DEPRECATED(LLAMA_API void llama_kv_cache_clear(
struct llama_context * ctx),
"use llama_kv_self_clear instead");
DEPRECATED(LLAMA_API bool llama_kv_cache_seq_rm(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1),
"use llama_kv_self_seq_rm instead");
DEPRECATED(LLAMA_API void llama_kv_cache_seq_cp(
struct llama_context * ctx,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1),
"use llama_kv_self_seq_cp instead");
DEPRECATED(LLAMA_API void llama_kv_cache_seq_keep(
struct llama_context * ctx,
llama_seq_id seq_id),
"use llama_kv_self_seq_keep instead");
DEPRECATED(LLAMA_API void llama_kv_cache_seq_add(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta),
"use llama_kv_self_seq_add instead");
DEPRECATED(LLAMA_API void llama_kv_cache_seq_div(
struct llama_context * ctx,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d),
"use llama_kv_self_seq_div instead");
DEPRECATED(LLAMA_API llama_pos llama_kv_cache_seq_pos_max(
struct llama_context * ctx,
llama_seq_id seq_id),
"use llama_kv_self_seq_pos_max instead");
DEPRECATED(LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx),
"use llama_kv_self_defrag instead");
DEPRECATED(LLAMA_API bool llama_kv_cache_can_shift(const struct llama_context * ctx),
"use llama_kv_self_can_shift instead");
DEPRECATED(LLAMA_API void llama_kv_cache_update(struct llama_context * ctx),
"use llama_kv_self_update instead");
//
// State / sessions

View File

@ -15,18 +15,21 @@ add_library(llama
llama-chat.cpp
llama-context.cpp
llama-grammar.cpp
llama-graph.cpp
llama-hparams.cpp
llama-impl.cpp
llama-io.cpp
llama-kv-cache.cpp
llama-memory.cpp
llama-mmap.cpp
llama-model-loader.cpp
llama-model.cpp
llama-quant.cpp
llama-sampling.cpp
llama-vocab.cpp
unicode.h
unicode.cpp
unicode-data.cpp
unicode.cpp
unicode.h
)
target_include_directories(llama PUBLIC . ../include ../common)

View File

@ -4,14 +4,13 @@
#include "llama-mmap.h"
#include "llama-model.h"
#include <algorithm>
#include <map>
#include <cassert>
#include <stdexcept>
// vec
struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
return nullptr;
}
@ -19,7 +18,7 @@ struct ggml_tensor * llama_adapter_cvec::tensor_for(int il) const {
return tensors[il];
}
struct ggml_tensor * llama_adapter_cvec::apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const {
ggml_tensor * llama_adapter_cvec::apply_to(ggml_context * ctx, ggml_tensor * cur, int il) const {
ggml_tensor * layer_dir = tensor_for(il);
if (layer_dir != nullptr) {
cur = ggml_add(ctx, cur, layer_dir);
@ -40,7 +39,7 @@ bool llama_adapter_cvec::init(const llama_model & model) {
auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
struct ggml_init_params params = {
ggml_init_params params = {
/*.mem_size =*/ hparams.n_layer*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
@ -91,7 +90,7 @@ bool llama_adapter_cvec::init(const llama_model & model) {
return true;
}
int32_t llama_adapter_cvec::apply(
bool llama_adapter_cvec::apply(
const llama_model & model,
const float * data,
size_t len,
@ -104,17 +103,17 @@ int32_t llama_adapter_cvec::apply(
// disable the current control vector (but leave allocated for later)
layer_start = -1;
layer_end = -1;
return 0;
return true;
}
if (n_embd != (int) hparams.n_embd) {
LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
return 1;
return false;
}
if (tensors.empty()) {
if (!init(model)) {
return 1;
return false;
}
}
@ -130,12 +129,12 @@ int32_t llama_adapter_cvec::apply(
}
}
return 0;
return true;
}
// lora
llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor * w) {
llama_adapter_lora_weight * llama_adapter_lora::get_weight(ggml_tensor * w) {
const std::string name(w->name);
const auto pos = ab_map.find(name);
@ -146,11 +145,11 @@ llama_adapter_lora_weight * llama_adapter_lora::get_weight(struct ggml_tensor *
return nullptr;
}
static void llama_adapter_lora_init_impl(struct llama_model & model, const char * path_lora, struct llama_adapter_lora & adapter) {
static void llama_adapter_lora_init_impl(llama_model & model, const char * path_lora, llama_adapter_lora & adapter) {
LLAMA_LOG_INFO("%s: loading lora adapter from '%s' ...\n", __func__, path_lora);
ggml_context * ctx_init;
struct gguf_init_params meta_gguf_params = {
gguf_init_params meta_gguf_params = {
/* .no_alloc = */ true,
/* .ctx = */ &ctx_init,
};
@ -201,7 +200,7 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
auto it = ctx_map.find(buft);
if (it == ctx_map.end()) {
// add a new context
struct ggml_init_params params = {
ggml_init_params params = {
/*.mem_size =*/ n_tensors*ggml_tensor_overhead(),
/*.mem_buffer =*/ NULL,
/*.no_alloc =*/ true,
@ -264,7 +263,7 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
throw std::runtime_error("LoRA tensor '" + name + "' does not exist in base model (hint: maybe wrong base model?)");
}
struct ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
ggml_context * dev_ctx = ctx_for_buft(ggml_backend_buffer_get_type(model_tensor->buffer));
// validate tensor shape
if (is_token_embd) {
// expect B to be non-transposed, A and B are flipped; see llm_build_inp_embd()
@ -281,8 +280,8 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
}
// save tensor to adapter
struct ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
struct ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
ggml_tensor * tensor_a = ggml_dup_tensor(dev_ctx, w.a);
ggml_tensor * tensor_b = ggml_dup_tensor(dev_ctx, w.b);
ggml_set_name(tensor_a, w.a->name);
ggml_set_name(tensor_b, w.b->name);
adapter.ab_map[name] = llama_adapter_lora_weight(tensor_a, tensor_b);
@ -308,7 +307,7 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
{
llama_file gguf_file(path_lora, "rb");
std::vector<uint8_t> read_buf;
auto set_tensor = [&](struct ggml_tensor * orig, struct ggml_tensor * dev) {
auto set_tensor = [&](ggml_tensor * orig, ggml_tensor * dev) {
size_t offs = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), gguf_find_tensor(ctx_gguf.get(), orig->name));
size_t size = ggml_nbytes(orig);
read_buf.resize(size);
@ -327,8 +326,8 @@ static void llama_adapter_lora_init_impl(struct llama_model & model, const char
LLAMA_LOG_INFO("%s: loaded %zu tensors from lora file\n", __func__, adapter.ab_map.size()*2);
}
struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model, const char * path_lora) {
struct llama_adapter_lora * adapter = new llama_adapter_lora();
llama_adapter_lora * llama_adapter_lora_init(llama_model * model, const char * path_lora) {
llama_adapter_lora * adapter = new llama_adapter_lora();
try {
llama_adapter_lora_init_impl(*model, path_lora, *adapter);
@ -342,6 +341,6 @@ struct llama_adapter_lora * llama_adapter_lora_init(struct llama_model * model,
return nullptr;
}
void llama_adapter_lora_free(struct llama_adapter_lora * adapter) {
void llama_adapter_lora_free(llama_adapter_lora * adapter) {
delete adapter;
}

