// NOTE: This is modified from clip.cpp only for LLaVA, // so there might be still unnecessary artifacts hanging around // I'll gradually clean and extend it // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch #include "clip.h" #include "clip-impl.h" #include "ggml.h" #include "ggml-cpp.h" #include "ggml-cpu.h" #include "ggml-alloc.h" #include "ggml-backend.h" #include "gguf.h" #define STB_IMAGE_IMPLEMENTATION #include "stb_image.h" #include <cassert> #include <cmath> #include <cstdlib> #include <cstring> #include <fstream> #include <map> #include <regex> #include <stdexcept> #include <unordered_set> #include <vector> #include <sstream> #include <cinttypes> #include <limits> struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL}; //#define CLIP_DEBUG_FUNCTIONS #ifdef CLIP_DEBUG_FUNCTIONS static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } // PPM header: P6 format, width, height, and max color value file << "P6\n" << img.nx << " " << img.ny << "\n255\n"; // Write pixel data for (size_t i = 0; i < img.buf.size(); i += 3) { // PPM expects binary data in RGB format, which matches our image buffer file.write(reinterpret_cast<const char*>(&img.buf[i]), 3); } file.close(); } static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) { std::ofstream file(filename, std::ios::binary); if (!file.is_open()) { LOG_ERR("Failed to open file for writing: %s\n", filename.c_str()); return; } int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data int bytesPerPixel = 3; int widthInBytes = img.nx * bytesPerPixel; int paddingAmount = (4 - (widthInBytes % 4)) % 4; int stride = widthInBytes + paddingAmount; // Bitmap file header unsigned char fileHeader[14] = { 'B','M', // Signature 0,0,0,0, // Image file size in bytes 0,0,0,0, // Reserved 54,0,0,0 // Start of pixel array }; // Total file size fileSize = 54 + (stride * img.ny); fileHeader[2] = (unsigned char)(fileSize); fileHeader[3] = (unsigned char)(fileSize >> 8); fileHeader[4] = (unsigned char)(fileSize >> 16); fileHeader[5] = (unsigned char)(fileSize >> 24); // Bitmap information header (BITMAPINFOHEADER) unsigned char infoHeader[40] = { 40,0,0,0, // Size of this header (40 bytes) 0,0,0,0, // Image width 0,0,0,0, // Image height 1,0, // Number of color planes 24,0, // Bits per pixel 0,0,0,0, // No compression 0,0,0,0, // Image size (can be 0 for no compression) 0,0,0,0, // X pixels per meter (not specified) 0,0,0,0, // Y pixels per meter (not specified) 0,0,0,0, // Total colors (color table not used) 0,0,0,0 // Important colors (all are important) }; // Width and height in the information header infoHeader[4] = (unsigned char)(img.nx); infoHeader[5] = (unsigned char)(img.nx >> 8); infoHeader[6] = (unsigned char)(img.nx >> 16); infoHeader[7] = (unsigned char)(img.nx >> 24); infoHeader[8] = (unsigned char)(img.ny); infoHeader[9] = (unsigned char)(img.ny >> 8); infoHeader[10] = (unsigned char)(img.ny >> 16); infoHeader[11] = (unsigned char)(img.ny >> 24); // Write file headers file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader)); file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader)); // Pixel data std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top for (int x = 0; x < img.nx; ++x) { // Each pixel size_t pixelIndex = (y * img.nx + x) * 3; unsigned char pixel[3] = { img.buf[pixelIndex + 2], // BMP stores pixels in BGR format img.buf[pixelIndex + 1], img.buf[pixelIndex] }; file.write(reinterpret_cast<char*>(pixel), 3); } // Write padding for the row file.write(reinterpret_cast<char*>(padding.data()), paddingAmount); } file.close(); } // debug function to convert f32 to u8 static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) { dst.nx = src.nx; dst.ny = src.ny; dst.buf.resize(3 * src.nx * src.ny); for (size_t i = 0; i < src.buf.size(); ++i) { dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255)); } } #endif // // clip layers // enum patch_merge_type { PATCH_MERGE_FLAT, PATCH_MERGE_SPATIAL_UNPAD, }; struct clip_hparams { int32_t image_size; int32_t patch_size; int32_t hidden_size; int32_t n_intermediate; int32_t projection_dim; int32_t n_head; int32_t n_layer; patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT; float eps; std::vector<int32_t> image_grid_pinpoints; int32_t image_crop_resolution; std::unordered_set<int32_t> vision_feature_layer; }; struct clip_layer { // attention struct ggml_tensor * k_w = nullptr; struct ggml_tensor * k_b = nullptr; struct ggml_tensor * q_w = nullptr; struct ggml_tensor * q_b = nullptr; struct ggml_tensor * v_w = nullptr; struct ggml_tensor * v_b = nullptr; struct ggml_tensor * o_w = nullptr; struct ggml_tensor * o_b = nullptr; // layernorm 1 struct ggml_tensor * ln_1_w = nullptr; struct ggml_tensor * ln_1_b = nullptr; // ff struct ggml_tensor * ff_i_w = nullptr; struct ggml_tensor * ff_i_b = nullptr; struct ggml_tensor * ff_o_w = nullptr; struct ggml_tensor * ff_o_b = nullptr; // layernorm 2 struct ggml_tensor * ln_2_w = nullptr; struct ggml_tensor * ln_2_b = nullptr; }; struct clip_vision_model { struct clip_hparams hparams; // embeddings struct ggml_tensor * class_embedding = nullptr; struct ggml_tensor * patch_embeddings_0 = nullptr; struct ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL) struct ggml_tensor * patch_bias = nullptr; struct ggml_tensor * position_embeddings = nullptr; struct ggml_tensor * pre_ln_w = nullptr; struct ggml_tensor * pre_ln_b = nullptr; std::vector<clip_layer> layers; struct ggml_tensor * post_ln_w; struct ggml_tensor * post_ln_b; struct ggml_tensor * projection; // LLaVA projection struct ggml_tensor * mm_0_w = nullptr; struct ggml_tensor * mm_0_b = nullptr; struct ggml_tensor * mm_2_w = nullptr; struct ggml_tensor * mm_2_b = nullptr; struct ggml_tensor * image_newline = nullptr; // Yi type models with mlp+normalization projection struct ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4 struct ggml_tensor * mm_1_b = nullptr; struct ggml_tensor * mm_3_w = nullptr; struct ggml_tensor * mm_3_b = nullptr; struct ggml_tensor * mm_4_w = nullptr; struct ggml_tensor * mm_4_b = nullptr; //GLMV-Edge projection struct ggml_tensor * mm_model_adapter_conv_w = nullptr; struct ggml_tensor * mm_model_adapter_conv_b = nullptr; struct ggml_tensor * boi_w = nullptr; struct ggml_tensor * eoi_w = nullptr; // MobileVLM projection struct ggml_tensor * mm_model_mlp_1_w = nullptr; struct ggml_tensor * mm_model_mlp_1_b = nullptr; struct ggml_tensor * mm_model_mlp_3_w = nullptr; struct ggml_tensor * mm_model_mlp_3_b = nullptr; struct ggml_tensor * mm_model_block_1_block_0_0_w = nullptr; struct ggml_tensor * mm_model_block_1_block_0_1_w = nullptr; struct ggml_tensor * mm_model_block_1_block_0_1_b = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr; struct ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr; struct ggml_tensor * mm_model_block_1_block_2_0_w = nullptr; struct ggml_tensor * mm_model_block_1_block_2_1_w = nullptr; struct ggml_tensor * mm_model_block_1_block_2_1_b = nullptr; struct ggml_tensor * mm_model_block_2_block_0_0_w = nullptr; struct ggml_tensor * mm_model_block_2_block_0_1_w = nullptr; struct ggml_tensor * mm_model_block_2_block_0_1_b = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr; struct ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr; struct ggml_tensor * mm_model_block_2_block_2_0_w = nullptr; struct ggml_tensor * mm_model_block_2_block_2_1_w = nullptr; struct ggml_tensor * mm_model_block_2_block_2_1_b = nullptr; // MobileVLM_V2 projection struct ggml_tensor * mm_model_mlp_0_w = nullptr; struct ggml_tensor * mm_model_mlp_0_b = nullptr; struct ggml_tensor * mm_model_mlp_2_w = nullptr; struct ggml_tensor * mm_model_mlp_2_b = nullptr; struct ggml_tensor * mm_model_peg_0_w = nullptr; struct ggml_tensor * mm_model_peg_0_b = nullptr; // MINICPMV projection struct ggml_tensor * mm_model_pos_embed_k = nullptr; struct ggml_tensor * mm_model_query = nullptr; struct ggml_tensor * mm_model_proj = nullptr; struct ggml_tensor * mm_model_kv_proj = nullptr; struct ggml_tensor * mm_model_attn_q_w = nullptr; struct ggml_tensor * mm_model_attn_q_b = nullptr; struct ggml_tensor * mm_model_attn_k_w = nullptr; struct ggml_tensor * mm_model_attn_k_b = nullptr; struct ggml_tensor * mm_model_attn_v_w = nullptr; struct ggml_tensor * mm_model_attn_v_b = nullptr; struct ggml_tensor * mm_model_attn_o_w = nullptr; struct ggml_tensor * mm_model_attn_o_b = nullptr; struct ggml_tensor * mm_model_ln_q_w = nullptr; struct ggml_tensor * mm_model_ln_q_b = nullptr; struct ggml_tensor * mm_model_ln_kv_w = nullptr; struct ggml_tensor * mm_model_ln_kv_b = nullptr; struct ggml_tensor * mm_model_ln_post_w = nullptr; struct ggml_tensor * mm_model_ln_post_b = nullptr; // gemma3 struct ggml_tensor * mm_input_proj_w = nullptr; struct ggml_tensor * mm_soft_emb_norm_w = nullptr; }; struct clip_ctx { bool has_text_encoder = false; bool has_vision_encoder = false; bool has_llava_projector = false; bool has_minicpmv_projector = false; bool has_glm_projector = false; bool has_qwen2vl_merger = false; int minicpmv_version = 2; struct clip_vision_model vision_model; projector_type proj_type = PROJECTOR_TYPE_MLP; int32_t max_feature_layer; // unused in newer models like gemma3 float image_mean[3]; float image_std[3]; bool use_gelu = false; bool use_silu = false; gguf_context_ptr ctx_gguf; ggml_context_ptr ctx_data; std::vector<uint8_t> buf_compute_meta; std::vector<ggml_backend_t> backend_ptrs; std::vector<ggml_backend_buffer_type_t> backend_buft; ggml_backend_t backend; ggml_backend_t backend_cpu; ggml_backend_buffer_ptr buf; ggml_backend_sched_ptr sched; clip_image_size load_image_size; clip_ctx(clip_context_params & ctx_params) { backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr); backend = ctx_params.use_gpu ? ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr) : nullptr; if (backend) { LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend)); backend_ptrs.push_back(backend); backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); } else { backend = backend_cpu; LOG_INF("%s: CLIP using CPU backend\n", __func__); } backend_ptrs.push_back(backend_cpu); backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu)); sched.reset( ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false) ); } ~clip_ctx() { ggml_backend_free(backend); if (backend != backend_cpu) { ggml_backend_free(backend_cpu); } } }; static ggml_cgraph * clip_image_build_graph_siglip(clip_ctx * ctx, const clip_image_f32_batch & imgs) { const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; int image_size_width = image_size; int image_size_height = image_size; const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const int n_layer = hparams.n_layer; const float eps = hparams.eps; GGML_ASSERT(imgs.entries.size() == 1); // batch_size == 1 struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; ggml_context_ptr ctx0_ptr(ggml_init(params)); auto ctx0 = ctx0_ptr.get(); struct ggml_cgraph * gf = ggml_new_graph(ctx0); // input raw struct ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_reshape_2d(ctx0, inp, num_patches, hidden_size); inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); // position embeddings struct ggml_tensor * embeddings = ggml_add(ctx0, inp, model.position_embeddings); // loop over layers for (int il = 0; il < n_layer; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states // layernorm1 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b); } // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_patches); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_3d(ctx0, K, d_head, n_head, num_patches); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); V = ggml_reshape_3d(ctx0, V, d_head, n_head, num_patches); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_3d(ctx0, KQV, d_head, num_patches, n_head); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cont_2d(ctx0, KQV, hidden_size, num_patches); } // attention output cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // layernorm2 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); // siglip uses gelu cur = ggml_gelu(ctx0, cur); cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // post-layernorm if (model.post_ln_w) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); } if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { const int batch_size = 1; const int mm_tokens_per_image = 256; // default value for gemma3 const int tokens_per_side = sqrt(mm_tokens_per_image); const int patches_per_image = sqrt(num_patches); const int kernel_size = patches_per_image / tokens_per_side; embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings)); embeddings = ggml_reshape_4d(ctx0, embeddings, patches_per_image, patches_per_image, hidden_size, batch_size); // doing a pool2d to reduce the number of output tokens to 256 embeddings = ggml_pool_2d(ctx0, embeddings, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0); embeddings = ggml_reshape_3d(ctx0, embeddings, embeddings->ne[0] * embeddings->ne[0], hidden_size, batch_size); embeddings = ggml_cont(ctx0, ggml_transpose(ctx0, embeddings)); // apply norm before projection embeddings = ggml_rms_norm(ctx0, embeddings, eps); embeddings = ggml_mul(ctx0, embeddings, model.mm_soft_emb_norm_w); // apply projection embeddings = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)), embeddings); } // build the graph ggml_build_forward_expand(gf, embeddings); return gf; } static ggml_cgraph * clip_image_build_graph_legacy(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) { if (!ctx->has_vision_encoder) { LOG_ERR("This gguf file seems to have no vision encoder\n"); return nullptr; } const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; int image_size_width = image_size; int image_size_height = image_size; if (ctx->has_minicpmv_projector) { LOG_DBG("%s: %d %d\n", __func__, load_image_size.width, load_image_size.height); image_size_width = load_image_size.width; image_size_height = load_image_size.height; if (is_inf) { image_size_width = imgs.entries[0]->nx; image_size_height = imgs.entries[0]->ny; } } else if (ctx->has_qwen2vl_merger) { // use the image's native resolution when image is avaible if (is_inf) { // if (imgs->data->nx && imgs->data->ny) { image_size_width = imgs.entries[0]->nx; image_size_height = imgs.entries[0]->ny; } } const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int patches_w = image_size_width / patch_size; const int patches_h = image_size_height / patch_size; const int num_positions = num_patches + (model.class_embedding ? 1 : 0); const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions; const int hidden_size = hparams.hidden_size; const int n_head = hparams.n_head; const int d_head = hidden_size / n_head; const float eps = hparams.eps; int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4}; const int batch_size = imgs.entries.size(); if (ctx->has_llava_projector || ctx->has_minicpmv_projector || ctx->has_glm_projector) { GGML_ASSERT(batch_size == 1); } struct ggml_init_params params = { /*.mem_size =*/ ctx->buf_compute_meta.size(), /*.mem_buffer =*/ ctx->buf_compute_meta.data(), /*.no_alloc =*/ true, }; ggml_context_ptr ctx0_ptr(ggml_init(params)); auto ctx0 = ctx0_ptr.get(); struct ggml_cgraph * gf = ggml_new_graph(ctx0); struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size); ggml_set_name(inp_raw, "inp_raw"); ggml_set_input(inp_raw); struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1); if (ctx->has_qwen2vl_merger) { GGML_ASSERT(image_size_width % (patch_size * 2) == 0); GGML_ASSERT(image_size_height % (patch_size * 2) == 0); auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1); inp = ggml_add(ctx0, inp, inp_1); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b] inp = ggml_reshape_4d( ctx0, inp, hidden_size * 2, patches_w / 2, patches_h, batch_size); inp = ggml_reshape_4d( ctx0, inp, hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2)); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3)); inp = ggml_reshape_3d( ctx0, inp, hidden_size, patches_w * patches_h, batch_size); } else { inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size); inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3)); } if (model.patch_bias) { // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp)); inp = ggml_add(ctx0, inp, model.patch_bias); } struct ggml_tensor * embeddings = inp; struct ggml_tensor * pos_embed = nullptr; if (ctx->has_llava_projector) { // concat class_embeddings and patch_embeddings if (model.class_embedding) { embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size); ggml_set_name(embeddings, "embeddings"); ggml_set_input(embeddings); embeddings = ggml_acc(ctx0, embeddings, model.class_embedding, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0); embeddings = ggml_acc(ctx0, embeddings, inp, embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]); } } struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids); ggml_set_name(positions, "positions"); ggml_set_input(positions); if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding embeddings = ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions)); } if (ctx->has_minicpmv_projector) { int pos_w = image_size_width/patch_size; int pos_h = image_size_height/patch_size; if (ctx->minicpmv_version == 2) { pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1); } else if (ctx->minicpmv_version == 3) { pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); } else if (ctx->minicpmv_version == 4) { pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1); } ggml_set_name(pos_embed, "pos_embed"); ggml_set_input(pos_embed); } // pre-layernorm if (model.pre_ln_w) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "pre_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b); } std::vector<struct ggml_tensor *> embedding_stack; const auto & vision_feature_layer = hparams.vision_feature_layer; // loop over layers for (int il = 0; il < ctx->max_feature_layer; il++) { struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states // If this is an embedding feature layer, save the output. // NOTE: 0 index here refers to the input to the encoder. if (vision_feature_layer.find(il) != vision_feature_layer.end()) { embedding_stack.push_back(embeddings); } //const size_t nb_q_w = model.layers[il].q_w->nb[0]; // layernorm1 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w), model.layers[il].ln_1_b); } // self-attention { struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b); Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size); if (ctx->has_qwen2vl_merger) { Q = ggml_rope_multi( ctx0, Q, positions, nullptr, d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); } Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); if (ctx->has_qwen2vl_merger) { K = ggml_rope_multi( ctx0, K, positions, nullptr, d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1); } K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size); } // attention output cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b); // re-add the layer input, e.g., residual cur = ggml_add(ctx0, cur, embeddings); embeddings = cur; // embeddings = residual, cur = hidden_states // layernorm2 { cur = ggml_norm(ctx0, cur, eps); cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b); if (ctx->use_gelu) { cur = ggml_gelu_inplace(ctx0, cur); } else if (ctx->use_silu) { cur = ggml_silu_inplace(ctx0, cur); } else { cur = ggml_gelu_quick_inplace(ctx0, cur); } cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur); cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b); // residual 2 cur = ggml_add(ctx0, embeddings, cur); embeddings = cur; } // post-layernorm if (model.post_ln_w) { embeddings = ggml_norm(ctx0, embeddings, eps); ggml_set_name(embeddings, "post_ln"); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b); } // final layer is a vision feature layer if (vision_feature_layer.find(ctx->max_feature_layer) != vision_feature_layer.end()) { embedding_stack.push_back(embeddings); } // If feature layers are explicitly set, stack them (if we have multiple) if (!embedding_stack.empty()) { embeddings = embedding_stack[0]; for (size_t i = 1; i < embedding_stack.size(); i++) { embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0); } } // llava projector if (ctx->has_llava_projector) { embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]); struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches); ggml_set_name(patches, "patches"); ggml_set_input(patches); // shape [1, 576, 1024] // ne is whcn, ne = [1024, 576, 1, 1] embeddings = ggml_get_rows(ctx0, embeddings, patches); // print_tensor_info(embeddings, "embeddings"); // llava projector if (ctx->proj_type == PROJECTOR_TYPE_MLP) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); embeddings = ggml_gelu(ctx0, embeddings); if (model.mm_2_w) { embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); } } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false); // First LayerNorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w), model.mm_1_b); // GELU activation embeddings = ggml_gelu(ctx0, embeddings); // Second linear layer embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_3_b); // Second LayerNorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w), model.mm_4_b); } else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { // MobileVLM projector int n_patch = 24; struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); mlp_1 = ggml_gelu(ctx0, mlp_1); struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1] // block 1 struct ggml_tensor * block_1 = nullptr; { // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24] mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); // stride = 1, padding = 1, bias is nullptr block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1); // layer norm // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] // residual block_1 = ggml_add(ctx0, mlp_3, block_1); } // block_2 { // stride = 2 block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // layer norm block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] // hardswish struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); // not sure the parameters is right for globalAvgPooling block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] // pointwise conv block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); block_1 = ggml_relu(ctx0, block_1); block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); block_1 = ggml_hardsigmoid(ctx0, block_1); // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); block_1 = ggml_mul(ctx0, block_1_hw, block_1); int w = block_1->ne[0], h = block_1->ne[1]; block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] block_1 = ggml_norm(ctx0, block_1, eps); block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1] } embeddings = block_1; } else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { int n_patch = 24; struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b); mlp_0 = ggml_gelu(ctx0, mlp_0); struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0); mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b); // mlp_2 ne = [2048, 576, 1, 1] // // AVG Pool Layer 2*2, strides = 2 mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3)); // mlp_2 ne = [576, 2048, 1, 1] mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]); // mlp_2 ne [24, 24, 2048, 1] mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0); // weight ne = [3, 3, 2048, 1] struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1); peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3)); peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b); mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3)); peg_0 = ggml_add(ctx0, peg_0, mlp_2); peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]); embeddings = peg_0; } else { GGML_ABORT("fatal error"); } } // minicpmv projector else if (ctx->has_minicpmv_projector) { if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { struct ggml_tensor * q = model.mm_model_query; { // layernorm q = ggml_norm(ctx0, q, eps); q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b); } struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings); { // layernorm v = ggml_norm(ctx0, v, eps); v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b); } struct ggml_tensor * k; { // position // q = ggml_add(ctx0, q, model.mm_model_pos_embed); k = ggml_add(ctx0, v, pos_embed); } { // attention int hidden_size = 4096; const int d_head = 128; int n_head = hidden_size/d_head; int num_query = 96; if (ctx->minicpmv_version == 2) { hidden_size = 4096; n_head = hidden_size/d_head; num_query = 96; } else if (ctx->minicpmv_version == 3) { hidden_size = 3584; n_head = hidden_size/d_head; num_query = 64; } else if (ctx->minicpmv_version == 4) { hidden_size = 3584; n_head = hidden_size/d_head; num_query = 64; } struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b); struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b); struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b); // permute Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size); Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3)); Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size); K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size); K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3)); K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size); V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size); V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3)); V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size); struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q); KQ = ggml_soft_max_ext(ctx0, KQ, nullptr, 1.0f / sqrtf((float)d_head), 0.0f); struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ); KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size); KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3); KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size); embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b); } { // layernorm embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b); } embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings); } else { GGML_ASSERT(false); } } // glm projector else if (ctx->has_glm_projector) { if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { size_t gridsz = (size_t)sqrt(embeddings->ne[1]); embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3)); embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]); embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1); embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size); embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3)); embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b); //GLU { embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings); embeddings = ggml_norm(ctx0, embeddings, eps); embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b); embeddings = ggml_gelu_inplace(ctx0, embeddings); struct ggml_tensor * x = embeddings; embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings); x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x); embeddings = ggml_silu_inplace(ctx0, embeddings); embeddings = ggml_mul(ctx0, embeddings,x); embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings); } } else { GGML_ABORT("fatal error"); } } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size); embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); // GELU activation embeddings = ggml_gelu(ctx0, embeddings); // Second linear layer embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings); embeddings = ggml_add(ctx0, embeddings, model.mm_1_b); } // build the graph ggml_build_forward_expand(gf, embeddings); return gf; } static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs, struct clip_image_size load_image_size, bool is_inf = false) { if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { return clip_image_build_graph_siglip(ctx, imgs); } else { // TODO: we should have one build_* function per model return clip_image_build_graph_legacy(ctx, imgs, load_image_size, is_inf); } } struct clip_model_loader { ggml_context_ptr ctx_meta; gguf_context_ptr ctx_gguf; clip_ctx & ctx_clip; std::string fname; size_t model_size; // in bytes // TODO @ngxson : we should not pass clip_ctx here, it should be clip_vision_model clip_model_loader(const char * fname, clip_ctx & ctx_clip) : ctx_clip(ctx_clip), fname(fname) { struct ggml_context * meta = nullptr; struct gguf_init_params params = { /*.no_alloc = */ true, /*.ctx = */ &meta, }; ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params)); if (!ctx_gguf.get()) { throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname)); } ctx_meta.reset(meta); const int n_tensors = gguf_get_n_tensors(ctx_gguf.get()); // print gguf info { std::string name; get_string(KEY_NAME, name, false); std::string description; get_string(KEY_DESCRIPTION, description, false); LOG_INF("%s: model name: %s\n", __func__, name.c_str()); LOG_INF("%s: description: %s\n", __func__, description.c_str()); LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get())); LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get())); LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors); LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get())); LOG_INF("\n"); } // tensors { for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_gguf.get(), i); const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i); enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i); struct ggml_tensor * cur = ggml_get_tensor(meta, name); size_t tensor_size = ggml_nbytes(cur); model_size += tensor_size; LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n", __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type)); } } } void load_hparams() { // projector type { std::string proj_type; get_string(KEY_PROJ_TYPE, proj_type, false); if (!proj_type.empty()) { ctx_clip.proj_type = clip_projector_type_from_string(proj_type); } if (ctx_clip.proj_type == PROJECTOR_TYPE_UNKNOWN) { throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str())); } } // other hparams { get_bool(KEY_HAS_TEXT_ENC, ctx_clip.has_text_encoder, false); get_bool(KEY_HAS_VIS_ENC, ctx_clip.has_vision_encoder, false); GGML_ASSERT(ctx_clip.has_vision_encoder); GGML_ASSERT(!ctx_clip.has_text_encoder); // legacy keys, use KEY_PROJ_TYPE instead get_bool(KEY_HAS_LLAVA_PROJ, ctx_clip.has_llava_projector, false); get_bool(KEY_HAS_MINICPMV_PROJ, ctx_clip.has_minicpmv_projector, false); get_i32(KEY_MINICPMV_VERSION, ctx_clip.minicpmv_version, false); get_bool(KEY_HAS_GLM_PROJ, ctx_clip.has_glm_projector, false); get_bool(KEY_HAS_QWEN2VL_MERGER, ctx_clip.has_qwen2vl_merger, false); // !!! do NOT extend the list above, use KEY_PROJ_TYPE instead get_bool(KEY_USE_GELU, ctx_clip.use_gelu, false); get_bool(KEY_USE_SILU, ctx_clip.use_silu, false); auto & hparams = ctx_clip.vision_model.hparams; get_u32(string_format(KEY_N_EMBD, "vision"), hparams.hidden_size); get_u32(string_format(KEY_N_HEAD, "vision"), hparams.n_head); get_u32(string_format(KEY_N_FF, "vision"), hparams.n_intermediate); get_u32(string_format(KEY_N_BLOCK, "vision"), hparams.n_layer); get_u32(string_format(KEY_PROJ_DIM, "vision"), hparams.projection_dim); get_f32(string_format(KEY_LAYER_NORM_EPS, "vision"), hparams.eps); get_u32(KEY_IMAGE_SIZE, hparams.image_size); get_u32(KEY_PATCH_SIZE, hparams.patch_size); get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false); get_arr_int(KEY_IMAGE_GRID_PINPOINTS, hparams.image_grid_pinpoints, false); { std::string mm_patch_merge_type; get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false); if (mm_patch_merge_type == "spatial_unpad") { hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD; } } { int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN); int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD); GGML_ASSERT(idx_mean >= 0 && "image_mean not found"); GGML_ASSERT(idx_std >= 0 && "image_std not found"); const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean); const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std); for (int i = 0; i < 3; ++i) { ctx_clip.image_mean[i] = mean_data[i]; ctx_clip.image_std[i] = std_data[i]; } } // Load the vision feature layer indices if they are explicitly provided; // if multiple vision feature layers are present, the values will be concatenated // to form the final visual features. // NOTE: gguf conversions should standardize the values of the vision feature layer to // be non-negative, since we use -1 to mark values as unset here. std::vector<int> vision_feature_layer; get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false); // convert std::vector to std::unordered_set for (auto & layer : vision_feature_layer) { hparams.vision_feature_layer.insert(layer); } // Calculate the deepest feature layer based on hparams and projector type ctx_clip.max_feature_layer = get_deepest_feature_layer(&ctx_clip); LOG_INF("%s: text_encoder: %d\n", __func__, ctx_clip.has_text_encoder); LOG_INF("%s: vision_encoder: %d\n", __func__, ctx_clip.has_vision_encoder); LOG_INF("%s: llava_projector: %d\n", __func__, ctx_clip.has_llava_projector); LOG_INF("%s: minicpmv_projector: %d\n", __func__, ctx_clip.has_minicpmv_projector); LOG_INF("%s: minicpmv_version: %d\n", __func__, ctx_clip.minicpmv_version); LOG_INF("%s: glm_projector: %d\n", __func__, ctx_clip.has_glm_projector); LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0); LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0); } } void load_tensors() { std::map<std::string, size_t> tensor_offset; std::vector<ggml_tensor *> tensors_to_load; // get offsets for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) { const char * name = gguf_get_tensor_name(ctx_gguf.get(), i); tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i); } // create data context struct ggml_init_params params = { /*.mem_size =*/ (gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(), /*.mem_buffer =*/ NULL, /*.no_alloc =*/ true, }; ctx_clip.ctx_data.reset(ggml_init(params)); if (!ctx_clip.ctx_data) { throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__)); } // helper function auto get_tensor = [&](const std::string & name, bool required = true) { struct ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str()); if (!cur && required) { throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str())); } if (cur) { tensors_to_load.push_back(cur); // add tensors to context struct ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur); ggml_set_name(data_tensor, cur->name); cur = data_tensor; } return cur; }; auto & vision_model = ctx_clip.vision_model; vision_model.class_embedding = get_tensor(TN_CLASS_EMBD, false); vision_model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, "v", "weight"), false); vision_model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, "v", "bias"), false); vision_model.post_ln_w = get_tensor(string_format(TN_LN_POST, "v", "weight"), false); vision_model.post_ln_b = get_tensor(string_format(TN_LN_POST, "v", "bias"), false); vision_model.patch_bias = get_tensor(TN_PATCH_BIAS, false); vision_model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false); vision_model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false); if (vision_model.patch_embeddings_1 == nullptr) { ctx_clip.has_qwen2vl_merger = false; } vision_model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, "v"), false); // layers vision_model.layers.resize(vision_model.hparams.n_layer); for (int il = 0; il < vision_model.hparams.n_layer; ++il) { auto & layer = vision_model.layers[il]; layer.k_w = get_tensor(string_format(TN_ATTN_K, "v", il, "weight")); layer.q_w = get_tensor(string_format(TN_ATTN_Q, "v", il, "weight")); layer.v_w = get_tensor(string_format(TN_ATTN_V, "v", il, "weight")); layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "weight")); layer.ln_1_w = get_tensor(string_format(TN_LN_1, "v", il, "weight"), false); layer.ln_2_w = get_tensor(string_format(TN_LN_2, "v", il, "weight"), false); layer.ff_i_w = get_tensor(string_format(TN_FFN_DOWN, "v", il, "weight")); layer.ff_o_w = get_tensor(string_format(TN_FFN_UP, "v", il, "weight")); layer.k_b = get_tensor(string_format(TN_ATTN_K, "v", il, "bias"), false); layer.q_b = get_tensor(string_format(TN_ATTN_Q, "v", il, "bias"), false); layer.v_b = get_tensor(string_format(TN_ATTN_V, "v", il, "bias"), false); layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, "v", il, "bias"), false); layer.ln_1_b = get_tensor(string_format(TN_LN_1, "v", il, "bias"), false); layer.ln_2_b = get_tensor(string_format(TN_LN_2, "v", il, "bias"), false); layer.ff_i_b = get_tensor(string_format(TN_FFN_DOWN, "v", il, "bias"), false); layer.ff_o_b = get_tensor(string_format(TN_FFN_UP, "v", il, "bias"), false); } switch (ctx_clip.proj_type) { case PROJECTOR_TYPE_MLP: case PROJECTOR_TYPE_MLP_NORM: { // LLaVA projection vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false); vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false); // Yi-type llava vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false); vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false); // missing in Yi-type llava vision_model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false); vision_model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false); // Yi-type llava vision_model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false); vision_model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false); vision_model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false); vision_model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false); if (vision_model.mm_3_w) { // TODO: this is a hack to support Yi-type llava ctx_clip.proj_type = PROJECTOR_TYPE_MLP_NORM; } vision_model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false); } break; case PROJECTOR_TYPE_LDP: { // MobileVLM projection vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight")); vision_model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias")); vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight")); vision_model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias")); vision_model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); vision_model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); vision_model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); vision_model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); vision_model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); vision_model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); vision_model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); vision_model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); vision_model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); vision_model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); vision_model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); vision_model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); } break; case PROJECTOR_TYPE_LDPV2: { // MobilVLM_V2 projection vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight")); vision_model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias")); vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight")); vision_model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias")); vision_model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight")); vision_model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias")); } break; case PROJECTOR_TYPE_RESAMPLER: { // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD); vision_model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K); vision_model.mm_model_query = get_tensor(TN_MINICPMV_QUERY); vision_model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ); vision_model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ); vision_model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight")); vision_model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight")); vision_model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight")); vision_model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias")); vision_model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias")); vision_model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias")); vision_model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight")); vision_model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias")); vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight")); vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias")); vision_model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight")); vision_model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias")); vision_model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight")); vision_model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias")); } break; case PROJECTOR_TYPE_GLM_EDGE: { vision_model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight")); vision_model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias")); vision_model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR,"weight")); vision_model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"weight")); vision_model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1,"bias")); vision_model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H,"weight")); vision_model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE,"weight")); vision_model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H,"weight")); vision_model.boi_w = get_tensor(TN_GLM_BOI_W); vision_model.eoi_w = get_tensor(TN_GLM_EOI_W); } break; case PROJECTOR_TYPE_MERGER: { vision_model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight")); vision_model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias")); vision_model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight")); vision_model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias")); } break; case PROJECTOR_TYPE_GEMMA3: { vision_model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ); vision_model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N); } break; default: GGML_ASSERT(false && "unknown projector type"); } // load data { std::vector<uint8_t> read_buf; auto fin = std::ifstream(fname, std::ios::binary); if (!fin) { throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str())); } // alloc memory and offload data ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend); ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft)); ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS); for (auto & t : tensors_to_load) { struct ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name); const size_t offset = tensor_offset[t->name]; fin.seekg(offset, std::ios::beg); if (!fin) { throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name)); } size_t num_bytes = ggml_nbytes(cur); if (ggml_backend_buft_is_host(buft)) { // for the CPU and Metal backend, we can read directly into the tensor fin.read(reinterpret_cast<char *>(cur->data), num_bytes); } else { // read into a temporary buffer first, then copy to device memory read_buf.resize(num_bytes); fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes); ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes); } } fin.close(); LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str()); } } void alloc_compute_meta() { ctx_clip.buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead()); // create a fake batch clip_image_f32_batch batch; clip_image_f32_ptr img(clip_image_f32_init()); clip_image_size image_size; image_size.width = clip_get_image_size(&ctx_clip); image_size.height = clip_get_image_size(&ctx_clip); int n_patches = clip_get_image_size(&ctx_clip) / image_size.width; img->nx = n_patches; img->ny = n_patches; img->buf.resize(n_patches * image_size.width * image_size.height * 3); batch.entries.push_back(std::move(img)); ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch, image_size, false); ggml_backend_sched_reserve(ctx_clip.sched.get(), gf); for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) { ggml_backend_t backend = ctx_clip.backend_ptrs[i]; ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i]; size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend); if (size > 1) { LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__, ggml_backend_buft_name(buft), size / 1024.0 / 1024.0); } } } void get_bool(const std::string & key, bool & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_bool(ctx_gguf.get(), i); } void get_i32(const std::string & key, int & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_i32(ctx_gguf.get(), i); } void get_u32(const std::string & key, int & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_u32(ctx_gguf.get(), i); } void get_f32(const std::string & key, float & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = gguf_get_val_f32(ctx_gguf.get(), i); } void get_string(const std::string & key, std::string & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } output = std::string(gguf_get_val_str(ctx_gguf.get(), i)); } void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) { const int i = gguf_find_key(ctx_gguf.get(), key.c_str()); if (i < 0) { if (required) throw std::runtime_error("Key not found: " + key); return; } int n = gguf_get_arr_n(ctx_gguf.get(), i); output.resize(n); const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i); for (int i = 0; i < n; ++i) { output[i] = values[i]; } } }; // read and create ggml_context containing the tensors and their data struct clip_ctx * clip_model_load(const char * fname, const int verbosity) { return clip_init(fname, clip_context_params{ /* use_gpu */ true, /* verbosity */ static_cast<ggml_log_level>(verbosity), }); } struct clip_ctx * clip_init(const char * fname, struct clip_context_params ctx_params) { g_logger_state.verbosity_thold = ctx_params.verbosity; clip_ctx * ctx_clip = new clip_ctx(ctx_params); try { clip_model_loader loader(fname, *ctx_clip); loader.load_hparams(); loader.load_tensors(); loader.alloc_compute_meta(); } catch (const std::exception & e) { LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what()); delete ctx_clip; return nullptr; } return ctx_clip; } void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) { ctx_clip->load_image_size = *load_image_size; // copy } struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) { return &ctx_clip->load_image_size; } struct clip_image_size * clip_image_size_init() { struct clip_image_size * load_image_size = new struct clip_image_size(); load_image_size->width = 448; load_image_size->height = 448; return load_image_size; } struct clip_image_u8 * clip_image_u8_init() { return new clip_image_u8(); } struct clip_image_f32 * clip_image_f32_init() { return new clip_image_f32(); } struct clip_image_f32_batch * clip_image_f32_batch_init() { return new clip_image_f32_batch(); } unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) { if (nx) *nx = img->nx; if (ny) *ny = img->ny; return img->buf.data(); } void clip_image_size_free(struct clip_image_size * load_image_size) { if (load_image_size == nullptr) { return; } delete load_image_size; } void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; } void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; } void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; } void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; } size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) { return batch->entries.size(); } size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return 0; } return batch->entries[idx]->nx; } size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return 0; } return batch->entries[idx]->ny; } clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) { if (idx < 0 || idx >= (int)batch->entries.size()) { LOG_ERR("%s: invalid index %d\n", __func__, idx); return nullptr; } return batch->entries[idx].get(); } void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) { img->nx = nx; img->ny = ny; img->buf.resize(3 * nx * ny); memcpy(img->buf.data(), rgb_pixels, img->buf.size()); } bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load(fname, &nx, &ny, &nc, 3); if (!data) { LOG_ERR("%s: failed to load image '%s'\n", __func__, fname); return false; } clip_build_img_from_pixels(data, nx, ny, img); stbi_image_free(data); return true; } bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) { int nx, ny, nc; auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3); if (!data) { LOG_ERR("%s: failed to decode image bytes\n", __func__); return false; } clip_build_img_from_pixels(data, nx, ny, img); stbi_image_free(data); return true; } // Linear interpolation between two points inline float clip_lerp(float s, float e, float t) { return s + (e - s) * t; } // Bilinear resize function static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) { dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float x_ratio = static_cast<float>(src.nx - 1) / target_width; float y_ratio = static_cast<float>(src.ny - 1) / target_height; for (int y = 0; y < target_height; y++) { for (int x = 0; x < target_width; x++) { float px = x_ratio * x; float py = y_ratio * y; int x_floor = static_cast<int>(px); int y_floor = static_cast<int>(py); float x_lerp = px - x_floor; float y_lerp = py - y_floor; for (int c = 0; c < 3; c++) { float top = clip_lerp( static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]), static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]), x_lerp ); float bottom = clip_lerp( static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]), static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]), x_lerp ); dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp)); } } } } // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) { dst.nx = src.nx; dst.ny = src.ny; dst.buf.resize(src.buf.size()); // TODO @ngxson : seems like this could be done more efficiently on cgraph for (size_t i = 0; i < src.buf.size(); ++i) { int c = i % 3; // rgb dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c]; } } inline int clip(int x, int lower, int upper) { return std::max(lower, std::min(x, upper)); } static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) { const int nx = img.nx; const int ny = img.ny; dst.nx = target_width; dst.ny = target_height; dst.buf.resize(3 * target_width * target_height); float Cc; float C[5]; float d0, d2, d3, a0, a1, a2, a3; int i, j, k, jj; int x, y; float dx, dy; float tx, ty; tx = (float)nx / (float)target_width; ty = (float)ny / (float)target_height; // Bicubic interpolation; adapted from ViT.cpp, inspired from : // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36 // -> https://en.wikipedia.org/wiki/Bicubic_interpolation for (i = 0; i < target_height; i++) { for (j = 0; j < target_width; j++) { x = (int)(tx * j); y = (int)(ty * i); dx = tx * j - x; dy = ty * i - y; for (k = 0; k < 3; k++) { for (jj = 0; jj <= 3; jj++) { d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx; d0 = C[0] - C[1]; d2 = C[2] - C[1]; d3 = C[3] - C[1]; a0 = C[1]; a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3; a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2; a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3; Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy; const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f); dst.buf[(i * target_width + j) * 3 + k] = float(Cc2); } } } } return true; } // llava-1.6 type of resize_and_pad (black) static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) { int target_width = target_resolution.first; int target_height = target_resolution.second; float scale_w = static_cast<float>(target_width) / image.nx; float scale_h = static_cast<float>(target_height) / image.ny; int new_width, new_height; if (scale_w < scale_h) { new_width = target_width; new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height); } else { new_height = target_height; new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width); } clip_image_u8 