diff --git a/ggml/src/ggml-sycl/ggml-sycl.cpp b/ggml/src/ggml-sycl/ggml-sycl.cpp
index 3e48a9244..b44e860f7 100644
--- a/ggml/src/ggml-sycl/ggml-sycl.cpp
+++ b/ggml/src/ggml-sycl/ggml-sycl.cpp
@@ -4009,10 +4009,7 @@ static bool ggml_backend_sycl_device_supports_op(ggml_backend_dev_t dev, const g
         case GGML_OP_ROPE:
             {
                 const int mode = ((const int32_t *) op->op_params)[2];
-                if (mode & GGML_ROPE_TYPE_MROPE) {
-                    return false;
-                }
-                if (mode & GGML_ROPE_TYPE_VISION) {
+                if (mode == GGML_ROPE_TYPE_MROPE) {
                     return false;
                 }
                 return ggml_is_contiguous(op->src[0]);
diff --git a/ggml/src/ggml-sycl/rope.cpp b/ggml/src/ggml-sycl/rope.cpp
index bbcb356e9..80e050f24 100644
--- a/ggml/src/ggml-sycl/rope.cpp
+++ b/ggml/src/ggml-sycl/rope.cpp
@@ -1,9 +1,15 @@
 #include "rope.hpp"
+#include "ggml-sycl/common.hpp"
+#include "ggml.h"
 
 struct rope_corr_dims {
     float v[2];
 };
 
+struct mrope_sections {
+    int v[4];
+};
+
 static float rope_yarn_ramp(const float low, const float high, const int i0) {
     const float y = (i0 / 2 - low) / sycl::max(0.001f, high - low);
     return 1.0f - sycl::min(1.0f, sycl::max(0.0f, y));
@@ -114,6 +120,48 @@ static void rope_neox(
     dst[i + n_dims/2] = x0*sin_theta + x1*cos_theta;
 }
 
+template <typename T, bool has_ff>
+static void rope_vision(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
+                        const size_t s2, const int n_dims, const int32_t * pos, const float freq_scale,
+                        const float ext_factor, const float attn_factor, const rope_corr_dims corr_dims,
+                        const float theta_scale, const float * freq_factors, const mrope_sections sections,
+                        const sycl::nd_item<3> & item_ct1) {
+    // get index pos
+    const int i0 = 2 * (item_ct1.get_group(1) * item_ct1.get_local_range(1) + item_ct1.get_local_id(1));
+    if (i0 >= ne0) {
+        return;
+    }
+    const int    row_dst   = (item_ct1.get_group(2) * item_ct1.get_local_range(2)) + item_ct1.get_local_id(2);
+    const int    row_x     = row_dst % ne1;
+    const int    channel_x = row_dst / ne1;
+    const int    idst      = (row_dst * ne0) + (i0 / 2);
+    const size_t ix        = ((size_t) channel_x * s2) + ((size_t) row_x * s1) + (i0 / 2);
+
+    const int sect_dims = sections.v[0] + sections.v[1];
+    const int sector    = (i0 / 2) % sect_dims;
+
+    float theta_base = 0.0f;
+    if (sector < sections.v[0]) {
+        const int p = sector;
+        theta_base  = pos[channel_x] * sycl::pow(theta_scale, (float) p);
+    } else {
+        // Simplified from CUDA backend code: if (sector >= sections.v[0] && sector < sec_w) which is just sector >= sections.v[0]
+        const int p = sector - sections.v[0];
+        theta_base  = pos[channel_x + ne2] * sycl::pow(theta_scale, (float) p);
+    }
+
+    const float freq_factor = has_ff ? freq_factors[i0 / 2] : 1.0f;
+    float       cos_theta;
+    float       sin_theta;
+    rope_yarn(theta_base / freq_factor, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
+    const float x0 = x[ix + 0];
+    const float x1 = x[ix + n_dims];
+
+    // store results in dst
+    dst[idst + 0]      = x0 * cos_theta - x1 * sin_theta;
+    dst[idst + n_dims] = x0 * sin_theta + x1 * cos_theta;
+}
+
 template <typename T>
 static void rope_norm_sycl(
     const T *x, T *dst, int ne0, int n_dims, int nr, const int32_t *pos, float freq_scale, int p_delta_rows,
@@ -192,21 +240,58 @@ static void rope_neox_sycl(
     }
 }
 