View File

@ -15,11 +15,11 @@
//
struct llama_adapter_cvec {
struct ggml_tensor * tensor_for(int il) const;
ggml_tensor * tensor_for(int il) const;
struct ggml_tensor * apply_to(struct ggml_context * ctx, struct ggml_tensor * cur, int il) const;
ggml_tensor * apply_to(ggml_context * ctx, ggml_tensor * cur, int il) const;
int32_t apply(
bool apply(
const llama_model & model,
const float * data,
size_t len,
@ -36,7 +36,7 @@ private:
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
std::vector<struct ggml_tensor *> tensors; // per layer
std::vector<ggml_tensor *> tensors; // per layer
};
//
@ -44,8 +44,8 @@ private:
//
struct llama_adapter_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
ggml_tensor * a = nullptr;
ggml_tensor * b = nullptr;
// get actual scale based on rank and alpha
float get_scale(float alpha, float adapter_scale) const {
@ -55,12 +55,12 @@ struct llama_adapter_lora_weight {
}
llama_adapter_lora_weight() = default;
llama_adapter_lora_weight(struct ggml_tensor * a, struct ggml_tensor * b) : a(a), b(b) {}
llama_adapter_lora_weight(ggml_tensor * a, ggml_tensor * b) : a(a), b(b) {}
};
struct llama_adapter_lora {
// map tensor name to lora_a_b
std::unordered_map<std::string, struct llama_adapter_lora_weight> ab_map;
std::unordered_map<std::string, llama_adapter_lora_weight> ab_map;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
@ -70,5 +70,7 @@ struct llama_adapter_lora {
llama_adapter_lora() = default;
~llama_adapter_lora() = default;
llama_adapter_lora_weight * get_weight(struct ggml_tensor * w);
llama_adapter_lora_weight * get_weight(ggml_tensor * w);
};
using llama_adapter_loras = std::unordered_map<llama_adapter_lora *, float>;

View File

@ -42,9 +42,9 @@ struct llama_sbatch {
bool logits_all; // TODO: remove once lctx.logits_all is removed too
// sorted indices into the batch
std::vector<size_t> ids;
std::vector<int64_t> ids;
// batch indices of the output
std::vector<size_t> out_ids;
std::vector<int64_t> out_ids;
std::vector<llama_sbatch_seq> seq;
const llama_batch * batch = nullptr;