resized_image; // bilinear_resize(image, resized_image, new_width, new_height); bicubic_resize(image, resized_image, new_width, new_height); clip_image_u8 padded_image; padded_image.nx = target_width; padded_image.ny = target_height; padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black // Calculate padding offsets int pad_x = (target_width - new_width) / 2; int pad_y = (target_height - new_height) / 2; // Copy the resized image into the center of the padded buffer for (int y = 0; y < new_height; ++y) { for (int x = 0; x < new_width; ++x) { for (int c = 0; c < 3; ++c) { padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c]; } } } image_output = std::move(padded_image); } /** * Selects the best resolution from a list of possible resolutions based on the original size. * * @param original_size The original size of the image in the format (width, height). * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. * @return The best fit resolution in the format (width, height). */ static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) { int original_width = original_size.first; int original_height = original_size.second; std::pair<int, int> best_fit; int max_effective_resolution = 0; int min_wasted_resolution = std::numeric_limits<int>::max(); for (const auto& resolution : possible_resolutions) { int width = resolution.first; int height = resolution.second; float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height); int downscaled_width = static_cast<int>(original_width * scale); int downscaled_height = static_cast<int>(original_height * scale); int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height); int wasted_resolution = (width * height) - effective_resolution; // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution); if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) { max_effective_resolution = effective_resolution; min_wasted_resolution = wasted_resolution; best_fit = resolution; } } return best_fit; } static std::vector<clip_image_u8_ptr> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) { std::vector<clip_image_u8_ptr> patches; int width = image.nx; int height = image.ny; for (int i = 0; i < height; i += patch_size) { for (int j = 0; j < width; j += patch_size) { clip_image_u8_ptr patch(clip_image_u8_init()); patch->nx = std::min(patch_size, width - j); patch->ny = std::min(patch_size, height - i); patch->buf.resize(3 * patch->nx * patch->ny); for (int y = 0; y < patch->ny; ++y) { for (int x = 0; x < patch->nx; ++x) { for (int c = 0; c < 3; ++c) { patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c]; } } } patches.push_back(std::move(patch)); } } return patches; } static int ensure_divide(int length, int patch_size) { return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size); } static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) { int width = original_size.first; int height = original_size.second; if ((width * height > scale_resolution * scale_resolution) || allow_upscale) { float r = static_cast<float>(width) / height; height = static_cast<int>(scale_resolution / std::sqrt(r)); width = static_cast<int>(height * r); } int best_width = ensure_divide(width, patch_size); int best_height = ensure_divide(height, patch_size); return std::make_pair(best_width, best_height); } static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) { int width, height; std::tie(width, height) = original_size; int grid_x, grid_y; std::tie(grid_x, grid_y) = grid; int refine_width = ensure_divide(width, grid_x); int refine_height = ensure_divide(height, grid_y); int grid_width = refine_width / grid_x; int grid_height = refine_height / grid_y; // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line) auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair int best_grid_width, best_grid_height; std::tie(best_grid_width, best_grid_height) = best_grid_size; // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line) std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line) return refine_size; } static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) { std::vector<int> candidate_split_grids_nums; for (int i : {multiple - 1, multiple, multiple + 1}) { if (i == 1 || i > max_slice_nums) { continue; } candidate_split_grids_nums.push_back(i); } std::vector<std::pair<int, int>> candidate_grids; for (int split_grids_nums : candidate_split_grids_nums) { int m = 1; while (m <= split_grids_nums) { if (split_grids_nums % m == 0) { candidate_grids.emplace_back(m, split_grids_nums / m); } ++m; } } std::pair<int, int> best_grid{1, 1}; float min_error = std::numeric_limits<float>::infinity(); for (const auto& grid : candidate_grids) { float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second)); if (error < min_error) { best_grid = grid; min_error = error; } } return best_grid; } // inspired from LLaVA-UHD: // -> https://arxiv.org/pdf/2403.11703 // -> https://github.com/thunlp/LLaVA-UHD // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118 static std::vector<std::vector<clip_image_u8_ptr>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) { const std::pair<int, int> original_size={img->nx,img->ny}; const int original_width = img->nx; const int original_height = img->ny; const float log_ratio = log(1.0*original_width/original_height); const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); const int multiple = fmin(ceil(ratio), max_slice_nums); std::vector<std::vector<clip_image_u8_ptr>> images; LOG_DBG("%s: multiple %d\n", __func__, multiple); images.push_back(std::vector<clip_image_u8_ptr>()); if (multiple <= 1) { auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true); clip_image_u8_ptr source_image(clip_image_u8_init()); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.resize(best_size, Image.Resampling.BICUBIC) images.back().push_back(std::move(source_image)); } else if (multiple > 1) { auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size); clip_image_u8_ptr source_image(clip_image_u8_init()); bicubic_resize(*img, *source_image, best_size.first, best_size.second); // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC) LOG_DBG("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second); images.back().push_back(std::move(source_image)); std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); LOG_DBG("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second); auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true); clip_image_u8_ptr refine_image(clip_image_u8_init()); bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second); LOG_DBG("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second); // split_to_patches int width = refine_image->nx; int height = refine_image->ny; int grid_x = int(width / best_grid.first); int grid_y = int(height / best_grid.second); for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){ images.push_back(std::vector<clip_image_u8_ptr>()); for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){ clip_image_u8_ptr patch(clip_image_u8_init()); patch->nx = grid_x; patch->ny = grid_y; patch->buf.resize(3 * patch->nx * patch->ny); for (int y = patches_i; y < patches_i + grid_y; ++y) { for (int x = patches_j; x < patches_j + grid_x; ++x) { const int i = 3 * (y * refine_image->nx + x); const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j)); patch->buf[j] = refine_image->buf[i]; patch->buf[j+1] = refine_image->buf[i+1]; patch->buf[j+2] = refine_image->buf[i+2]; } } images.back().push_back(std::move(patch)); } } } return images; } int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) { const int max_slice_nums=9; const int scale_resolution=448; const int original_width = ctx_clip->load_image_size.width; const int original_height = ctx_clip->load_image_size.height; const float log_ratio = log(1.0*original_width/original_height); const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution); const int multiple = fmin(ceil(ratio), max_slice_nums); std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio); return best_grid.first; } // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector // res_imgs memory is being allocated here, previous allocations will be freed if found bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) { if (clip_is_minicpmv(ctx)) { int max_slice_nums = 9; std::vector<std::vector<clip_image_u8_ptr>> imgs = uhd_slice_image(img, max_slice_nums); for (size_t i = 0; i < imgs.size(); ++i) { for (size_t j = 0; j < imgs[i].size(); ++j) { LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny); clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*imgs[i][j], *res, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(res)); } } return true; } else if (ctx->has_qwen2vl_merger) { clip_image_u8 resized; auto patch_size = clip_get_patch_size(ctx) * 2; int nx = ceil((float)img->nx / patch_size) * patch_size; int ny = ceil((float)img->ny / patch_size) * patch_size; bicubic_resize(*img, resized, nx, ny); clip_image_f32_ptr img_f32(clip_image_f32_init()); // clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(resized, *img_f32, ctx->image_mean, ctx->image_std); // res_imgs->data[0] = *res; res_imgs->entries.push_back(std::move(img_f32)); return true; } if (ctx->has_glm_projector || ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { clip_image_u8 resized_image; int32_t sz=ctx->vision_model.hparams.image_size; bicubic_resize(*img, resized_image,sz,sz); clip_image_f32_ptr img_f32(clip_image_f32_init()); //clip_image_save_to_bmp(resized_image, "resized.bmp"); normalize_image_u8_to_f32(resized_image, *img_f32, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(img_f32)); return true; } bool pad_to_square = true; if (!ctx->has_vision_encoder) { LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__); return false; } auto & params = ctx->vision_model.hparams; // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) { pad_to_square = false; } // free the previous res_imgs if any set res_imgs->entries.clear(); // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104) // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156 clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily if (pad_to_square && img->nx != img->ny) { int longer_side = std::max(img->nx, img->ny); temp->nx = longer_side; temp->ny = longer_side; temp->buf.resize(3 * longer_side * longer_side); const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255) // fill