mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-04-15 19:16:09 +00:00

* (wip) refactor downloading system [no ci] * fix all examples * fix mmproj with -hf * gemma3: update readme * only handle mmproj in llava example * fix multi-shard download * windows: fix problem with std::min and std::max * fix 2
1.0 KiB
1.0 KiB
Gemma 3 vision
Important
This is very experimental, only used for demo purpose.
Quick started
You can use pre-quantized model from ggml-org's Hugging Face account
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# alternatively, install from brew (MacOS)
brew install llama.cpp
# run it
llama-gemma3-cli -hf ggml-org/gemma-3-4b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-12b-it-GGUF
llama-gemma3-cli -hf ggml-org/gemma-3-27b-it-GGUF
# note: 1B model does not support vision
How to get mmproj.gguf?
cd gemma-3-4b-it
python ../llama.cpp/examples/llava/gemma3_convert_encoder_to_gguf.py .
# output file is mmproj.gguf
How to run it?
What you need:
- The text model GGUF, can be converted using
convert_hf_to_gguf.py
- The mmproj file from step above
- An image file
# build
cmake -B build
cmake --build build --target llama-gemma3-cli
# run it
./build/bin/llama-gemma3-cli -m {text_model}.gguf --mmproj mmproj.gguf --image your_image.jpg