llama.cpp/src/llama-graph.cpp
Xuan-Son Nguyen 1466621e73
llama : Support llama 4 text-only (#12791)
* llama4 conversion

* initial support, no chat template

* clean up a bit

* fix tokenizer conversion

* correct hparams

* try this

* fix shexp

* ffn_inp_normed

* chat template

* clean up model conversion

* add_bos

* add scale_before_ffn

* fix order

* weight_before_ffn

* llm_graph_input_attn_temp

* add chunk attn mask

* build_inp_attn_scale()

* add comment about ggml_repeat

* clarify comments

* fix build
2025-04-07 23:06:44 +02:00

1687 lines
56 KiB
C++

#include "llama-graph.h"
#include "llama-impl.h"
#include "llama-batch.h"
#include "llama-cparams.h"
#include "llama-kv-cache.h"
#include <cassert>
#include <cmath>
#include <cstring>
static int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
// TODO move to hparams if a T5 variant appears that uses a different value
const int64_t max_distance = 128;
if (bidirectional) {
n_buckets >>= 1;
}
const int64_t max_exact = n_buckets >> 1;
int32_t relative_position = x - y;
int32_t relative_bucket = 0;
if (bidirectional) {
relative_bucket += (relative_position > 0) * n_buckets;
relative_position = abs(relative_position);
} else {
relative_position = -std::min<int32_t>(relative_position, 0);
}
int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
return relative_bucket;
}
void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
if (ubatch->token) {
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
}
if (ubatch->embd) {
const int64_t n_embd = embd->ne[0];
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
}
}
void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && pos) {
const int64_t n_tokens = ubatch->n_tokens;
ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_token*ggml_element_size(pos));
}
}
void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
if (ubatch->pos && attn_scale) {
const int64_t n_tokens = ubatch->n_tokens;
std::vector<float> attn_scale_data(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const float pos = ubatch->pos[i];
attn_scale_data[i] = std::log(
std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
) * f_attn_temp_scale + 1.0;
}
ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*n_pos_per_token*ggml_element_size(attn_scale));
}
}
void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
if (pos_bucket) {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
int32_t * data = (int32_t *) pos_bucket->data;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_tokens; ++i) {
data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
}
}
}
}
}
void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
if (pos_bucket) {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
int32_t * data = (int32_t *) pos_bucket->data;
const int64_t n_kv = kv_self->n;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_kv; ++i) {
data[h*(n_kv*n_tokens) + j*n_kv + i] = llama_relative_position_bucket(kv_self->cells[i].pos, ubatch->pos[j], hparams.n_rel_attn_bkts, false);
}
}
}
}
}
void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
//GGML_ASSERT(out_ids && "every model that can must skip unused outputs");
if (!out_ids) {
LLAMA_LOG_WARN("%s: 'out_ids' is not created\n", __func__);
} else {
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
int32_t * data = (int32_t *) out_ids->data;
if (n_outputs == n_tokens) {
for (int i = 0; i < n_tokens; ++i) {
data[i] = i;
}
} else if (ubatch->output) {
int32_t n_outputs = 0;
for (int i = 0; i < n_tokens; ++i) {
if (ubatch->output[i]) {
data[n_outputs++] = i;
}
}
// the graph needs to have been passed the correct number of outputs
GGML_ASSERT(n_outputs == n_outputs);
} else if (n_outputs == 1) {
// only keep last output
data[0] = n_tokens - 1;
} else {
GGML_ASSERT(n_outputs == 0);
}
}
}
}
void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
GGML_ASSERT(mean);
GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
float * data = (float *) mean->data;
memset(mean->data, 0, n_tokens * n_tokens * ggml_element_size(mean));
std::vector<uint64_t> sum(n_tokens, 0);
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
sum[seq_id] += ubatch->n_seq_tokens;
}
std::vector<float> div(n_tokens, 0.0f);
for (int i = 0; i < n_tokens; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
}
}
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