with background color for (size_t i = 0; i < temp->buf.size(); i++) { temp->buf[i] = bc[i % 3]; } // copy from the input image for (int y = 0; y < img->ny; y++) { for (int x = 0; x < img->nx; x++) { const int i = 3 * (y * img->nx + x); const int j = 3 * (y * temp->nx + x); temp->buf[j] = img->buf[i]; temp->buf[j+1] = img->buf[i+1]; temp->buf[j+2] = img->buf[i+2]; } } } else { if (!params.image_grid_pinpoints.empty()) { // "spatial_unpad" with "anyres" processing for llava-1.6 std::vector<std::pair<int, int>> possible_resolutions; for (size_t i = 0; i < params.image_grid_pinpoints.size(); i+=2) { possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]}); } std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions); // clip_image_save_to_bmp(*img, "input.bmp"); resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6 // clip_image_save_to_bmp(*temp, "resized.bmp"); // visually verify normalized image: // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std); // { // clip_image_u8 * temp2 = clip_image_u8_init(); // clip_image_convert_f32_to_u8(*res, *temp2); // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp"); // clip_image_u8_free(temp2); // } std::vector<clip_image_u8_ptr> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6) clip_image_u8_ptr image_original_resize(clip_image_u8_init()); // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square patches.insert(patches.begin(), std::move(image_original_resize)); for (auto & patch : patches) { clip_image_f32_ptr res(clip_image_f32_init()); normalize_image_u8_to_f32(*patch, *res, ctx->image_mean, ctx->image_std); res_imgs->entries.push_back(std::move(res)); } return true; } else { temp->nx = img->nx; temp->ny = img->ny; temp->buf.resize(img->buf.size()); memcpy(temp->buf.data(), img->buf.data(), temp->buf.size()); } } const int nx = temp->nx; const int ny = temp->ny; // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp"); const int nx2 = ctx->vision_model.hparams.image_size; const int ny2 = ctx->vision_model.hparams.image_size; clip_image_f32_ptr res(clip_image_f32_init()); res->nx = nx2; res->ny = ny2; res->buf.resize(3 * nx2 * ny2); const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size; const int nx3 = int(nx / scale + 0.5f); const int ny3 = int(ny / scale + 0.5f); const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f}; const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f}; for (int y = 0; y < ny3; y++) { for (int x = 0; x < nx3; x++) { for (int c = 0; c < 3; c++) { // linear interpolation const float sx = (x + 0.5f) * scale - 0.5f; const float sy = (y + 0.5f) * scale - 0.5f; const int x0 = std::max(0, (int)std::floor(sx)); const int y0 = std::max(0, (int)std::floor(sy)); const int x1 = std::min(x0 + 1, nx - 1); const int y1 = std::min(y0 + 1, ny - 1); const float dx = sx - x0; const float dy = sy - y0; const int j00 = 3 * (y0 * nx + x0) + c; const int j01 = 3 * (y0 * nx + x1) + c; const int j10 = 3 * (y1 * nx + x0) + c; const int j11 = 3 * (y1 * nx + x1) + c; const float v00 = temp->buf[j00]; const float v01 = temp->buf[j01]; const float v10 = temp->buf[j10]; const float v11 = temp->buf[j11]; const float v0 = v00 * (1.0f - dx) + v01 * dx; const float v1 = v10 * (1.0f - dx) + v11 * dx; const float v = v0 * (1.0f - dy) + v1 * dy; const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f); const int i = 3 * (y * nx3 + x) + c; res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c]; } } } // { // clip_image_u8 * temp2 = clip_image_u8_init(); // clip_image_convert_f32_to_u8(*res, *temp2); // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp"); // clip_image_u8_free(temp2); // } // res_imgs.push_back(res); res_imgs->entries.push_back(std::move(res)); return true; } ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) { return ctx->vision_model.image_newline; } void clip_free(clip_ctx * ctx) { if (ctx == nullptr) { return; } delete ctx; } size_t clip_embd_nbytes(const struct clip_ctx * ctx) { int extra_tokens = ctx->has_glm_projector ? 2 : 0; return (clip_n_patches(ctx) + extra_tokens) * clip_n_mmproj_embd(ctx) * sizeof(float); } size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) { clip_image_f32 img; img.nx = img_w; img.ny = img_h; return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float); } int32_t clip_get_image_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.image_size; } int32_t clip_get_patch_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.patch_size; } int32_t clip_get_hidden_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.hidden_size; } const char * clip_patch_merge_type(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat"; } const int32_t * clip_image_grid(const struct clip_ctx * ctx) { if (ctx->vision_model.hparams.image_grid_pinpoints.size()) { return &ctx->vision_model.hparams.image_grid_pinpoints.front(); } return nullptr; } size_t get_clip_image_grid_size(const struct clip_ctx * ctx) { return ctx->vision_model.hparams.image_grid_pinpoints.size(); } int clip_n_patches(const struct clip_ctx * ctx) { clip_image_f32 img; img.nx = ctx->vision_model.hparams.image_size; img.ny = ctx->vision_model.hparams.image_size; return clip_n_patches_by_img(ctx, &img); } int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) { const auto & params = ctx->vision_model.hparams; int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2 || ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE) { n_patches /= 4; } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { if (ctx->minicpmv_version == 2) { n_patches = 96; } else if (ctx->minicpmv_version == 3) { n_patches = 64; } else if (ctx->minicpmv_version == 4) { n_patches = 64; } } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { int patch_size = params.patch_size * 2; int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0); int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0); n_patches = x_patch * y_patch; } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { n_patches = 256; } return n_patches; } static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) { assert(embed_dim % 2 == 0); int H = pos.size(); int W = pos[0].size(); std::vector<float> omega(embed_dim / 2); for (int i = 0; i < embed_dim / 2; ++i) { omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2)); } std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim))); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { for (int d = 0; d < embed_dim / 2; ++d) { float out_value = pos[h][w] * omega[d]; emb[h][w][d] = sin(out_value); emb[h][w][d + embed_dim / 2] = cos(out_value); } } } return emb; } static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) { assert(embed_dim % 2 == 0); std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2) std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2) int H = emb_h.size(); int W = emb_h[0].size(); std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim))); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { for (int d = 0; d < embed_dim / 2; ++d) { emb[h][w][d] = emb_h[h][w][d]; emb[h][w][d + embed_dim / 2] = emb_w[h][w][d]; } } } return emb; } static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) { int grid_h_size = image_size.first; int grid_w_size = image_size.second; std::vector<float> grid_h(grid_h_size); std::vector<float> grid_w(grid_w_size); for (int i = 0; i < grid_h_size; ++i) { grid_h[i] = static_cast<float>(i); } for (int i = 0; i < grid_w_size; ++i) { grid_w[i] = static_cast<float>(i); } std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size)); for (int h = 0; h < grid_h_size; ++h) { for (int w = 0; w < grid_w_size; ++w) { grid[h][w] = grid_w[w]; } } std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid}; for (int h = 0; h < grid_h_size; ++h) { for (int w = 0; w < grid_w_size; ++w) { grid_2d[0][h][w] = grid_h[h]; grid_2d[1][h][w] = grid_w[w]; } } std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d); int H = image_size.first; int W = image_size.second; std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim)); for (int h = 0; h < H; ++h) { for (int w = 0; w < W; ++w) { pos_embed_2d[w * H + h] = pos_embed_3d[h][w]; } } return pos_embed_2d; } bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) { if (!ctx->has_vision_encoder) { LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__); return false; } clip_image_f32_batch imgs; clip_image_f32_ptr img_copy(clip_image_f32_init()); *img_copy = *img; imgs.entries.push_back(std::move(img_copy)); return clip_image_batch_encode(ctx, n_threads, &imgs, vec); } bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) { const clip_image_f32_batch & imgs = *imgs_c_ptr; if (!ctx->has_vision_encoder) { LOG_ERR("%s: This gguf file seems to have no vision encoder\n", __func__); return false; } int batch_size = imgs.entries.size(); if (ctx->has_llava_projector) { GGML_ASSERT(batch_size == 1); // TODO: support multiple images } if (ctx->has_minicpmv_projector) { GGML_ASSERT(batch_size == 1); } if (ctx->has_glm_projector) { GGML_ASSERT(batch_size == 1); ggml_tensor * boi = ctx->vision_model.boi_w; ggml_backend_tensor_get(boi,vec,0,ggml_nbytes(boi)); vec = (float*)(vec+ggml_nelements(boi)); //offset for boi } // build the inference graph ggml_backend_sched_reset(ctx->sched.get()); ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true); ggml_backend_sched_alloc_graph(ctx->sched.get(), gf); // set inputs const auto & model = ctx->vision_model; const auto & hparams = model.hparams; const int image_size = hparams.image_size; int image_size_width = image_size; int image_size_height = image_size; if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) { image_size_width = imgs.entries[0]->nx; image_size_height = imgs.entries[0]->ny; } const int patch_size = hparams.patch_size; const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size)); const int num_positions = num_patches + (model.class_embedding ? 