+// rope vision
+template <typename T>
+static void rope_vision_sycl(const T * x, T * dst, const int ne0, const int ne1, const int ne2, const size_t s1,
+                             const size_t s2, const int n_dims, const int nr, const int32_t * pos,
+                             const float freq_scale, const float freq_base, const float ext_factor,
+                             const float attn_factor, const rope_corr_dims corr_dims, const float * freq_factors,
+                             const mrope_sections sections, queue_ptr stream) {
+    GGML_ASSERT(ne0 % 2 == 0);
+    const sycl::range<3>    block_dims(1, SYCL_ROPE_BLOCK_SIZE, 1);
+    const int               n_blocks_y = (ne0 + 2 * SYCL_ROPE_BLOCK_SIZE - 1) / (2 * SYCL_ROPE_BLOCK_SIZE);
+    const sycl::range<3>    grid_dims(1, n_blocks_y, nr);
+    const sycl::nd_range<3> nd_range(grid_dims * block_dims, block_dims);
+
+    const float theta_scale = std::pow(freq_base, -2.0f / n_dims);
+    // Add FP16 capability check if T could be sycl::half
+    if constexpr (std::is_same_v<T, sycl::half>) {
+        dpct::has_capability_or_fail(stream->get_device(), { sycl::aspect::fp16 });
+    }
+    // launch kernel
+    if (freq_factors == nullptr) {
+        stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
+            rope_vision<T, false>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
+                                  corr_dims, theta_scale, freq_factors, sections, item_ct1);
+        });
+    } else {
+        stream->parallel_for(nd_range, [=](sycl::nd_item<3> item_ct1) {
+            rope_vision<T, true>(x, dst, ne0, ne1, ne2, s1, s2, n_dims, pos, freq_scale, ext_factor, attn_factor,
+                                 corr_dims, theta_scale, freq_factors, sections, item_ct1);
+        });
+    }
+}
+
 void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
 
     GGML_ASSERT(dst->src[0]->type == GGML_TYPE_F32 || dst->src[0]->type == GGML_TYPE_F16);
     GGML_ASSERT( dst->type == GGML_TYPE_F32 ||  dst->type == GGML_TYPE_F16);
     GGML_ASSERT(dst->src[0]->type == dst->type);
-
-    const int64_t ne00 = dst->src[0]->ne[0];
-    const int64_t ne01 = dst->src[0]->ne[1];
+    const int64_t ne00 = dst->src[0]->ne[0]; // head dims
+    const int64_t ne01 = dst->src[0]->ne[1]; // num heads
+    const int64_t ne02 = dst->src[0]->ne[2]; // num heads
     const int64_t nr = ggml_nrows(dst->src[0]);
 
+    const size_t s01 = dst->src[0]->nb[1] / ggml_type_size(dst->src[0]->type);
+    const size_t s02 = dst->src[0]->nb[2] / ggml_type_size(dst->src[0]->type);
+
+
     //const int n_past      = ((int32_t *) dst->op_params)[0];
     const int n_dims      = ((int32_t *) dst->op_params)[1];
     const int mode        = ((int32_t *) dst->op_params)[2];
     //const int n_ctx       = ((int32_t *) dst->op_params)[3];
     const int n_ctx_orig  = ((int32_t *) dst->op_params)[4];
+    mrope_sections sections;
 
     // RoPE alteration for extended context
     float freq_base;
@@ -222,8 +307,10 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
     memcpy(&attn_factor, (int32_t *) dst->op_params +  8, sizeof(float));
     memcpy(&beta_fast,   (int32_t *) dst->op_params +  9, sizeof(float));
     memcpy(&beta_slow,   (int32_t *) dst->op_params + 10, sizeof(float));
+    memcpy(&sections.v,  (int32_t *) dst->op_params + 11, sizeof(int)*4);
 
     const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
+    const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
 
     const int32_t * pos = (const int32_t *) dst->src[1]->data;
 
@@ -240,6 +327,7 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
 
     // compute
     if (is_neox) {
+        GGML_SYCL_DEBUG("%s: neox path\n", __func__);
         if (dst->src[0]->type == GGML_TYPE_F32) {
             rope_neox_sycl(
                 (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,
@@ -253,7 +341,19 @@ void ggml_sycl_op_rope(ggml_backend_sycl_context & ctx, ggml_tensor *dst) {
         } else {
             GGML_ABORT("fatal error");
         }
+    } else if (is_vision) {
+        GGML_SYCL_DEBUG("%s: vision path\n", __func__);
+        if (dst->src[0]->type == GGML_TYPE_F16) {
+            rope_vision_sycl((const sycl::half *)dst->src[0]->data, (sycl::half *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
+                freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
+        } else if (dst->src[0]->type == GGML_TYPE_F32) {
+            rope_vision_sycl((const float *) dst->src[0]->data, (float *)dst->data, ne00, ne01, ne02, s01, s02, n_dims, nr, pos, freq_scale,
+                freq_base, ext_factor, attn_factor, corr_dims, freq_factors, sections, main_stream);
+        } else {
+            GGML_ABORT("Fatal error: Tensor type unsupported!");
+        }
     } else {
+        GGML_SYCL_DEBUG("%s: norm path\n", __func__);
         if (dst->src[0]->type == GGML_TYPE_F32) {
             rope_norm_sycl(
                 (const float *)dst->src[0]->data, (float *)dst->data, ne00, n_dims, nr, pos, freq_scale, ne01, freq_base, ext_factor,