for (int i = 0; i < n_seq_tokens; ++i) {
data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
}
}
}
}
void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
if (cparams.embeddings && (
cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_tokens * ggml_element_size(cls));
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
if (pos == 0) {
data[seq_id] = s*n_seq_tokens + i;
}
}
}
}
if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
GGML_ASSERT(cls);
GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
uint32_t * data = (uint32_t *) cls->data;
memset(cls->data, 0, n_tokens * ggml_element_size(cls));
std::vector<int> last_pos(n_tokens, -1);
std::vector<int> last_row(n_tokens, -1);
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
// TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
for (int i = 0; i < n_seq_tokens; ++i) {
const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
if (pos >= last_pos[seq_id]) {
last_pos[seq_id] = pos;
last_row[seq_id] = s*n_seq_tokens + i;
}
}
}
for (int i = 0; i < n_tokens; ++i) {
if (last_row[i] >= 0) {
data[i] = last_row[i];
}
}
}
}
void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
const int64_t n_kv = kv_self->n;
if (s_copy) {
GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
int32_t * data = (int32_t *) s_copy->data;
// assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
for (uint32_t i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
// prevent out-of-bound sources
if (kv_cell.src < 0 || (uint32_t) kv_cell.src >= kv_self->size) {
kv_cell.src = cell_id;
}
data[i] = kv_cell.src;
// TODO: do not mutate the KV cache
// ensure copy only happens once
if (kv_cell.src != (int32_t) cell_id) {
kv_cell.src = cell_id;
}
}
}
}
void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
const int64_t n_kv = kv_self->n;
if (s_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer));
float * data = (float *) s_mask->data;
// clear unused states
for (int i = 0; i < n_kv; ++i) {
const uint32_t cell_id = i + kv_self->head;
//////////////////////////////////////////////
// TODO: this should not mutate the KV cache !
llama_kv_cell & kv_cell = const_cast<class llama_kv_cache_unified *>(kv_self)->cells[i];
data[i] = (float) (kv_cell.src >= 0);
// only clear once
if (kv_cell.src < 0) {
kv_cell.src = cell_id;
}
}
}
}
void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
GGML_UNUSED(ubatch);
if (cross_embd && !cross->v_embd.empty()) {
assert(cross_embd->type == GGML_TYPE_F32);
ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
}
}
void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
if (kq_mask) {
if (cparams.causal_attn) {
const int64_t n_kv = ubatch->n_tokens;
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
float * data = (float *) kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch->seq_id[s1][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
if (ubatch->seq_id[s0][s] == seq_id && ubatch->pos[ti] <= ubatch->pos[tj]) {
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
} else {
f = 0.0f;
}
break;
}
}
data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
}
}
}
}
}
} else {
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
const int64_t n_stride = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
float * data = (float *) kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int s1 = 0; s1 < n_seqs; ++s1) {
const llama_seq_id seq_id = ubatch->seq_id[s1][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const int32_t tj = s1*n_seq_tokens + j;
for (int s0 = 0; s0 < n_seqs; ++s0) {
for (int i = 0; i < n_seq_tokens; ++i) {
const int32_t ti = s0*n_seq_tokens + i;
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
if (ubatch->seq_id[s0][s] == seq_id) {
if (hparams.use_alibi) {
f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
} else {
f = 0.0f;
}
break;
}
}
data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
}
}
for (int i = n_tokens; i < n_stride; ++i) {
data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
}
}
}
}
}
}
}
void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
if (self_kq_mask || self_kq_mask_swa) {
const int64_t n_kv = kv_self->n;
const int64_t n_tokens = ubatch->n_tokens;
const int64_t n_seq_tokens = ubatch->n_seq_tokens;
const int64_t n_seqs = ubatch->n_seqs;
float * data = nullptr;
float * data_swa = nullptr;
if (self_kq_mask) {