File diff suppressed because it is too large Load Diff

View File

@ -3,66 +3,210 @@
#include "llama.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-model.h"
#include "llama-kv-cache.h"
#include "llama-graph.h"
#include "llama-adapter.h"
#include "ggml-cpp.h"
#include <map>
#include <unordered_map>
#include <vector>
#include <set>
struct llama_model;
struct llama_kv_cache;
class llama_io_read_i;
class llama_io_write_i;
struct llama_context {
llama_context(const llama_model & model)
: model(model)
, t_start_us(model.t_start_us)
, t_load_us(model.t_load_us) {}
// init scheduler and compute buffers, reserve worst-case graphs
llama_context(
const llama_model & model,
llama_context_params params);
const struct llama_model & model;
~llama_context();
struct llama_cparams cparams;
struct llama_sbatch sbatch; // TODO: revisit if needed
struct llama_kv_cache kv_self;
struct llama_adapter_cvec cvec;
void synchronize();
std::unordered_map<struct llama_adapter_lora *, float> lora;
const llama_model & get_model() const;
std::vector<ggml_backend_ptr> backends;
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
uint32_t n_ctx() const;
uint32_t n_ctx_per_seq() const;
uint32_t n_batch() const;
uint32_t n_ubatch() const;
uint32_t n_seq_max() const;
ggml_backend_t backend_cpu = nullptr;
uint32_t n_threads() const;
uint32_t n_threads_batch() const;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;
llama_kv_cache * get_kv_self();
const llama_kv_cache * get_kv_self() const;
bool has_evaluated_once = false;
void kv_self_update();
mutable int64_t t_start_us;
mutable int64_t t_load_us;
mutable int64_t t_p_eval_us = 0;
mutable int64_t t_eval_us = 0;
enum llama_pooling_type pooling_type() const;
mutable int64_t t_compute_start_us = 0;
mutable int64_t n_queued_tokens = 0;
float * get_logits();
float * get_logits_ith(int32_t i);
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
mutable int32_t n_eval = 0; // number of eval calls
float * get_embeddings();
float * get_embeddings_ith(int32_t i);
float * get_embeddings_seq(llama_seq_id seq_id);
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_ptr buf_output;
void attach_threadpool(
ggml_threadpool_t threadpool,
ggml_threadpool_t threadpool_batch);
void detach_threadpool();
void set_n_threads(int32_t n_threads, int32_t n_threads_batch);
void set_abort_callback(bool (*abort_callback)(void * data), void * abort_callback_data);
void set_embeddings (bool value);
void set_causal_attn(bool value);
void set_adapter_lora(
llama_adapter_lora * adapter,
float scale);
bool rm_adapter_lora(
llama_adapter_lora * adapter);
void clear_adapter_lora();
bool apply_adapter_cvec(
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
int encode(llama_batch & inp_batch);
int decode(llama_batch & inp_batch);
//
// state save/load
//
size_t state_get_size();
size_t state_get_data( uint8_t * dst, size_t size);
size_t state_set_data(const uint8_t * src, size_t size);
size_t state_seq_get_size(llama_seq_id seq_id);
size_t state_seq_get_data(llama_seq_id seq_id, uint8_t * dst, size_t size);
size_t state_seq_set_data(llama_seq_id seq_id, const uint8_t * src, size_t size);
bool state_load_file(
const char * filepath,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
bool state_save_file(
const char * filepath,
const llama_token * tokens,
size_t n_token_count);
size_t state_seq_load_file(
llama_seq_id seq_id,
const char * filepath,
llama_token * tokens_out,
size_t n_token_capacity,
size_t * n_token_count_out);
size_t state_seq_save_file(
llama_seq_id seq_id,
const char * filepath,
const llama_token * tokens,
size_t n_token_count);
//
// perf
//
llama_perf_context_data perf_get_data() const;
void perf_reset();
private:
//
// output
//
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
int32_t output_reserve(int32_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
// TODO: maybe remove this
void output_reorder();
//
// graph
//
int32_t graph_max_nodes() const;
// zero-out inputs and create the ctx_compute for the compute graph
ggml_cgraph * graph_init();
llm_graph_result_ptr graph_build(
ggml_context * ctx,
ggml_cgraph * gf,
const llama_ubatch & ubatch,
llm_graph_type gtype);
// returns the result of ggml_backend_sched_graph_compute_async execution
ggml_status graph_compute(
ggml_cgraph * gf,
bool batched);
llm_graph_cb graph_get_cb() const;
// used by kv_self_update()
ggml_tensor * build_rope_shift(
ggml_context * ctx0,
ggml_tensor * cur,
ggml_tensor * shift,
ggml_tensor * factors,
ggml_backend_buffer * bbuf) const;
llm_graph_result_ptr build_kv_self_shift(
ggml_context * ctx0,
ggml_cgraph * gf) const;
llm_graph_result_ptr build_kv_self_defrag(
ggml_context * ctx0,
ggml_cgraph * gf) const;
// TODO: read/write lora adapters and cvec
size_t state_write_data(llama_io_write_i & io);
size_t state_read_data (llama_io_read_i & io);
size_t state_seq_write_data(llama_io_write_i & io, llama_seq_id seq_id);
size_t state_seq_read_data (llama_io_read_i & io, llama_seq_id seq_id);
//
// members
//
const llama_model & model;
llama_cparams cparams;
llama_adapter_cvec cvec;
llama_adapter_loras loras;
llama_sbatch sbatch;
llama_cross cross; // TODO: tmp for handling cross-attention - need something better probably
std::unique_ptr<llama_kv_cache_unified> kv_self;
// TODO: remove
bool logits_all = false;
// decode output (2-dimensional array: [n_outputs][n_vocab])
size_t logits_size = 0; // capacity (of floats) for logits
float * logits = nullptr;
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
size_t output_size = 0; // capacity (of tokens positions) for the output buffers
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
bool logits_all = false;
// embeddings output (2-dimensional array: [n_outputs][n_embd])
// populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
size_t embd_size = 0; // capacity (of floats) for embeddings
@ -72,57 +216,47 @@ struct llama_context {
// populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
std::map<llama_seq_id, std::vector<float>> embd_seq;
// whether we are computing encoder output or decoder output
bool is_encoding = false;
int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
int32_t n_outputs_max = 0; // capacity (of tokens positions) for the output buffers
// TODO: find a better way to accommodate mutli-dimension position encoding methods
// number of position id each token get, 1 for each token in most cases.
// when using m-rope, it will be 3 position ids per token to representing 3 dimension coordinate.
int n_pos_per_token = 1;
std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
// output of the encoder part of the encoder-decoder models
std::vector<float> embd_enc;
std::vector<std::set<llama_seq_id>> seq_ids_enc;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
ggml_backend_sched_ptr sched;
ggml_backend_t backend_cpu = nullptr;
std::vector<ggml_backend_ptr> backends;
ggml_context_ptr ctx_compute;
ggml_threadpool_t threadpool = nullptr;
ggml_threadpool_t threadpool_batch = nullptr;
ggml_abort_callback abort_callback = nullptr;
void * abort_callback_data = nullptr;
// input tensors
struct ggml_tensor * inp_tokens; // I32 [n_batch]
struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
struct ggml_tensor * inp_pos; // I32 [n_batch]
struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_KQ_mask_swa; // F32 [kv_size, n_batch]
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
struct ggml_tensor * inp_cls; // I32 [n_batch]
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
std::vector<std::pair<ggml_backend_t, ggml_backend_set_n_threads_t>> set_n_threads_fns;
// buffer types used for the compute buffer of each backend
std::vector<ggml_backend_t> backend_ptrs;
std::vector<ggml_backend_buffer_type_t> backend_buft;
// memory buffers used to evaluate the model
std::vector<uint8_t> buf_compute_meta;
// host buffer for the model output (logits and embeddings)
ggml_backend_buffer_ptr buf_output;
bool has_evaluated_once = false;
// perf
mutable int64_t t_start_us = 0;
mutable int64_t t_load_us = 0;
mutable int64_t t_p_eval_us = 0;
mutable int64_t t_eval_us = 0;
mutable int64_t t_compute_start_us = 0;
mutable int64_t n_queued_tokens = 0;
mutable int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
mutable int32_t n_eval = 0; // number of eval calls
};
// TODO: make these methods of llama_context
void llama_set_k_shift(struct llama_context & lctx);
void llama_set_s_copy(struct llama_context & lctx);
void llama_set_inputs(llama_context & lctx, const llama_ubatch & ubatch);
// Make sure enough space is available for outputs.
// Returns max number of outputs for which space was reserved.
size_t llama_output_reserve(struct llama_context & lctx, size_t n_outputs);
// make the outputs have the same order they had in the user-provided batch
void llama_output_reorder(struct llama_context & ctx);
// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(struct llama_context * ctx);

