CANN: Support more ops (#12841)

* [CANN]Support Opt LOG && MEAN && PAD_REFLECT_1D

* [CANN]Support COUNT_EQUAL && STEP && SGN

* [CANN]codestyle adjustment

* [CANN]codestyle adjustment

---------

Signed-off-by: noemotiovon <noemotiovon@gmail.com>
This commit is contained in:
Chenguang Li 2025-04-10 08:51:52 +08:00 committed by GitHub
parent 11d07e1e69
commit fe5b78c896
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 173 additions and 0 deletions

View File

@ -41,6 +41,8 @@ aclDataType ggml_cann_type_mapping(ggml_type type) {
return ACL_INT4;
case GGML_TYPE_Q8_0:
return ACL_INT8;
case GGML_TYPE_I64:
return ACL_INT64;
default:
return ACL_DT_UNDEFINED;
}

View File

@ -59,6 +59,11 @@
#include <aclnnop/aclnn_div.h>
#include <aclnnop/aclnn_convolution.h>
#include <aclnnop/aclnn_elu.h>
#include <aclnnop/aclnn_log.h>
#include <aclnnop/aclnn_mean.h>
#include <aclnnop/aclnn_reflection_pad1d.h>
#include <aclnnop/aclnn_eq_tensor.h>
#include <aclnnop/aclnn_gt_scalar.h>
#include <float.h>
#include <cmath>
@ -2598,6 +2603,7 @@ void ggml_cann_rope(ggml_backend_cann_context& ctx, ggml_tensor* dst) {
aclTensor* acl_dst = ggml_cann_create_tensor(dst, dst->ne, dst->nb, 3);
GGML_CANN_CALL_ACLNN_OP(ArgMax, acl_src, 3, false, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
@ -2629,6 +2635,9 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
ACL_CHECK(aclDestroyTensor(acl_weight));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyIntArray(stride));
ACL_CHECK(aclDestroyIntArray(padding));
ACL_CHECK(aclDestroyIntArray(dilation));
}
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst){
@ -2646,4 +2655,79 @@ void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ACL_CHECK(aclDestroyTensor(acl_input));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyScalar(alpha));
}
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
int64_t reduceDimValue[] = {3};
aclIntArray* reduceDim = aclCreateIntArray(reduceDimValue, 1);
bool keepDim = true;
GGML_CANN_CALL_ACLNN_OP(Mean, acl_src, reduceDim, keepDim, ACL_FLOAT, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyIntArray(reduceDim));
}
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];
int32_t *opts = (int32_t *) dst->op_params;
int64_t paddingsArray[2] = {opts[0], opts[1]};
aclIntArray* paddings = aclCreateIntArray(paddingsArray, 2);
for (int64_t i = 0; i < src0->ne[3]; i++) {
aclTensor* acl_src = ggml_cann_create_tensor(
(char*)src0->data + i * src0->ne[3],
ggml_cann_type_mapping(src0->type), ggml_element_size(src0),
src0->ne, src0->nb, 3);
aclTensor* acl_dst = ggml_cann_create_tensor(
(char*)dst->data + i * src0->ne[3],
ggml_cann_type_mapping(dst->type), ggml_element_size(dst),
dst->ne, dst->nb, 3);
GGML_CANN_CALL_ACLNN_OP(ReflectionPad1d, acl_src, paddings, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
}
ACL_CHECK(aclDestroyIntArray(paddings));
}
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];
ggml_tensor * src1 = dst->src[1];
aclTensor* acl_self = ggml_cann_create_tensor(src0);
aclTensor* acl_other = ggml_cann_create_tensor(src1);
GGML_CANN_CALL_ACLNN_OP(InplaceEqTensor, acl_self, acl_other);
ggml_cann_sum(ctx, dst);
ACL_CHECK(aclDestroyTensor(acl_self));
ACL_CHECK(aclDestroyTensor(acl_other));
}
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst){
ggml_tensor * src0 = dst->src[0];
aclTensor* acl_src = ggml_cann_create_tensor(src0);
aclTensor* acl_dst = ggml_cann_create_tensor(dst);
float alphaValue = 0.0f;
aclScalar* alpha = nullptr;
alpha = aclCreateScalar(&alphaValue, aclDataType::ACL_FLOAT);
GGML_CANN_CALL_ACLNN_OP(GtScalar, acl_src, alpha, acl_dst);
ACL_CHECK(aclDestroyTensor(acl_src));
ACL_CHECK(aclDestroyTensor(acl_dst));
ACL_CHECK(aclDestroyScalar(alpha));
}