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask->buffer));
data = (float *) self_kq_mask->data;
}
if (self_kq_mask_swa) {
GGML_ASSERT(ggml_backend_buffer_is_host(self_kq_mask_swa->buffer));
data_swa = (float *) self_kq_mask_swa->data;
}
// Use only the previous KV cells of the correct sequence for each token of the ubatch.
// It's assumed that if a token in the batch has multiple sequences, they are equivalent.
// Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch:
// Causal mask:
// xxx-------
// xxxx------
// xxxxx-----
// Non-causal mask:
// xxxxx-----
// xxxxx-----
// xxxxx-----
// To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615
for (int h = 0; h < 1; ++h) {
for (int s = 0; s < n_seqs; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[s][0];
for (int j = 0; j < n_seq_tokens; ++j) {
const llama_pos pos = ubatch->pos[s*n_seq_tokens + j];
for (int i = 0; i < n_kv; ++i) {
float f;
// mask the token if:
if (!kv_self->cells[i].has_seq_id(seq_id) // not the correct sequence
|| (cparams.causal_attn && kv_self->cells[i].pos > pos) // for causal, mask future tokens
) {
f = -INFINITY;
} else {
if (hparams.use_alibi) {
f = -std::abs(kv_self->cells[i].pos - pos);
} else {
f = 0.0f;
}
}
if (data) {
data[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
// may need to cut off old tokens for sliding window
// TODO @ngxson : we are currently re-using the swa logic to store the chunked mask, we should rename SWA to something more generic like "aux mask"
if (data_swa) {
if (hparams.n_attn_chunk) {
llama_pos pos_chunk_start = (pos / hparams.n_attn_chunk) * hparams.n_attn_chunk;
if (kv_self->cells[i].pos < pos_chunk_start || pos < pos_chunk_start) {
f = -INFINITY;
}
} else {
if (pos - kv_self->cells[i].pos >= (int32_t)hparams.n_swa) {
f = -INFINITY;
}
}
data_swa[h*(n_kv*n_tokens) + s*(n_kv*n_seq_tokens) + j*n_kv + i] = f;
}
}
}
}
// mask padded tokens
if (data) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
// mask padded tokens
if (data_swa) {
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_kv; ++j) {
data_swa[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
}
}
}
}
}
}
void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
if (cross_kq_mask) {
const int64_t n_enc = cross_kq_mask->ne[0];
const int64_t n_tokens = ubatch->n_tokens;
GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
float * data = (float *) cross_kq_mask->data;
for (int h = 0; h < 1; ++h) {
for (int j = 0; j < n_tokens; ++j) {
for (int i = 0; i < n_enc; ++i) {
float f = -INFINITY;
for (int s = 0; s < ubatch->n_seq_id[j]; ++s) {
const llama_seq_id seq_id = ubatch->seq_id[j][s];
if (cross->seq_ids_enc[i].find(seq_id) != cross->seq_ids_enc[i].end()) {
f = 0.0f;
}
}
data[h*(n_enc*n_tokens) + j*n_enc + i] = f;
}
}
for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
for (int j = 0; j < n_enc; ++j) {
data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
}
}
}
}
}
//
// llm_graph_context
//
llm_graph_context::llm_graph_context(const llm_graph_params & params) :
arch (params.arch),
hparams (params.hparams),
cparams (params.cparams),
ubatch (params.ubatch),
n_embd (hparams.n_embd),
n_layer (hparams.n_layer),
n_rot (hparams.n_rot),
n_ctx (cparams.n_ctx),
n_ctx_per_seq (cparams.n_ctx / cparams.n_seq_max),
n_head (hparams.n_head()),
n_head_kv (hparams.n_head_kv()),
n_embd_head_k (hparams.n_embd_head_k),
n_embd_k_gqa (hparams.n_embd_k_gqa()),
n_embd_head_v (hparams.n_embd_head_v),
n_embd_v_gqa (hparams.n_embd_v_gqa()),
n_expert (hparams.n_expert),
n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
freq_base (cparams.rope_freq_base),
freq_scale (cparams.rope_freq_scale),
ext_factor (cparams.yarn_ext_factor),
attn_factor (cparams.yarn_attn_factor),
beta_fast (cparams.yarn_beta_fast),
beta_slow (cparams.yarn_beta_slow),
norm_eps (hparams.f_norm_eps),
norm_rms_eps (hparams.f_norm_rms_eps),
n_tokens (ubatch.n_tokens),
n_outputs (params.n_outputs),
n_ctx_orig (cparams.n_ctx_orig_yarn),
pooling_type (cparams.pooling_type),
rope_type (hparams.rope_type),
ctx0 (params.ctx),
sched (params.sched),
backend_cpu (params.backend_cpu),
cvec (params.cvec),
loras (params.loras),
memory (params.memory),
cross (params.cross),
cb_func (params.cb),
res (std::make_unique<llm_graph_result>()) {
}
int64_t llm_graph_context::n_pos_per_token() const {
return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