1695
src/llama-graph.cpp Normal file

File diff suppressed because it is too large Load Diff

576
src/llama-graph.h Normal file
View File

@ -0,0 +1,576 @@
#pragma once
#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-adapter.h"
#include <cstdint>
#include <vector>
#include <memory>
#include <set>
#include <functional>
struct ggml_cgraph;
struct ggml_context;
struct ggml_tensor;
struct llama_ubatch;
struct llama_cparams;
class llama_memory_i;
class llama_kv_cache_unified;
// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
LLM_GRAPH_TYPE_DEFAULT,
LLM_GRAPH_TYPE_ENCODER,
LLM_GRAPH_TYPE_DECODER,
};
enum llm_ffn_op_type {
LLM_FFN_SILU,
LLM_FFN_GELU,
LLM_FFN_RELU,
LLM_FFN_RELU_SQR,
LLM_FFN_SWIGLU,
};
enum llm_ffn_gate_type {
LLM_FFN_SEQ,
LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};
enum llm_norm_type {
LLM_NORM,
LLM_NORM_RMS,
LLM_NORM_GROUP,
};
// TODO: tmp - need something better to pass the data from the encoder to the decoder
struct llama_cross {
// the output embeddings from the encoder as a ggml tensor
// TODO: this needs more work to be correct, for now copy the embeddings data to host memory
// ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
//ggml_tensor * t_embd = nullptr;
int64_t n_embd = 0;
int64_t n_enc = 0;
// embeddings data copied to host memory (tmp)
std::vector<float> v_embd;
// needed to construct the cross-attention mask in the decoder
std::vector<std::set<llama_seq_id>> seq_ids_enc;
};
//
// llm_graph_input
//
class llm_graph_input_i {
public:
virtual ~llm_graph_input_i() = default;
virtual void set_input(const llama_ubatch * ubatch) = 0;
};
using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;
class llm_graph_input_embd : public llm_graph_input_i {
public:
llm_graph_input_embd() = default;
virtual ~llm_graph_input_embd() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * tokens = nullptr; // I32 [n_batch]
ggml_tensor * embd = nullptr; // F32 [n_embd, n_batch]
};
class llm_graph_input_pos : public llm_graph_input_i {
public:
llm_graph_input_pos(int64_t n_pos_per_token) : n_pos_per_token(n_pos_per_token) {}
virtual ~llm_graph_input_pos() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos = nullptr; // I32 [n_batch]
const int64_t n_pos_per_token = 1;
};
class llm_graph_input_pos_bucket : public llm_graph_input_i {
public:
llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
virtual ~llm_graph_input_pos_bucket() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]
const llama_hparams & hparams;
};
class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
public:
llm_graph_input_pos_bucket_kv(
const llama_hparams & hparams,
const llama_kv_cache_unified * kv_self) : hparams(hparams), kv_self(kv_self) {}
virtual ~llm_graph_input_pos_bucket_kv() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]
const llama_hparams & hparams;
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_out_ids : public llm_graph_input_i {
public:
llm_graph_input_out_ids(
const llama_hparams & hparams,
const llama_cparams & cparams,
int32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
virtual ~llm_graph_input_out_ids() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * out_ids; // I32 [n_outputs]
const llama_hparams & hparams;
const llama_cparams & cparams;
const int32_t n_outputs;
};
class llm_graph_input_mean : public llm_graph_input_i {
public:
llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
virtual ~llm_graph_input_mean() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * mean; // F32 [n_batch, n_batch]
const llama_cparams & cparams;
};
class llm_graph_input_cls : public llm_graph_input_i {
public:
llm_graph_input_cls(const llama_cparams & cparams) : cparams(cparams) {}
virtual ~llm_graph_input_cls() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * cls; // I32 [n_batch]
const llama_cparams & cparams;
};
class llm_graph_input_s_copy : public llm_graph_input_i {
public:
llm_graph_input_s_copy(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_copy() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_copy; // I32 [kv_size]
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_s_mask : public llm_graph_input_i {
public:
llm_graph_input_s_mask(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {}
virtual ~llm_graph_input_s_mask() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * s_mask; // F32 [1, n_kv]
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_cross_embd : public llm_graph_input_i {
public:
llm_graph_input_cross_embd(
const llama_cross * cross) : cross(cross) {}
virtual ~llm_graph_input_cross_embd() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]
const llama_cross * cross;
};
class llm_graph_input_attn_no_cache : public llm_graph_input_i {
public:
llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
hparams(hparams),
cparams(cparams) {
}
~llm_graph_input_attn_no_cache() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kq_mask() const { return kq_mask_cnv; }
ggml_tensor * kq_mask = nullptr; // F32 [n_tokens, n_batch]
ggml_tensor * kq_mask_cnv = nullptr; // [n_tokens, n_batch]
const llama_hparams & hparams;
const llama_cparams & cparams;
};
class llm_graph_input_attn_kv_unified : public llm_graph_input_i {
public:
llm_graph_input_attn_kv_unified(
const llama_hparams & hparams,
const llama_cparams & cparams,
const llama_kv_cache_unified * kv_self) :
hparams(hparams),
cparams(cparams),
kv_self(kv_self) {
}
~llm_graph_input_attn_kv_unified() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }
ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }
ggml_tensor * self_kq_mask = nullptr; // F32 [n_kv, n_batch]
ggml_tensor * self_kq_mask_cnv = nullptr; // [n_kv, n_batch]
ggml_tensor * self_kq_mask_swa = nullptr; // F32 [n_kv, n_batch]
ggml_tensor * self_kq_mask_swa_cnv = nullptr; // [n_kv, n_batch]
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_kv_cache_unified * kv_self;
};
class llm_graph_input_attn_cross : public llm_graph_input_i {
public:
llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
~llm_graph_input_attn_cross() = default;
void set_input(const llama_ubatch * ubatch) override;
ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }
ggml_tensor * cross_kq_mask = nullptr; // F32 [n_outputs_enc, n_batch]
ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch]
const llama_cross * cross = nullptr;
};
//
// llm_graph_result
//
// these objects deliver the result from the graph build process back to the llama_context
// note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
// specific data, by calling the set_inputs() method
// along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
// these are used by the llama_context to extact the relevant data, based on the compute parameters
class llm_graph_result_i {
public:
virtual ~llm_graph_result_i() = default;
virtual ggml_tensor * get_logits() = 0;
virtual ggml_tensor * get_embd() = 0;
virtual ggml_tensor * get_embd_pooled() = 0;
virtual void set_inputs(const llama_ubatch * ubatch) = 0;
};
using llm_graph_result_ptr = std::unique_ptr<llm_graph_result_i>;
class llm_graph_result : public llm_graph_result_i {
public:
virtual ~llm_graph_result() = default;
ggml_tensor * get_logits() override { return t_logits; }
ggml_tensor * get_embd() override { return t_embd; }
ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }
void set_inputs(const llama_ubatch * ubatch) override {
for (auto & input : inputs) {
input->set_input(ubatch);
}
}
llm_graph_input_i * add_input(llm_graph_input_ptr input) {
inputs.emplace_back(std::move(input));
return inputs.back().get();
}
// important graph nodes
ggml_tensor * t_logits = nullptr;
ggml_tensor * t_embd = nullptr;
ggml_tensor * t_embd_pooled = nullptr;
std::vector<llm_graph_input_ptr> inputs;
};
//
// llm_graph_context
//
// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;
struct llm_graph_params {
ggml_context * ctx;
const llm_arch arch;
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_ubatch & ubatch;
ggml_backend_sched * sched;
ggml_backend * backend_cpu;
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
const llama_memory_i * memory;
const llama_cross * cross;
int32_t n_outputs;
const llm_graph_cb & cb;
};
struct llm_graph_context {
const llm_arch arch;
const llama_hparams & hparams;
const llama_cparams & cparams;
const llama_ubatch & ubatch;
const int64_t n_embd;
const int64_t n_layer;
const int64_t n_rot;
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
const int64_t n_ctx_per_seq;
const int64_t n_head;
const int64_t n_head_kv;
const int64_t n_embd_head_k;
const int64_t n_embd_k_gqa;
const int64_t n_embd_head_v;
const int64_t n_embd_v_gqa;
const int64_t n_expert;
const int64_t n_expert_used;
const float freq_base;
const float freq_scale;
const float ext_factor;
const float attn_factor;
const float beta_fast;
const float beta_slow;
const float norm_eps;
const float norm_rms_eps;
const int32_t n_tokens;
const int32_t n_outputs;
const int32_t n_ctx_orig; // yarn
const enum llama_pooling_type pooling_type;
const enum llama_rope_type rope_type;
ggml_context * ctx0 = nullptr;
ggml_backend_sched * sched;
ggml_backend * backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?
const llama_adapter_cvec * cvec;
const llama_adapter_loras * loras;
const llama_memory_i * memory;
const llama_cross * cross;
const llm_graph_cb & cb_func;
std::unique_ptr<llm_graph_result> res;
llm_graph_context(const llm_graph_params & params);
int64_t n_pos_per_token() const;
void cb(ggml_tensor * cur, const char * name, int il) const;
//
// common
//
ggml_tensor * build_cvec(
ggml_tensor * cur,
int il) const;
// do mat_mul, while optionally apply lora
ggml_tensor * build_lora_mm(
ggml_tensor * w,
ggml_tensor * cur) const;
// do mat_mul_id, while optionally apply lora
ggml_tensor * build_lora_mm_id(
ggml_tensor * w, // ggml_tensor * as
ggml_tensor * cur, // ggml_tensor * b
ggml_tensor * ids) const;
ggml_tensor * build_norm(
ggml_tensor * cur,
ggml_tensor * mw,
ggml_tensor * mb,
llm_norm_type type,
int il) const;
ggml_tensor * build_ffn(
ggml_tensor * cur,
ggml_tensor * up,
ggml_tensor * up_b,
ggml_tensor * up_s,
ggml_tensor * gate,
ggml_tensor * gate_b,
ggml_tensor * gate_s,
ggml_tensor * down,
ggml_tensor * down_b,
ggml_tensor * down_s,
ggml_tensor * act_scales,
llm_ffn_op_type type_op,
llm_ffn_gate_type type_gate,
int il) const;
ggml_tensor * build_moe_ffn(
ggml_tensor * cur,
ggml_tensor * gate_inp,
ggml_tensor * up_exps,
ggml_tensor * gate_exps,
ggml_tensor * down_exps,
ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llm_ffn_op_type type_op,
bool norm_w,
bool scale_w,
float w_scale,
llama_expert_gating_func_type gating_op,
int il) const;
//
// inputs
//
ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
ggml_tensor * build_inp_pos() const;
ggml_tensor * build_inp_out_ids() const;
ggml_tensor * build_inp_mean() const;
ggml_tensor * build_inp_cls() const;
ggml_tensor * build_inp_s_copy() const;
ggml_tensor * build_inp_s_mask() const;
ggml_tensor * build_inp_cross_embd() const;
ggml_tensor * build_inp_pos_bucket_enc() const;
ggml_tensor * build_inp_pos_bucket_dec() const;
ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;
//
// attention
//
ggml_tensor * build_attn_mha(
ggml_cgraph * gf,
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
bool v_trans,
float kq_scale) const;
llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;
ggml_tensor * build_attn(
llm_graph_input_attn_no_cache * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const;
llm_graph_input_attn_kv_unified * build_attn_inp_kv_unified(
bool causal,
bool swa) const;
ggml_tensor * build_attn(
llm_graph_input_attn_kv_unified * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const;
llm_graph_input_attn_cross * build_attn_inp_cross() const;
ggml_tensor * build_attn(
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const;
//
// recurrent
//
ggml_tensor * build_copy_mask_state(
ggml_cgraph * gf,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const;
ggml_tensor * build_rwkv_token_shift_load(
ggml_cgraph * gf,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const;
ggml_tensor * build_rwkv_token_shift_store(
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const;
//
// pooling
//
void build_pooling(
ggml_cgraph * gf,
ggml_tensor * cls,
ggml_tensor * cls_b,
ggml_tensor * cls_out,
ggml_tensor * cls_out_b) const;
};