View File

@ -42,6 +42,8 @@
#include <aclnnop/aclnn_sqrt.h>
#include <aclnnop/aclnn_sin.h>
#include <aclnnop/aclnn_cos.h>
#include <aclnnop/aclnn_log.h>
#include <aclnnop/aclnn_sign.h>
#include "acl_tensor.h"
#include "common.h"
@ -650,6 +652,67 @@ void ggml_cann_conv_transpose_1d(ggml_backend_cann_context& ctx, ggml_tensor* ds
*/
void ggml_cann_elu(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Computes the mean of a ggml tensor element-wise using the CANN backend.
*
* @details This function calculates the element-wise mean of the input tensor.
* The result is written to the destination tensor `dst`.
* The mean is computed by averaging the values across the entire tensor.
*
* This operation is optimized using the CANN backend for high-performance inference or training.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the mean result will be stored.
* dst->op is expected to be `GGML_OP_MEAN`.
*/
void ggml_cann_mean(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies 1D reflect padding to a ggml tensor using the CANN backend.
*
* @details This function performs 1D reflect padding on the input tensor.
* The amount of padding on each side is specified by parameters stored in `dst->op_params`.
* The operation reflects the values at the borders of the tensor to generate the padded output.
*
* This operation is optimized using the CANN backend for high-performance inference or training.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the padded result will be stored.
* dst->op is expected to be `GGML_OP_PAD_REFLECT_1D`.
*/
void ggml_cann_pad_reflect_1d(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Counts the number of equal elements in two ggml tensors using the CANN backend.
*
* @details This function performs an element-wise comparison between two input tensors,
* and counts the number of positions where the elements are equal. The result is
* stored in the destination tensor `dst` as a scalar.
*
* The operation is optimized using the CANN backend, making it suitable for
* high-performance inference or training scenarios.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_COUNT_EQUAL`.
*/
void ggml_cann_count_equal(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies the Step activation function to a ggml tensor using the CANN backend.
*
* @details This function applies a step function element-wise to the input tensor, where
* each element is transformed to 1.0 if it is greater than 0, and 0.0 otherwise.
* The result is stored in the destination tensor `dst`.
*
* This operation is accelerated using the CANN backend to improve runtime performance.
*
* @param ctx The CANN context used for operations.
* @param dst The destination tensor where the result will be stored.
* dst->op is expected to be `GGML_OP_STEP`.
*/
void ggml_cann_step(ggml_backend_cann_context& ctx, ggml_tensor* dst);
/**
* @brief Applies a element-wise operation to two input tensors using the CANN
* backend.

View File

@ -1358,6 +1358,12 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_UNARY_OP_ELU:
ggml_cann_elu(ctx, dst);
break;
case GGML_UNARY_OP_SGN:
GGML_CANN_CALL_UNARY_OP(Sign);
break;
case GGML_UNARY_OP_STEP:
ggml_cann_step(ctx, dst);
break;
default:
return false;
}
@ -1456,6 +1462,18 @@ static bool ggml_cann_compute_forward(ggml_backend_cann_context& ctx,
case GGML_OP_CONV_TRANSPOSE_1D:
ggml_cann_conv_transpose_1d(ctx, dst);
break;
case GGML_OP_LOG:
GGML_CANN_CALL_UNARY_OP(Log);
break;
case GGML_OP_MEAN:
ggml_cann_mean(ctx, dst);
break;
case GGML_OP_PAD_REFLECT_1D:
ggml_cann_pad_reflect_1d(ctx, dst);
break;
case GGML_OP_COUNT_EQUAL:
ggml_cann_count_equal(ctx, dst);
break;
default:
return false;
}
@ -1718,6 +1736,8 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_UNARY_OP_TANH:
case GGML_UNARY_OP_EXP:
case GGML_UNARY_OP_ELU:
case GGML_UNARY_OP_SGN:
case GGML_UNARY_OP_STEP:
return true;
default:
return false;
@ -1851,6 +1871,10 @@ static bool ggml_backend_cann_supports_op(ggml_backend_dev_t dev,
case GGML_OP_COS:
case GGML_OP_SIN:
case GGML_OP_CONV_TRANSPOSE_1D:
case GGML_OP_LOG:
case GGML_OP_MEAN:
case GGML_OP_PAD_REFLECT_1D:
case GGML_OP_COUNT_EQUAL:
return true;
default:
return false;