}
void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
if (cb_func) {
cb_func(ubatch, cur, name, il);
}
}
ggml_tensor * llm_graph_context::build_cvec(
ggml_tensor * cur,
int il) const {
return cvec->apply_to(ctx0, cur, il);
}
ggml_tensor * llm_graph_context::build_lora_mm(
ggml_tensor * w,
ggml_tensor * cur) const {
ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
for (const auto & lora : *loras) {
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
if (lw == nullptr) {
continue;
}
const float adapter_scale = lora.second;
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
ggml_tensor * ab_cur = ggml_mul_mat(
ctx0, lw->b,
ggml_mul_mat(ctx0, lw->a, cur)
);
ab_cur = ggml_scale(ctx0, ab_cur, scale);
res = ggml_add(ctx0, res, ab_cur);
}
return res;
}
ggml_tensor * llm_graph_context::build_lora_mm_id(
ggml_tensor * w, // ggml_tensor * as
ggml_tensor * cur, // ggml_tensor * b
ggml_tensor * ids) const {
ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
for (const auto & lora : *loras) {
llama_adapter_lora_weight * lw = lora.first->get_weight(w);
if (lw == nullptr) {
continue;
}
const float alpha = lora.first->alpha;
const float rank = (float) lw->b->ne[0];
const float scale = alpha ? lora.second * alpha / rank : lora.second;
ggml_tensor * ab_cur = ggml_mul_mat_id(
ctx0, lw->b,
ggml_mul_mat_id(ctx0, lw->a, cur, ids),
ids
);
ab_cur = ggml_scale(ctx0, ab_cur, scale);
res = ggml_add(ctx0, res, ab_cur);
}
return res;
}
ggml_tensor * llm_graph_context::build_norm(
ggml_tensor * cur,
ggml_tensor * mw,
ggml_tensor * mb,
llm_norm_type type,
int il) const {
switch (type) {
case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
case LLM_NORM_GROUP:
{
cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
} break;
}
if (mw || mb) {
cb(cur, "norm", il);
}
if (mw) {
cur = ggml_mul(ctx0, cur, mw);
if (mb) {
cb(cur, "norm_w", il);
}
}
if (mb) {
cur = ggml_add(ctx0, cur, mb);
}
return cur;
}
ggml_tensor * llm_graph_context::build_ffn(
ggml_tensor * cur,
ggml_tensor * up,
ggml_tensor * up_b,
ggml_tensor * up_s,
ggml_tensor * gate,
ggml_tensor * gate_b,
ggml_tensor * gate_s,
ggml_tensor * down,
ggml_tensor * down_b,
ggml_tensor * down_s,
ggml_tensor * act_scales,
llm_ffn_op_type type_op,
llm_ffn_gate_type type_gate,
int il) const {
ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
cb(tmp, "ffn_up", il);
if (up_b) {
tmp = ggml_add(ctx0, tmp, up_b);
cb(tmp, "ffn_up_b", il);
}
if (up_s) {
tmp = ggml_mul(ctx0, tmp, up_s);
cb(tmp, "ffn_up_s", il);
}
if (gate) {
switch (type_gate) {
case LLM_FFN_SEQ:
{
cur = build_lora_mm(gate, tmp);
cb(cur, "ffn_gate", il);
} break;
case LLM_FFN_PAR:
{
cur = build_lora_mm(gate, cur);
cb(cur, "ffn_gate", il);
} break;
}
if (gate_b) {
cur = ggml_add(ctx0, cur, gate_b);
cb(cur, "ffn_gate_b", il);
}
if (gate_s) {
cur = ggml_mul(ctx0, cur, gate_s);
cb(cur, "ffn_gate_s", il);
}
} else {
cur = tmp;
}
switch (type_op) {
case LLM_FFN_SILU:
{
cur = ggml_silu(ctx0, cur);
cb(cur, "ffn_silu", il);
} break;
case LLM_FFN_GELU:
{
cur = ggml_gelu(ctx0, cur);
cb(cur, "ffn_gelu", il);
if (act_scales != NULL) {
cur = ggml_div(ctx0, cur, act_scales);
cb(cur, "ffn_act", il);
}
} break;
case LLM_FFN_RELU:
{
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_relu", il);
} break;
case LLM_FFN_RELU_SQR:
{
cur = ggml_relu(ctx0, cur);
cb(cur, "ffn_relu", il);
cur = ggml_sqr(ctx0, cur);
cb(cur, "ffn_sqr(relu)", il);
} break;
case LLM_FFN_SWIGLU:
{
// Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
int64_t split_point = cur->ne[0] / 2;
ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
x0 = ggml_silu(ctx0, x0);
cb(cur, "ffn_silu", il);
cur = ggml_mul(ctx0, x0, x1);
cb(cur, "ffn_mul", il);
} break;
}
if (type_gate == LLM_FFN_PAR) {
cur = ggml_mul(ctx0, cur, tmp);
cb(cur, "ffn_gate_par", il);
}
if (down) {
cur = build_lora_mm(down, cur);
}
if (down_b) {
cb(cur, "ffn_down", il);
}
if (down_b) {
cur = ggml_add(ctx0, cur, down_b);
}
if (down_s) {
cur = ggml_mul(ctx0, cur, down_s);
cb(cur, "ffn_down_s", il);
}
return cur;
}
ggml_tensor * llm_graph_context::build_moe_ffn(
ggml_tensor * cur,
ggml_tensor * gate_inp,
ggml_tensor * up_exps,
ggml_tensor * gate_exps,
ggml_tensor * down_exps,
ggml_tensor * exp_probs_b,
int64_t n_expert,
int64_t n_expert_used,
llm_ffn_op_type type_op,
bool norm_w,
bool scale_w,
float w_scale,