15
src/llama-io.cpp Normal file
View File

@ -0,0 +1,15 @@
#include "llama-io.h"
void llama_io_write_i::write_string(const std::string & str) {
uint32_t str_size = str.size();
write(&str_size, sizeof(str_size));
write(str.data(), str_size);
}
void llama_io_read_i::read_string(std::string & str) {
uint32_t str_size;
read_to(&str_size, sizeof(str_size));
str.assign((const char *) read(str_size), str_size);
}

35
src/llama-io.h Normal file
View File

@ -0,0 +1,35 @@
#pragma once
#include <cstddef>
#include <cstdint>
#include <string>
struct ggml_tensor;
class llama_io_write_i {
public:
llama_io_write_i() = default;
virtual ~llama_io_write_i() = default;
virtual void write(const void * src, size_t size) = 0;
virtual void write_tensor(const ggml_tensor * tensor, size_t offset, size_t size) = 0;
// bytes written so far
virtual size_t n_bytes() = 0;
void write_string(const std::string & str);
};
class llama_io_read_i {
public:
llama_io_read_i() = default;
virtual ~llama_io_read_i() = default;
virtual const uint8_t * read(size_t size) = 0;
virtual void read_to(void * dst, size_t size) = 0;
// bytes read so far
virtual size_t n_bytes() = 0;
void read_string(std::string & str);
};

