Overview

Important

This example and the RPC backend are currently in a proof-of-concept development stage. As such, the functionality is fragile and insecure. Never run the RPC server on an open network or in a sensitive environment!

The rpc-server allows running ggml backend on a remote host. The RPC backend communicates with one or several instances of rpc-server and offloads computations to them. This can be used for distributed LLM inference with llama.cpp in the following way:

flowchart TD
    rpcb<-->|TCP|srva
    rpcb<-->|TCP|srvb
    rpcb<-.->|TCP|srvn
    subgraph hostn[Host N]
    srvn[rpc-server]<-.->backend3["Backend (CUDA,Metal,etc.)"]
    end
    subgraph hostb[Host B]
    srvb[rpc-server]<-->backend2["Backend (CUDA,Metal,etc.)"]
    end
    subgraph hosta[Host A]
    srva[rpc-server]<-->backend["Backend (CUDA,Metal,etc.)"]
    end
    subgraph host[Main Host]
    local["Backend (CUDA,Metal,etc.)"]<-->ggml[llama-cli]
    ggml[llama-cli]<-->rpcb[RPC backend]
    end
    style hostn stroke:#66,stroke-width:2px,stroke-dasharray: 5 5

Each host can run a different backend, e.g. one with CUDA and another with Metal. You can also run multiple rpc-server instances on the same host, each with a different backend.

Usage

On each host, build the corresponding backend with cmake and add -DGGML_RPC=ON to the build options. For example, to build the CUDA backend with RPC support:

mkdir build-rpc-cuda
cd build-rpc-cuda
cmake .. -DGGML_CUDA=ON -DGGML_RPC=ON
cmake --build . --config Release

Then, start the rpc-server with the backend:

$ bin/rpc-server -p 50052
create_backend: using CUDA backend
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:   no
ggml_cuda_init: CUDA_USE_TENSOR_CORES: yes
ggml_cuda_init: found 1 CUDA devices:
  Device 0: NVIDIA T1200 Laptop GPU, compute capability 7.5, VMM: yes
Starting RPC server on 0.0.0.0:50052

When using the CUDA backend, you can specify the device with the CUDA_VISIBLE_DEVICES environment variable, e.g.:

$ CUDA_VISIBLE_DEVICES=0 bin/rpc-server -p 50052

This way you can run multiple rpc-server instances on the same host, each with a different CUDA device.

On the main host build llama.cpp for the local backend and add -DGGML_RPC=ON to the build options. Finally, when running llama-cli, use the --rpc option to specify the host and port of each rpc-server:

$ bin/llama-cli -m ../models/tinyllama-1b/ggml-model-f16.gguf -p "Hello, my name is" --repeat-penalty 1.0 -n 64 --rpc 192.168.88.10:50052,192.168.88.11:50052 -ngl 99

This way you can offload model layers to both local and remote devices.

Local cache

The RPC server can use a local cache to store large tensors and avoid transferring them over the network. This can speed up model loading significantly, especially when using large models. To enable the cache, use the -c option:

$ bin/rpc-server -c

By default, the cache is stored in the $HOME/.cache/llama.cpp/rpc directory and can be controlled via the LLAMA_CACHE environment variable.