llama_expert_gating_func_type gating_op,
int il) const {
const int64_t n_embd = cur->ne[0];
const int64_t n_tokens = cur->ne[1];
const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
cb(logits, "ffn_moe_logits", il);
ggml_tensor * probs = nullptr;
switch (gating_op) {
case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
{
probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
} break;
case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
{
probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
} break;
default:
GGML_ABORT("fatal error");
}
cb(probs, "ffn_moe_probs", il);
// add experts selection bias - introduced in DeepSeek V3
// leave probs unbiased as it's later used to get expert weights
ggml_tensor * selection_probs = probs;
if (exp_probs_b != nullptr) {
selection_probs = ggml_add(ctx0, probs, exp_probs_b);
cb(selection_probs, "ffn_moe_probs_biased", il);
}
// llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
// see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
if (arch == LLM_ARCH_LLAMA4) {
selection_probs = logits;
}
// select experts
ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
cb(selected_experts->src[0], "ffn_moe_argsort", il);
cb(selected_experts, "ffn_moe_topk", il);
ggml_tensor * weights = ggml_get_rows(ctx0,
ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights", il);
if (norm_w) {
weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
cb(weights_sum, "ffn_moe_weights_sum", il);
weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
cb(weights, "ffn_moe_weights_norm", il);
weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
}
if (scale_w) {
weights = ggml_scale(ctx0, weights, w_scale);
cb(weights, "ffn_moe_weights_scaled", il);
}
cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
if (weight_before_ffn) {
// TODO: this is a workaround as we don't yet have a repeat op that takes custom dim (ggml_repeat_4d)
ggml_tensor * repeated = ggml_new_tensor_3d(ctx0, cur->type, n_embd, n_expert_used, n_tokens);
repeated = ggml_repeat(ctx0, cur, repeated); // [n_embd, n_expert_used, n_tokens]
cur = ggml_mul(ctx0, repeated, weights);
cb(cur, "ffn_moe_weighted", il);
}
ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(up, "ffn_moe_up", il);
ggml_tensor * gate = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
cb(gate, "ffn_moe_gate", il);
switch (type_op) {
case LLM_FFN_SILU:
{
gate = ggml_silu(ctx0, gate);
cb(gate, "ffn_moe_silu", il);
} break;
case LLM_FFN_GELU:
{
gate = ggml_gelu(ctx0, gate);
cb(gate, "ffn_moe_gelu", il);
} break;
default:
GGML_ABORT("fatal error");
}
ggml_tensor * par = ggml_mul(ctx0, up, gate); // [n_ff, n_expert_used, n_tokens]
cb(par, "ffn_moe_gate_par", il);
ggml_tensor * experts = build_lora_mm_id(down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
cb(experts, "ffn_moe_down", il);
if (!weight_before_ffn) {
experts = ggml_mul(ctx0, experts, weights);
cb(cur, "ffn_moe_weighted", il);
}
// aggregate experts
ggml_tensor * moe_out = nullptr;
for (int i = 0; i < n_expert_used; ++i) {
ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
experts->nb[2], i*experts->nb[1]);
if (i == 0) {
moe_out = cur_expert;
} else {
moe_out = ggml_add(ctx0, moe_out, cur_expert);
}
}
if (n_expert_used == 1) {
// avoid returning a non-contiguous tensor
moe_out = ggml_cont(ctx0, moe_out);
}
cb(moe_out, "ffn_moe_out", il);
return moe_out;
}
// input embeddings with optional lora
ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
const int64_t n_embd = hparams.n_embd;
auto inp = std::make_unique<llm_graph_input_embd>();
ggml_tensor * cur = nullptr;
if (ubatch.token) {
inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
//cb(inp->tokens, "inp_tokens", -1);
ggml_set_input(inp->tokens);
cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
// apply lora for embedding tokens if needed
for (const auto & lora : *loras) {
llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
if (lw == nullptr) {
continue;
}
const float adapter_scale = lora.second;
const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
ctx0, lw->b, // non-transposed lora_b
ggml_get_rows(ctx0, lw->a, inp->tokens)
), scale);
cur = ggml_add(ctx0, cur, inpL_delta);
}
} else {
inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
ggml_set_input(inp->embd);
cur = inp->embd;
}
// For Granite architecture
if (hparams.f_embedding_scale != 0.0f) {
cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
}
cb(cur, "inp_embd", -1);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_pos() const {
auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_token());
auto & cur = inp->pos;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_token());
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
auto inp = std::make_unique<llm_graph_input_attn_temp>(n_pos_per_token(), hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
auto & cur = inp->attn_scale;
cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens*n_pos_per_token());
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_out_ids() const {
auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
auto & cur = inp->out_ids;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_mean() const {
auto inp = std::make_unique<llm_graph_input_mean>(cparams);
auto & cur = inp->mean;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_cls() const {
auto inp = std::make_unique<llm_graph_input_cls>(cparams);
auto & cur = inp->cls;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_s_copy() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
const auto n_kv = kv_self->n;
auto & cur = inp->s_copy;
cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_s_mask() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
const auto n_kv = kv_self->n;
auto & cur = inp->s_mask;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
auto & cur = inp->cross_embd;
// if we have the output embeddings from the encoder, use them directly
// TODO: needs more work to be correct, for now just use the tensor shape
//if (cross->t_embd) {
// cur = ggml_view_tensor(ctx0, cross->t_embd);
// return cur;
//}
const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
auto & cur = inp->pos_bucket;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_self);
const auto n_kv = kv_self->n;
auto & cur = inp->pos_bucket;
cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
ggml_set_input(cur);
res->add_input(std::move(inp));
return cur;
}
ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
cb(pos_bucket_1d, "pos_bucket_1d", -1);
ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
pos_bias = ggml_cont (ctx0, pos_bias);
cb(pos_bias, "pos_bias", -1);
return pos_bias;
}
ggml_tensor * llm_graph_context::build_attn_mha(
ggml_cgraph * gf,
ggml_tensor * q,
ggml_tensor * k,
ggml_tensor * v,
ggml_tensor * kq_b,
ggml_tensor * kq_mask,
bool v_trans,
float kq_scale) const {
//const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
//const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
//const int64_t n_head = hparams.n_head(il);
//const int64_t n_head_kv = hparams.n_head_kv(il);
//const auto & n_embd_head_k = hparams.n_embd_head_k;
//const auto & n_embd_head_v = hparams.n_embd_head_v;
const auto n_embd_head_v = v_trans ? v->ne[1] : v->ne[0];
const auto n_tokens = q->ne[1];
const auto n_head = q->ne[2];
const auto n_kv = k->ne[1];
ggml_tensor * cur;
// TODO: replace hardcoded padding with ggml-provided padding
if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
if (v_trans) {
v = ggml_transpose(ctx0, v);
}
cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
cur = ggml_reshape_2d(ctx0, cur, n_embd_head_v*n_head, n_tokens);
} else {
ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
// note: this op tends to require high floating point range
// while for some models F16 is enough, for others it is not, so we default to F32 here
ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
if (arch == LLM_ARCH_GROK) {
// need to do the following:
// multiply by attn_output_multiplyer of 0.08838834764831845
// and then :
// kq = 30 * tanh(kq / 30)
// before the softmax below
kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
kq = ggml_scale(ctx0, kq, 30);
}
if (hparams.attn_soft_cap) {
kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
kq = ggml_tanh (ctx0, kq);
kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
}
if (kq_b) {
kq = ggml_add(ctx0, kq, kq_b);
}
kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
if (!v_trans) {
// note: avoid this branch
v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
}
ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
if (!cparams.offload_kqv) {
// all nodes between the KV store and the attention output are run on the CPU
ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
}
}
ggml_build_forward_expand(gf, cur);
return cur;
}
llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
// note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->kq_mask);
inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_no_cache * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const {
GGML_UNUSED(n_tokens);
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto & kq_mask = inp->get_kq_mask();
ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
//cb(q, "q", il);
ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
//cb(k, "k", il);
ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
//cb(k, "v", il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
}
if (wo_b) {
//cb(cur, "kqv_wo", il);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_self);
const auto n_kv = kv_self->n;
inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask, "KQ_mask", -1);
ggml_set_input(inp->self_kq_mask);
inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
if (hparams.n_swa_pattern > 1) {
GGML_ASSERT(hparams.n_swa > 0);
inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
//cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
ggml_set_input(inp->self_kq_mask_swa);
inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
}
return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_kv_unified * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const auto & n_ctx = cparams.n_ctx;
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il);
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il);
const auto n_tokens = q_cur->ne[2];
const bool v_trans = !cparams.flash_attn;
// store to KV cache
{
GGML_ASSERT(!kv_self->recurrent);
const auto kv_head = kv_self->head;
GGML_ASSERT(kv_self->size == n_ctx);
ggml_tensor * k_cache_view = ggml_view_1d(ctx0, kv_self->k_l[il], n_tokens*n_embd_k_gqa, ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa)*kv_head);
//cb(k_cache_view, "k_cache_view", il);
// note: storing RoPE-ed version of K in the KV cache
ggml_build_forward_expand(gf, ggml_cpy(ctx0, k_cur, k_cache_view));
v_cur = ggml_reshape_2d(ctx0, v_cur, n_embd_v_gqa, n_tokens);
ggml_tensor * v_cache_view = nullptr;
if (!v_trans) {
v_cache_view = ggml_view_1d(ctx0, kv_self->v_l[il], n_tokens*n_embd_v_gqa, ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa)*kv_head);
} else {
// note: the V cache is transposed when not using flash attention
v_cache_view = ggml_view_2d(ctx0, kv_self->v_l[il], n_tokens, n_embd_v_gqa,
( n_ctx)*ggml_element_size(kv_self->v_l[il]),
(kv_head)*ggml_element_size(kv_self->v_l[il]));
v_cur = ggml_transpose(ctx0, v_cur);
}
//cb(v_cache_view, "v_cache_view", il);
ggml_build_forward_expand(gf, ggml_cpy(ctx0, v_cur, v_cache_view));
}
const bool is_swa = hparams.is_swa(il);
const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
const auto n_kv = kv_self->n;
const int64_t n_head_kv = hparams.n_head_kv(il);
const auto & n_embd_head_k = hparams.n_embd_head_k;
const auto & n_embd_head_v = hparams.n_embd_head_v;
ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
//cb(q, "q", il);
ggml_tensor * k =
ggml_view_3d(ctx0, kv_self->k_l[il],
n_embd_head_k, n_kv, n_head_kv,
ggml_row_size(kv_self->k_l[il]->type, n_embd_k_gqa),
ggml_row_size(kv_self->k_l[il]->type, n_embd_head_k),
0);
//cb(k, "k", il);
ggml_tensor * v = !v_trans ?
ggml_view_3d(ctx0, kv_self->v_l[il],
n_embd_head_v, n_kv, n_head_kv,
ggml_row_size(kv_self->v_l[il]->type, n_embd_v_gqa),
ggml_row_size(kv_self->v_l[il]->type, n_embd_head_v),
0) :
ggml_view_3d(ctx0, kv_self->v_l[il],
n_kv, n_embd_head_v, n_head_kv,
ggml_element_size(kv_self->v_l[il])*n_ctx,
ggml_element_size(kv_self->v_l[il])*n_ctx*n_embd_head_v,
0);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_trans, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
}
if (wo_b) {
//cb(cur, "kqv_wo", il);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
ggml_set_input(inp->cross_kq_mask);
inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
}
ggml_tensor * llm_graph_context::build_attn(
llm_graph_input_attn_cross * inp,
ggml_cgraph * gf,
ggml_tensor * wo,
ggml_tensor * wo_b,
ggml_tensor * q_cur,
ggml_tensor * k_cur,
ggml_tensor * v_cur,
ggml_tensor * kq_b,
float kq_scale,
int il) const {
// these nodes are added to the graph together so that they are not reordered