File diff suppressed because it is too large Load Diff

View File

@ -1,12 +1,29 @@
#pragma once
#include "llama.h"
#include "llama-io.h"
#include "llama-memory.h"
#include "ggml-cpp.h"
#include <functional>
#include <set>
#include <vector>
#include <algorithm>
struct llama_cparams;
struct llama_hparams;
struct llama_ubatch;
struct llama_kv_cache : public llama_memory_i {
using llama_memory_i::llama_memory_i;
virtual int32_t get_n_tokens() const = 0;
virtual uint32_t get_used_cells() const = 0; // TODO: remove, this is too-specific to the unified cache
virtual bool get_can_shift() const = 0;
bool get_can_edit() const override { return get_can_shift(); }
};
struct llama_kv_cell {
llama_pos pos = -1;
@ -29,11 +46,105 @@ struct llama_kv_cell {
}
};
// a structure holds information about the slot found in llama_kv_cache_find_slot
struct llama_kv_cache_slot_info {
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
bool found = false; // the slot was found
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
operator bool() const { return found; }
};
// ring-buffer of cached KV data
struct llama_kv_cache {
// TODO: pimpl
// TODO: add notion of max sequences
class llama_kv_cache_unified : public llama_kv_cache {
public:
// can be used to query data from the model if needed
struct callbacks {
std::function<ggml_tensor * (uint32_t n_ctx_per_seq, int il)> get_rope_factors;
};
llama_kv_cache_unified(
const llama_hparams & hparams,
callbacks cbs);
virtual ~llama_kv_cache_unified() = default;
// TODO: become constructor
bool init(
const llama_model & model, // TODO: do not reference the model
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
uint32_t kv_size,
bool offload);
int32_t get_n_tokens() const override;
uint32_t get_used_cells() const override;
size_t total_size() const;
// TODO: better data structures to reduce the cost of this operation
llama_pos pos_max() const;
void clear() override;
void defrag() override;
bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
void seq_keep(llama_seq_id seq_id) override;
void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) override;
void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
llama_pos seq_pos_max(llama_seq_id seq_id) override;
bool get_can_shift() const override;
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// returns a structure holding information about the slot found
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
llama_kv_cache_slot_info find_slot(const llama_ubatch & batch);
// TODO: maybe not needed
uint32_t get_padding(const llama_cparams & cparams) const;
// find how many cells are currently in use
uint32_t cell_max() const;
size_t size_k_bytes() const;
size_t size_v_bytes() const;
// defrag
struct {
std::vector<uint32_t> ids;
} defrag_info;
// return true if cells have been moved
bool defrag_prepare(int32_t n_max_nodes);
// state save/load
void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const;
void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1);
// members
const llama_hparams & hparams;
callbacks cbs;
bool has_shift = false;
bool do_defrag = false;
// TODO: remove this and implement llama_kv_cache_recurrent instead
bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
bool v_trans = true; // the value tensor is transposed
bool can_shift = false;
@ -47,124 +158,30 @@ struct llama_kv_cache {
// computed before each graph build
uint32_t n = 0;
std::vector<llama_kv_cell> cells;
std::vector<ggml_tensor *> k_l; // per layer
std::vector<ggml_tensor *> v_l;
private:
ggml_type type_k = GGML_TYPE_F16;
ggml_type type_v = GGML_TYPE_F16;
std::vector<llama_kv_cell> cells;
std::vector<struct ggml_tensor *> k_l; // per layer
std::vector<struct ggml_tensor *> v_l;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
size_t total_size() const {
size_t size = 0;
for (const auto & buf : bufs) {
size += ggml_backend_buffer_get_size(buf.get());
}
void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
return size;
}
// TODO: better data structures to reduce the cost of this operation
llama_pos max_pos() const {
llama_pos max_pos = -1;
for (const auto & cell : cells) {
max_pos = std::max(max_pos, cell.pos);
}
return max_pos;
}
bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
};
// a structure holds information about the slot found in llama_kv_cache_find_slot
struct llama_kv_cache_slot_info {
std::pair<uint32_t, uint32_t> boundaries; // slot boundaries [begin, end)
bool found = false; // the slot was found
explicit llama_kv_cache_slot_info(bool found_) : found{found_} {}
llama_kv_cache_slot_info(uint32_t begin, uint32_t end) : boundaries{begin, end}, found{true} {}
operator bool() const { return found; }
};
// TODO: maybe not needed
uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams);
bool llama_kv_cache_init(
struct llama_kv_cache & cache,
const llama_model & model,
const llama_cparams & cparams,
ggml_type type_k,
ggml_type type_v,
uint32_t kv_size,
bool offload);
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// returns a structure holding information about the slot found
// Note: On success, it's important that cache.head points
// to the first cell of the slot.
struct llama_kv_cache_slot_info llama_kv_cache_find_slot(
struct llama_kv_cache & cache,
const struct llama_ubatch & batch);
// find how many cells are currently in use
uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache);
void llama_kv_cache_clear(struct llama_kv_cache & cache);
bool llama_kv_cache_seq_rm(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_cp(
struct llama_kv_cache & cache,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_keep(
struct llama_kv_cache & cache,
llama_seq_id seq_id);
void llama_kv_cache_seq_add(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta);
void llama_kv_cache_seq_div(
struct llama_kv_cache & cache,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d);
llama_pos llama_kv_cache_seq_pos_max(
struct llama_kv_cache & cache,
llama_seq_id seq_id);
void llama_kv_cache_defrag(struct llama_kv_cache & cache);
int32_t llama_get_kv_cache_token_count(const struct llama_kv_cache & kv);
int32_t llama_get_kv_cache_used_cells(const struct llama_kv_cache & kv);
bool llama_kv_cache_can_shift(const struct llama_kv_cache & kv);
//
// kv cache view
//
struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_kv_cache & kv, int32_t n_seq_max);
void llama_kv_cache_view_update(struct llama_kv_cache_view * view, const struct llama_kv_cache & kv);
// TODO: temporary reusing llama_kv_cache_unified -- implement recurrent cache and simplify llama_kv_cache_unified
//class llama_kv_cache_recurrent : public llama_kv_cache_unified {
//public:
// using llama_kv_cache_unified::llama_kv_cache_unified;
//};
//
// kv cache restore
@ -184,13 +201,15 @@ struct llama_kv_slot_restorer {
bool do_restore = false;
explicit llama_kv_slot_restorer(const struct llama_kv_cache & cache) {
llama_kv_cache_unified & cache;
explicit llama_kv_slot_restorer(llama_kv_cache_unified & cache) : cache(cache) {
old_state.head = cache.head;
old_state.n = cache.n;
}
// saves a slot information for future restoration
void save(const struct llama_kv_cache_slot_info & slot) {
void save(const llama_kv_cache_slot_info & slot) {
if (slot) {
do_restore = true;
if (slot.boundaries.first != slot.boundaries.second) {
@ -201,19 +220,68 @@ struct llama_kv_slot_restorer {
// must be explicitly called to restore the kv_cache state
// and rollback changes from all llama_kv_cache_find_slot calls
void restore(struct llama_kv_cache & cache) {
void restore() {
if (do_restore) {
cache.head = old_state.head;
cache.n = old_state.n;
if (cache.recurrent) { // recurrent models like Mamba or RWKV can't have a state partially erased
llama_kv_cache_seq_rm(cache, -1, -1, -1);
cache.seq_rm(-1, -1, -1);
} else {
for (auto & slot : slot_boundaries) {
llama_kv_cache_seq_rm(cache, -1, slot.first, slot.second);
cache.seq_rm(-1, slot.first, slot.second);
}
}
}
}
};
// TODO: maybe become part of the public llama_kv_cache in the future
int32_t llama_kv_cache_n_tokens(const llama_kv_cache * kv);
int32_t llama_kv_cache_used_cells(const llama_kv_cache * kv);
void llama_kv_cache_clear(llama_kv_cache * kv);
bool llama_kv_cache_seq_rm(
llama_kv_cache * kv,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_cp(
llama_kv_cache * kv,
llama_seq_id seq_id_src,
llama_seq_id seq_id_dst,
llama_pos p0,
llama_pos p1);
void llama_kv_cache_seq_keep(llama_kv_cache * kv, llama_seq_id seq_id);
void llama_kv_cache_seq_add(
llama_kv_cache * kv,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
llama_pos delta);
void llama_kv_cache_seq_div(
llama_kv_cache * kv,
llama_seq_id seq_id,
llama_pos p0,
llama_pos p1,
int d);
llama_pos llama_kv_cache_seq_pos_max(llama_kv_cache * kv, llama_seq_id seq_id);
void llama_kv_cache_defrag(llama_kv_cache * kv);
bool llama_kv_cache_can_shift(const llama_kv_cache * kv);
//
// kv cache view
//
llama_kv_cache_view llama_kv_cache_view_init(const llama_kv_cache & kv, int32_t n_seq_max);
void llama_kv_cache_view_update(llama_kv_cache_view * view, const llama_kv_cache * kv);