1 : 0); const int pos_w = ctx->load_image_size.width / patch_size; const int pos_h = ctx->load_image_size.height / patch_size; { struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw"); float * data = (float *)malloc(ggml_nbytes(inp_raw)); for (size_t i = 0; i < imgs.entries.size(); i++) { const int nx = imgs.entries[i]->nx; const int ny = imgs.entries[i]->ny; if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) { GGML_ASSERT(nx == image_size && ny == image_size); } const int n = nx * ny; for (int b = 0; b < batch_size; b++) { for (int k = 0; k < 3; k++) { for (int y = 0; y < ny; y++) { for (int x = 0; x < nx; x++) { data[(b * 3 * n) + k * n + y * nx + x] = imgs.entries[b]->buf[3 * (y * nx + x) + k]; } } } } } ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw)); free(data); } if (ctx->has_minicpmv_projector) { { // inspired from siglip: // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316 struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); int* positions_data = (int*)malloc(ggml_nbytes(positions)); int bucket_coords_h[1024]; int bucket_coords_w[1024]; for (int i = 0; i < pos_h; i++){ bucket_coords_h[i] = std::floor(70.0*i/pos_h); } for (int i = 0; i < pos_w; i++){ bucket_coords_w[i] = std::floor(70.0*i/pos_w); } for (int i = 0, id = 0; i < pos_h; i++){ for (int j = 0; j < pos_w; j++){ positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j]; } } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); } { // inspired from resampler of Qwen-VL: // -> https://huggingface.co/Qwen/Qwen-VL/tree/main // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23 struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed"); int embed_dim = 4096; if (ctx->minicpmv_version == 2) { embed_dim = 4096; } else if (ctx->minicpmv_version == 3) { embed_dim = 3584; } else if (ctx->minicpmv_version == 4) { embed_dim = 3584; } auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h)); float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed)); for(int i=0;i < pos_w * pos_h; ++i){ for(int j=0; j < embed_dim; ++j){ pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j]; } } ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed)); free(pos_embed_data); } } else { if (model.class_embedding) { struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings"); void* zero_mem = malloc(ggml_nbytes(embeddings)); memset(zero_mem, 0, ggml_nbytes(embeddings)); ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings)); free(zero_mem); } if (ctx->has_qwen2vl_merger) { struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); const int pw = image_size_width / patch_size; const int ph = image_size_height / patch_size; int* positions_data = (int*)malloc(ggml_nbytes(positions)); int ptr = 0; for (int y = 0; y < ph; y+=2) { for (int x = 0; x < pw; x+=2) { for (int dy = 0; dy < 2; dy++) { for (int dx = 0; dx < 2; dx++) { positions_data[ptr] = y + dy; positions_data[num_patches + ptr] = x + dx; positions_data[num_patches * 2 + ptr] = y + dy; positions_data[num_patches * 3 + ptr] = x + dx; ptr++; } } } } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); } else if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { // do nothing } else { struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions"); int* positions_data = (int*)malloc(ggml_nbytes(positions)); for (int i = 0; i < num_positions; i++) { positions_data[i] = i; } ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions)); free(positions_data); if (!ctx->has_glm_projector) { struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches"); // The patches vector is used to get rows to index into the embeds with; // we should skip dim 0 only if we have CLS to avoid going out of bounds // when retrieving the rows. int patch_offset = model.class_embedding ? 1 : 0; int* patches_data = (int*)malloc(ggml_nbytes(patches)); for (int i = 0; i < num_patches; i++) { patches_data[i] = i + patch_offset; } ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches)); free(patches_data); } } } ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads); auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf); if (status != GGML_STATUS_SUCCESS) { LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status); return false; } // the last node is the embedding tensor struct ggml_tensor * embeddings = ggml_graph_node(gf, -1); // copy the embeddings to the location passed by the user ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings)); if (ctx->has_glm_projector) { //eoi ggml_tensor * eoi = ctx->vision_model.eoi_w; int offset = ggml_nelements(embeddings); ggml_backend_tensor_get(eoi, vec+offset, 0, ggml_nbytes(eoi)); } return true; } bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) { assert(itype < GGML_TYPE_COUNT); ggml_type type = static_cast<ggml_type>(itype); auto * ctx_clip = clip_init(fname_inp, clip_context_params{ /* use_gpu */ false, /* verbosity */ GGML_LOG_LEVEL_ERROR, }); const auto & ctx_src = ctx_clip->ctx_gguf.get(); const auto & ctx_data = ctx_clip->ctx_data.get(); auto * ctx_out = gguf_init_empty(); gguf_set_kv(ctx_out, ctx_src); gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); gguf_set_val_u32(ctx_out, "general.file_type", itype); auto fout = std::ofstream(fname_out, std::ios::binary); const int n_tensors = gguf_get_n_tensors(ctx_src); for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name); gguf_add_tensor(ctx_out, cur); } const size_t meta_size = gguf_get_meta_size(ctx_out); for (size_t i = 0; i < meta_size; ++i) { fout.put(0); } // regexes of tensor names to be quantized const std::vector<std::string> k_names = { ".*weight", }; std::vector<uint8_t> work(512); std::vector<float> conv_buf(512); size_t total_size_org = 0; size_t total_size_new = 0; for (int i = 0; i < n_tensors; ++i) { const std::string name = gguf_get_tensor_name(ctx_src, i); struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str()); enum ggml_type new_type; void * new_data; size_t new_size; bool quantize = false; for (const auto & s : k_names) { if (std::regex_match(name, std::regex(s))) { quantize = true; break; } } // quantize only 2D tensors and bigger than block size quantize &= (ggml_n_dims(cur) == 2) && cur->ne[0] > ggml_blck_size(type); if (quantize) { new_type = type; if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) { new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type)); } const size_t n_elms = ggml_nelements(cur); float * f32_data; switch (cur->type) { case GGML_TYPE_F32: f32_data = (float *)cur->data; break; case GGML_TYPE_F16: if (conv_buf.size() < n_elms) { conv_buf.resize(n_elms); } for (size_t j = 0; j < n_elms; ++j) { conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]); } f32_data = (float *)conv_buf.data(); break; default: LOG_ERR("%s: Please use an input file in f32 or f16\n", __func__); gguf_free(ctx_out); return false; } if (work.size() < n_elms * 4) { work.resize(n_elms * 4); } new_data = work.data(); new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr); } else { new_type = cur->type; new_data = cur->data; new_size = ggml_nbytes(cur); } const size_t orig_size = ggml_nbytes(cur); total_size_org += orig_size; total_size_new += new_size; gguf_set_tensor_type(ctx_out, name.c_str(), new_type); GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size); gguf_set_tensor_data(ctx_out, name.c_str(), new_data); fout.write((const char *)new_data, new_size); size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size; for (size_t j = 0; j < pad; ++j) { fout.put(0); } LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize, orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); } // go back to beginning of file and write the updated metadata fout.seekp(0, std::ios::beg); std::vector<uint8_t> meta(meta_size); gguf_get_meta_data(ctx_out, meta.data()); fout.write((const char *)meta.data(), meta_size); fout.close(); clip_free(ctx_clip); gguf_free(ctx_out); { LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0); LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0); } return true; } int clip_n_mmproj_embd(const struct clip_ctx * ctx) { if (ctx->proj_type == PROJECTOR_TYPE_LDP) { return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) { return ctx->vision_model.mm_model_peg_0_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_MLP) { return ctx->vision_model.mm_2_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { return ctx->vision_model.mm_3_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) { if (ctx->minicpmv_version == 2) { return 4096; } else if (ctx->minicpmv_version == 3) { return 3584; } else if (ctx->minicpmv_version == 4) { return 3584; } } if (ctx->proj_type == PROJECTOR_TYPE_GLM_EDGE){ return ctx->vision_model.mm_model_mlp_3_w->ne[1]; } if (ctx->proj_type == PROJECTOR_TYPE_MERGER) { return ctx->vision_model.mm_1_b->ne[0]; } if (ctx->proj_type == PROJECTOR_TYPE_GEMMA3) { return ctx->vision_model.mm_input_proj_w->ne[0]; } std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; throw std::runtime_error(string_format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); } int clip_is_minicpmv(const struct clip_ctx * ctx) { if (ctx->has_minicpmv_projector) { return ctx->minicpmv_version; } return 0; } bool clip_is_glm(const struct clip_ctx * ctx) { return ctx->has_glm_projector; } bool clip_is_qwen2vl(const struct clip_ctx * ctx) { return ctx->has_qwen2vl_merger; } bool clip_is_llava(const struct clip_ctx * ctx) { return ctx->has_llava_projector; } bool clip_is_gemma3(const struct clip_ctx * ctx) { return ctx->proj_type == PROJECTOR_TYPE_GEMMA3; } // Determine the number of encoder layers to iterate over int get_deepest_feature_layer(const struct clip_ctx * ctx) { // Get the index of the second to last layer; this is the // default for models that have a llava projector const auto & hparams = ctx->vision_model.hparams; int n_layer = hparams.n_layer - 1; int deepest_feature_layer = -1; // Handle other projectors; incrementing here indicates that we // should use the last encoder layer for the vision features. if (ctx->has_minicpmv_projector || ctx->has_glm_projector || ctx->has_qwen2vl_merger) { n_layer += 1; } // If we set explicit vision feature layers, only go up to the deepest one for (const auto & feature_layer : hparams.vision_feature_layer) { if (feature_layer > deepest_feature_layer) { deepest_feature_layer = feature_layer; } } return deepest_feature_layer < 0 ? n_layer : deepest_feature_layer; } bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) { clip_image_f32 clip_img; clip_img.buf.resize(h * w * 3); for (int i = 0; i < h*w*3; i++) { clip_img.buf[i] = img[i]; } clip_img.nx = w; clip_img.ny = h; clip_image_encode(ctx, n_threads, &clip_img, vec); return true; } // // API used internally with mtmd // projector_type clip_get_projector_type(const struct clip_ctx * ctx) { return ctx->proj_type; }