// by doing so, the number of splits in the graph is reduced
ggml_build_forward_expand(gf, q_cur);
ggml_build_forward_expand(gf, k_cur);
ggml_build_forward_expand(gf, v_cur);
const auto & kq_mask = inp->get_kq_mask_cross();
ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
//cb(q, "q", il);
ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
//cb(k, "k", il);
ggml_tensor * v = ggml_permute(ctx0, v_cur, 0, 2, 1, 3);
//cb(k, "v", il);
ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, false, kq_scale);
cb(cur, "kqv_out", il);
if (wo) {
cur = build_lora_mm(wo, cur);
}
if (wo_b) {
//cb(cur, "kqv_wo", il);
}
if (wo_b) {
cur = ggml_add(ctx0, cur, wo_b);
}
return cur;
}
ggml_tensor * llm_graph_context::build_copy_mask_state(
ggml_cgraph * gf,
ggml_tensor * s,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
int32_t n_state,
int32_t n_seqs) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const auto n_kv = kv_self->n;
const auto kv_head = kv_self->head;
ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self->size);
// copy states
// NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
// this shrinks the tensors's ne[1] to n_kv
states = ggml_get_rows(ctx0, states, state_copy);
// clear states of sequences which are starting at the beginning of this batch
// FIXME: zero-out NANs?
states = ggml_mul(ctx0, states, state_mask);
// copy states which won't be changed further (between n_seqs and n_kv)
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs )*n_state*ggml_element_size(states)),
ggml_view_1d(ctx0, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
// the part of the states that will be used and modified
return ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0);
}
ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
ggml_cgraph * gf,
ggml_tensor * state_copy,
ggml_tensor * state_mask,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const auto token_shift_count = hparams.token_shift_count;
const int64_t n_seqs = ubatch.n_seqs;
ggml_tensor * token_shift_all = kv_self->k_l[il];
ggml_tensor * token_shift = build_copy_mask_state(
gf, token_shift_all, state_copy, state_mask,
hparams.n_embd_k_s(), n_seqs);
token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
return token_shift;
}
ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
ggml_tensor * token_shift,
const llama_ubatch & ubatch,
int il) const {
const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
const auto token_shift_count = hparams.token_shift_count;
const auto n_embd = hparams.n_embd;
const int64_t n_seqs = ubatch.n_seqs;
const auto kv_head = kv_self->head;
return ggml_cpy(
ctx0,
ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self->k_l[il]))
);
}
void llm_graph_context::build_pooling(
ggml_cgraph * gf,
ggml_tensor * cls,
ggml_tensor * cls_b,
ggml_tensor * cls_out,
ggml_tensor * cls_out_b) const {
if (!cparams.embeddings) {
return;
}
ggml_tensor * inp = res->t_embd;
//// find result_norm tensor for input
//for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
// inp = ggml_graph_node(gf, i);
// if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
// break;
// }
// inp = nullptr;
//}
GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
ggml_tensor * cur;
switch (pooling_type) {
case LLAMA_POOLING_TYPE_NONE:
{
cur = inp;
} break;
case LLAMA_POOLING_TYPE_MEAN:
{
ggml_tensor * inp_mean = build_inp_mean();
cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
} break;
case LLAMA_POOLING_TYPE_CLS:
case LLAMA_POOLING_TYPE_LAST:
{
ggml_tensor * inp_cls = build_inp_cls();
cur = ggml_get_rows(ctx0, inp, inp_cls);
} break;
case LLAMA_POOLING_TYPE_RANK:
{
ggml_tensor * inp_cls = build_inp_cls();
inp = ggml_get_rows(ctx0, inp, inp_cls);
// classification head
// https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
GGML_ASSERT(cls != nullptr);
GGML_ASSERT(cls_b != nullptr);
cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls, inp), cls_b);
cur = ggml_tanh(ctx0, cur);
// some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
// https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
if (cls_out) {
GGML_ASSERT(cls_out_b != nullptr);
cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls_out, cur), cls_out_b);
}
} break;
default:
{
GGML_ABORT("unknown pooling type");
}
}
cb(cur, "result_embd_pooled", -1);
res->t_embd_pooled = cur;
ggml_build_forward_expand(gf, cur);
}