1
src/llama-memory.cpp Normal file
View File

@ -0,0 +1 @@
#include "llama-memory.h"

21
src/llama-memory.h Normal file
View File

@ -0,0 +1,21 @@
#pragma once
#include "llama.h"
// general concept of LLM memory
// the KV cache is a type of LLM memory, but there can be other types
class llama_memory_i {
public:
virtual void clear() = 0;
virtual void defrag() = 0;
virtual bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) = 0;
virtual void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) = 0;
virtual void seq_keep(llama_seq_id seq_id) = 0;
virtual void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) = 0;
virtual void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) = 0;
virtual llama_pos seq_pos_max(llama_seq_id seq_id) = 0;
virtual bool get_can_edit() const = 0;
};

File diff suppressed because it is too large Load Diff

View File

@ -2,7 +2,9 @@
#include "llama.h"
#include "llama-arch.h"
#include "llama-graph.h"
#include "llama-hparams.h"
#include "llama-memory.h"
#include "llama-vocab.h"
#include <memory>
@ -10,6 +12,8 @@
#include <unordered_map>
#include <vector>
struct llama_cparams;
struct llama_ubatch;
struct llama_model_loader;
// available models
@ -347,7 +351,7 @@ struct llama_model {
std::string desc() const;
size_t size() const;
size_t max_nodes() const;
size_t n_tensors() const;
size_t n_devices() const;
// total number of parameters in the model
@ -362,9 +366,22 @@ struct llama_model {
const struct ggml_tensor * get_tensor(const char * name) const;
// TODO: move this to new llm_arch_model_i interface
llama_memory_i * create_memory() const; // TODO: params
// TODO: move this to new llm_arch_model_i interface
llm_graph_result_ptr build_graph(
const llm_graph_params & params,
ggml_cgraph * gf,
llm_graph_type type) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
const char * llm_type_name(llm_type type);
// For internal test use
// TODO: remove
const std::vector<std::pair<std::string, ggml_tensor *>> & llama_internal_get_tensor_map(const llama_model * model);

File diff suppressed because it is too large Load Diff