diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h index 1b4006b62..e7678d071 100644 --- a/ggml/include/ggml.h +++ b/ggml/include/ggml.h @@ -456,6 +456,7 @@ extern "C" { GGML_OP_SUM_ROWS, GGML_OP_MEAN, GGML_OP_ARGMAX, + GGML_OP_COUNT_EQUAL, GGML_OP_REPEAT, GGML_OP_REPEAT_BACK, GGML_OP_CONCAT, @@ -994,6 +995,12 @@ extern "C" { struct ggml_context * ctx, struct ggml_tensor * a); + // count number of equal elements in a and b + GGML_API struct ggml_tensor * ggml_count_equal( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + // if a is the same shape as b, and a is not parameter, return a // otherwise, return a new tensor: repeat(a) to fit in b GGML_API struct ggml_tensor * ggml_repeat( diff --git a/ggml/src/ggml-cuda.cu b/ggml/src/ggml-cuda.cu index 663e97cd7..bcb39766b 100644 --- a/ggml/src/ggml-cuda.cu +++ b/ggml/src/ggml-cuda.cu @@ -5,12 +5,14 @@ #include "ggml-cuda/common.cuh" #include "ggml-cuda/acc.cuh" #include "ggml-cuda/arange.cuh" +#include "ggml-cuda/argmax.cuh" #include "ggml-cuda/argsort.cuh" #include "ggml-cuda/binbcast.cuh" #include "ggml-cuda/clamp.cuh" #include "ggml-cuda/concat.cuh" #include "ggml-cuda/conv-transpose-1d.cuh" #include "ggml-cuda/convert.cuh" +#include "ggml-cuda/count-equal.cuh" #include "ggml-cuda/cpy.cuh" #include "ggml-cuda/cross-entropy-loss.cuh" #include "ggml-cuda/diagmask.cuh" @@ -2143,6 +2145,12 @@ static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct gg } switch (dst->op) { + case GGML_OP_ARGMAX: + ggml_cuda_argmax(ctx, dst); + break; + case GGML_OP_COUNT_EQUAL: + ggml_cuda_count_equal(ctx, dst); + break; case GGML_OP_REPEAT: ggml_cuda_op_repeat(ctx, dst); break; @@ -3073,6 +3081,15 @@ static bool ggml_backend_cuda_device_supports_op(ggml_backend_dev_t dev, const g return false; } break; case GGML_OP_DUP: + { + ggml_type src0_type = op->src[0]->type; + return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; + } break; + case GGML_OP_ARGMAX: + case GGML_OP_COUNT_EQUAL: + { + return true; + } break; case GGML_OP_REPEAT: { ggml_type src0_type = op->src[0]->type; diff --git a/ggml/src/ggml-cuda/argmax.cu b/ggml/src/ggml-cuda/argmax.cu new file mode 100644 index 000000000..aab04eca7 --- /dev/null +++ b/ggml/src/ggml-cuda/argmax.cu @@ -0,0 +1,79 @@ +#include "common.cuh" +#include "argmax.cuh" +#include "sum.cuh" + +#include + +static __global__ void argmax_f32( + const float * x, int32_t * dst, const int64_t ncols, const int64_t nrows) { + + int argmax_thread = 0; + const int64_t row0 = (int64_t)blockIdx.x*WARP_SIZE; + +#pragma unroll + for (int64_t row1 = 0; row1 < WARP_SIZE; ++row1) { + const int64_t row = row0 + row1; + + if (row >= nrows) { + break; + } + + float maxval = -FLT_MAX; + int argmax = -1; + + for (int32_t col = threadIdx.x; col < ncols; col += WARP_SIZE) { + const float val = x[row*ncols + col]; + const int bigger = val > maxval; + const int not_bigger = bigger ^ 0x00000001; + + maxval = maxval*not_bigger + val*bigger; + argmax = argmax*not_bigger + col*bigger; + } + +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + const float val = __shfl_xor_sync(0xFFFFFFFF, maxval, mask, WARP_SIZE); + const int col = __shfl_xor_sync(0xFFFFFFFF, argmax, mask, WARP_SIZE); + const int bigger = val > maxval; + const int not_bigger = bigger ^ 0x00000001; + + maxval = maxval*not_bigger + val*bigger; + argmax = argmax*not_bigger + col*bigger; + } + + const int store = row1 == threadIdx.x; + argmax_thread += store*argmax; + } + + const int row = row0 + threadIdx.x; + + if (row >= nrows) { + return; + } + + dst[row] = argmax_thread; +} + +void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_I32); + + GGML_ASSERT(ggml_is_contiguous(src0)); + + const int64_t ne00 = src0->ne[0]; + const int64_t nrows = ggml_nrows(src0); + + const float * src0_d = (const float *) src0->data; + int32_t * dst_d = (int32_t *) dst->data; + + cudaStream_t stream = ctx.stream(); + + const int64_t num_blocks = (nrows + WARP_SIZE - 1) / WARP_SIZE; + + const dim3 blocks_dim(WARP_SIZE, 1, 1); + const dim3 blocks_num(num_blocks, 1, 1); + + argmax_f32<<>>(src0_d, dst_d, ne00, nrows); +} diff --git a/ggml/src/ggml-cuda/argmax.cuh b/ggml/src/ggml-cuda/argmax.cuh new file mode 100644 index 000000000..5b7223adc --- /dev/null +++ b/ggml/src/ggml-cuda/argmax.cuh @@ -0,0 +1,3 @@ +#include "common.cuh" + +void ggml_cuda_argmax(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/common.cuh b/ggml/src/ggml-cuda/common.cuh index 6a4bcdba0..dd203fcde 100644 --- a/ggml/src/ggml-cuda/common.cuh +++ b/ggml/src/ggml-cuda/common.cuh @@ -175,6 +175,18 @@ static __device__ void no_device_code( #define NO_DEVICE_CODE //GGML_ABORT("NO_DEVICE_CODE not valid in host code.") #endif // __CUDA_ARCH__ +static __device__ __forceinline__ int warp_reduce_sum(int x) { +#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE + return __reduce_add_sync(0xffffffff, x); +#else +#pragma unroll + for (int mask = 16; mask > 0; mask >>= 1) { + x += __shfl_xor_sync(0xffffffff, x, mask, 32); + } + return x; +#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_AMPERE +} + static __device__ __forceinline__ float warp_reduce_sum(float x) { #pragma unroll for (int mask = 16; mask > 0; mask >>= 1) { diff --git a/ggml/src/ggml-cuda/count-equal.cu b/ggml/src/ggml-cuda/count-equal.cu new file mode 100644 index 000000000..ffb053b10 --- /dev/null +++ b/ggml/src/ggml-cuda/count-equal.cu @@ -0,0 +1,64 @@ +#include "common.cuh" +#include "count-equal.cuh" + +#include + +template +static __global__ void count_equal(const T * __restrict__ x, const T * __restrict__ y, int64_t * __restrict__ dst, const int64_t dk, const int64_t k) { + const int64_t i0 = (int64_t) blockIdx.x*dk; + const int64_t i1 = min(i0 + dk, k); + + int nequal = 0; + + for (int64_t i = i0 + threadIdx.x; i < i1; i += WARP_SIZE) { + const T xi = x[i]; + const T yi = y[i]; + nequal += xi == yi; + } + + nequal = warp_reduce_sum(nequal); + + if (threadIdx.x != 0) { + return; + } + + atomicAdd((int *) dst, nequal); +} + +void ggml_cuda_count_equal(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src0->type == src1->type); + GGML_ASSERT( dst->type == GGML_TYPE_I64); + + GGML_ASSERT(ggml_are_same_shape(src0, src1)); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_contiguous(dst)); + + int64_t * dst_d = (int64_t *) dst->data; + + cudaStream_t stream = ctx.stream(); + const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm; + + const int64_t ne = ggml_nelements(src0); + GGML_ASSERT(ne < (1 << 30) && "atomicAdd implementation only supports int"); + const int64_t dne = GGML_PAD(ne / (4*nsm), CUDA_COUNT_EQUAL_CHUNK_SIZE); + + CUDA_CHECK(cudaMemsetAsync(dst_d, 0, ggml_nbytes(dst), stream)); + + const dim3 blocks_dim(WARP_SIZE, 1, 1); + const dim3 blocks_num(std::min((int64_t)4*nsm, (ne + CUDA_COUNT_EQUAL_CHUNK_SIZE - 1)/CUDA_COUNT_EQUAL_CHUNK_SIZE), 1, 1); + + switch (src0->type) { + case GGML_TYPE_I32: { + const int * src0_d = (const int *) src0->data; + const int * src1_d = (const int *) src1->data; + count_equal<<>>(src0_d, src1_d, dst_d, dne, ne); + } break; + default: + GGML_ASSERT(false); + break; + } +} diff --git a/ggml/src/ggml-cuda/count-equal.cuh b/ggml/src/ggml-cuda/count-equal.cuh new file mode 100644 index 000000000..8467da79e --- /dev/null +++ b/ggml/src/ggml-cuda/count-equal.cuh @@ -0,0 +1,5 @@ +#include "common.cuh" + +#define CUDA_COUNT_EQUAL_CHUNK_SIZE 128 + +void ggml_cuda_count_equal(ggml_backend_cuda_context & ctx, ggml_tensor * dst); diff --git a/ggml/src/ggml-cuda/fattn-tile-f16.cu b/ggml/src/ggml-cuda/fattn-tile-f16.cu index 342f2eb66..5af02c7ec 100644 --- a/ggml/src/ggml-cuda/fattn-tile-f16.cu +++ b/ggml/src/ggml-cuda/fattn-tile-f16.cu @@ -259,7 +259,7 @@ static __global__ void flash_attn_tile_ext_f16( } half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]); - kqsum_j = warp_reduce_sum(kqsum_j); + kqsum_j = warp_reduce_sum((float)kqsum_j); #pragma unroll for (int i00 = 0; i00 < D; i00 += 2*WARP_SIZE) { diff --git a/ggml/src/ggml-cuda/fattn-vec-f16.cuh b/ggml/src/ggml-cuda/fattn-vec-f16.cuh index 448a9a905..2ed6509ac 100644 --- a/ggml/src/ggml-cuda/fattn-vec-f16.cuh +++ b/ggml/src/ggml-cuda/fattn-vec-f16.cuh @@ -196,7 +196,7 @@ static __global__ void flash_attn_vec_ext_f16( #pragma unroll for (int j = 0; j < ncols; ++j) { half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]); - sum = warp_reduce_sum(sum); + sum = warp_reduce_sum((float)sum); if (use_logit_softcap) { sum = logit_softcap*tanhf(sum); @@ -265,7 +265,7 @@ static __global__ void flash_attn_vec_ext_f16( #pragma unroll for (int j = 0; j < ncols; ++j) { - kqsum[j] = warp_reduce_sum(kqsum[j]); + kqsum[j] = warp_reduce_sum((float)kqsum[j]); if (threadIdx.x == 0) { kqsum_shared[j][threadIdx.y] = kqsum[j]; } @@ -280,7 +280,7 @@ static __global__ void flash_attn_vec_ext_f16( } kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; - kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); + kqsum[j_VKQ] = warp_reduce_sum((float)kqsum[j_VKQ]); half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ])); if (parallel_blocks == 1) { diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c index 6e034a087..03b832d0f 100644 --- a/ggml/src/ggml.c +++ b/ggml/src/ggml.c @@ -2994,6 +2994,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "SUM_ROWS", "MEAN", "ARGMAX", + "COUNT_EQUAL", "REPEAT", "REPEAT_BACK", "CONCAT", @@ -3067,7 +3068,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = { "OPT_STEP_ADAMW", }; -static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80"); +static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81"); static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "none", @@ -3088,6 +3089,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "Σx_k", "Σx/n", "argmax(x)", + "count_equal(x)", "repeat(x)", "repeat_back(x)", "concat(x, y)", @@ -3161,7 +3163,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { "adamw(x)", }; -static_assert(GGML_OP_COUNT == 80, "GGML_OP_COUNT != 80"); +static_assert(GGML_OP_COUNT == 81, "GGML_OP_COUNT != 81"); static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); @@ -5222,6 +5224,23 @@ struct ggml_tensor * ggml_argmax( return result; } +// ggml_count_equal + +struct ggml_tensor * ggml_count_equal( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, 1); + + result->op = GGML_OP_COUNT_EQUAL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + // ggml_repeat struct ggml_tensor * ggml_repeat( @@ -10809,6 +10828,86 @@ static void ggml_compute_forward_argmax( } } +// ggml_compute_forward_count_equal + +static void ggml_compute_forward_count_equal_i32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_TENSOR_BINARY_OP_LOCALS; + + GGML_ASSERT(src0->type == GGML_TYPE_I32); + GGML_ASSERT(src1->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_are_same_shape(src0, src1)); + GGML_ASSERT(ggml_is_scalar(dst)); + GGML_ASSERT(dst->type == GGML_TYPE_I64); + + const int64_t nr = ggml_nrows(src0); + + const int ith = params->ith; + const int nth = params->nth; + + int64_t * sums = (int64_t *) params->wdata; + int64_t sum_thread = 0; + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + for (int64_t ir = ir0; ir < ir1; ++ir) { + const int64_t i03 = ir / (ne02*ne01); + const int64_t i02 = (ir - i03*ne03) / ne01; + const int64_t i01 = ir - i03*ne03 - i02*ne02; + + const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01; + const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11; + + for (int64_t i00 = 0; i00 < ne00; ++i00) { + const int32_t val0 = *((const int32_t *) (data0 + i00*nb00)); + const int32_t val1 = *((const int32_t *) (data1 + i00*nb10)); + + sum_thread += val0 == val1; + } + } + if (ith != 0) { + sums[ith] = sum_thread; + } + ggml_barrier(params->threadpool); + + if (ith != 0) { + return; + } + + for (int ith_other = 1; ith_other < nth; ++ith_other) { + sum_thread += sums[ith_other]; + } + *((int64_t *) dst->data) = sum_thread; +} + +static void ggml_compute_forward_count_equal( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_I32: + { + ggml_compute_forward_count_equal_i32(params, dst); + } break; + default: + { + GGML_ABORT("fatal error"); + } + } +} + // ggml_compute_forward_repeat static void ggml_compute_forward_repeat_f32( @@ -17187,6 +17286,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm { ggml_compute_forward_argmax(params, tensor); } break; + case GGML_OP_COUNT_EQUAL: + { + ggml_compute_forward_count_equal(params, tensor); + } break; case GGML_OP_REPEAT: { ggml_compute_forward_repeat(params, tensor); @@ -17937,6 +18040,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor } break; case GGML_OP_MEAN: case GGML_OP_ARGMAX: + case GGML_OP_COUNT_EQUAL: { GGML_ABORT("fatal error"); // TODO: implement } @@ -18710,6 +18814,10 @@ void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * for (int i = 0; i < gf->n_nodes; ++i) { struct ggml_tensor * node = gf->nodes[i]; + if (node->type == GGML_TYPE_I32) { + continue; + } + bool needs_grad = node->flags & GGML_TENSOR_FLAG_PARAM; bool ignore_src[GGML_MAX_SRC] = {false}; switch (node->op) { @@ -19113,6 +19221,13 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { case GGML_OP_SUM_ROWS: case GGML_OP_MEAN: case GGML_OP_ARGMAX: + { + n_tasks = 1; + } break; + case GGML_OP_COUNT_EQUAL: + { + n_tasks = n_threads; + } break; case GGML_OP_REPEAT: case GGML_OP_REPEAT_BACK: case GGML_OP_LEAKY_RELU: @@ -19611,6 +19726,10 @@ struct ggml_cplan ggml_graph_plan( cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks; } } break; + case GGML_OP_COUNT_EQUAL: + { + cur = ggml_type_size(node->type)*n_tasks; + } break; case GGML_OP_MUL_MAT: { const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type; diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp index 86a0b379b..a10d98e35 100644 --- a/tests/test-backend-ops.cpp +++ b/tests/test-backend-ops.cpp @@ -116,6 +116,11 @@ static void init_tensor_uniform(ggml_tensor * tensor, float min = -1.0f, float m } else if (tensor->type == GGML_TYPE_I8 || tensor->type == GGML_TYPE_I16 || tensor->type == GGML_TYPE_I32) { // This is going to create some weird integers though. ggml_backend_tensor_set(tensor, data.data(), 0, ggml_nbytes(tensor)); + } else if (tensor->type == GGML_TYPE_I64) { + // Integers with a size of 8 bytes can be set by mirroring the float data, the specific values are again not really meaningful. + const size_t nbytes_half = ggml_nbytes(tensor)/2; + ggml_backend_tensor_set(tensor, data.data(), 0*nbytes_half, nbytes_half); + ggml_backend_tensor_set(tensor, data.data(), 1*nbytes_half, nbytes_half); } else { GGML_ABORT("fatal error"); } @@ -145,6 +150,8 @@ static std::vector tensor_to_float(const ggml_tensor * t) { tv.push_back(ggml_bf16_to_fp32(*(ggml_bf16_t*)&buf[i])); } else if (t->type == GGML_TYPE_F32) { tv.push_back(*(float *) &buf[i]); + } else if (t->type == GGML_TYPE_I64) { + tv.push_back((float)*(int64_t *) &buf[i]); } else if (t->type == GGML_TYPE_I32) { tv.push_back((float)*(int32_t *) &buf[i]); } else if (t->type == GGML_TYPE_I16) { @@ -1116,6 +1123,71 @@ struct test_get_rows : public test_case { } }; +// GGML_OP_ARGMAX +struct test_argmax : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_argmax(ggml_type type = GGML_TYPE_F32, + std::array ne = {10, 100, 1, 1}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_name(a, "a"); + + ggml_tensor * out = ggml_argmax(ctx, a); + ggml_set_name(out, "out"); + + return out; + } + + double max_nmse_err() override { + return 0.0; + } +}; + +// GGML_OP_COUNT_EQUAL +struct test_count_equal : public test_case { + const ggml_type type; + const std::array ne; + + std::string vars() override { + return VARS_TO_STR2(type, ne); + } + + test_count_equal(ggml_type type = GGML_TYPE_F32, + std::array ne = {4, 500, 1, 1}) + : type(type), ne(ne) {} + + ggml_tensor * build_graph(ggml_context * ctx) override { + ggml_tensor * a = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_name(a, "a"); + + ggml_tensor * a_argmax = ggml_argmax(ctx, a); + ggml_set_name(a_argmax, "a_argmax"); + + ggml_tensor * b = ggml_new_tensor(ctx, type, 4, ne.data()); + ggml_set_name(b, "b"); + + ggml_tensor * b_argmax = ggml_argmax(ctx, a); + ggml_set_name(b_argmax, "b_argmax"); + + ggml_tensor * out = ggml_count_equal(ctx, a_argmax, b_argmax); + ggml_set_name(out, "out"); + + return out; + } + + double max_nmse_err() override { + return 0.0; + } +}; + // GGML_OP_REPEAT struct test_repeat : public test_case { const ggml_type type; @@ -3260,6 +3332,9 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_conv_transpose_1d({3,2,1,1}, {3,1,2,1}, 1, 0, 1)); test_cases.emplace_back(new test_conv_transpose_1d({2,1,1,1}, {3,1,1,1}, 1, 0, 1)); + test_cases.emplace_back(new test_argmax()); + test_cases.emplace_back(new test_count_equal()); + for (int ne3 : {1, 3}) { // CUDA backward pass only supports ne3 == 1 test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {1, 1, 1, 1})); test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 5, 4, ne3}, {2, 1, 1, 1})); @@ -3278,8 +3353,8 @@ static std::vector> make_test_cases_eval() { test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {0, 2, 1, 3})); // dup by rows test_cases.emplace_back(new test_dup(GGML_TYPE_F32, {10, 10, 5, 1}, {1, 0, 2, 3})); test_cases.emplace_back(new test_dup(GGML_TYPE_F16, {10, 10, 5, 1}, {1, 0, 2, 3})); // dup dst not-contiguous - test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3})); - test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3})); + test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {0, 2, 1, 3})); + test_cases.emplace_back(new test_dup(GGML_TYPE_I16, {10, 8, 3, 1}, {1, 2, 0, 3})); for (int dim = 1; dim < GGML_MAX_DIMS; ++dim) { test_cases.emplace_back(new test_set(GGML_TYPE_F32, GGML_TYPE_F32, {6, 5, 4, 3}, dim));