llama.cpp/gguf-py/gguf/utility.py
Xuan-Son Nguyen 64eda5deb9
convert : ability to lazy-load safetensors remotely without downloading to disk (#12820)
* gguf util : add SafetensorRemote

* fix style

* convert: add --remote option

* convert : allow using lazy remote tensors

It's a bit slow for now since everything is blocking and single-threaded.

* correct metadata.name

* small style fix

* support HF_TOKEN

* convert : use writeable buffer for remote lazy tensors

* convert : fix flake8 lint regarding lamdba assigment

* multithreaded download

* multithread: print debug

* fix style

* Revert "multithreaded download"

This reverts commit 42fc895ace385edc972ad819c76c704aeea61791.

* bring back _get_request_headers

---------

Co-authored-by: Francis Couture-Harpin <git@compilade.net>
2025-04-10 17:24:44 +02:00

265 lines
10 KiB
Python

from __future__ import annotations
from dataclasses import dataclass
from typing import Literal
import os
import json
def fill_templated_filename(filename: str, output_type: str | None) -> str:
# Given a file name fill in any type templates e.g. 'some-model-name.{ftype}.gguf'
ftype_lowercase: str = output_type.lower() if output_type is not None else ""
ftype_uppercase: str = output_type.upper() if output_type is not None else ""
return filename.format(ftype_lowercase,
outtype=ftype_lowercase, ftype=ftype_lowercase,
OUTTYPE=ftype_uppercase, FTYPE=ftype_uppercase)
def model_weight_count_rounded_notation(model_params_count: int, min_digits: int = 2) -> str:
if model_params_count > 1e12 :
# Trillions Of Parameters
scaled_model_params = model_params_count * 1e-12
scale_suffix = "T"
elif model_params_count > 1e9 :
# Billions Of Parameters
scaled_model_params = model_params_count * 1e-9
scale_suffix = "B"
elif model_params_count > 1e6 :
# Millions Of Parameters
scaled_model_params = model_params_count * 1e-6
scale_suffix = "M"
else:
# Thousands Of Parameters
scaled_model_params = model_params_count * 1e-3
scale_suffix = "K"
fix = max(min_digits - len(str(round(scaled_model_params)).lstrip('0')), 0)
return f"{scaled_model_params:.{fix}f}{scale_suffix}"
def size_label(total_params: int, shared_params: int, expert_params: int, expert_count: int) -> str:
if expert_count > 0:
pretty_size = model_weight_count_rounded_notation(abs(shared_params) + abs(expert_params), min_digits=2)
size_class = f"{expert_count}x{pretty_size}"
else:
size_class = model_weight_count_rounded_notation(abs(total_params), min_digits=2)
return size_class
def naming_convention(model_name: str | None, base_name: str | None, finetune_string: str | None, version_string: str | None, size_label: str | None, output_type: str | None, model_type: Literal['vocab', 'LoRA'] | None = None) -> str:
# Reference: https://github.com/ggml-org/ggml/blob/master/docs/gguf.md#gguf-naming-convention
if base_name is not None:
name = base_name.strip().replace(' ', '-').replace('/', '-')
elif model_name is not None:
name = model_name.strip().replace(' ', '-').replace('/', '-')
else:
name = "ggml-model"
parameters = f"-{size_label}" if size_label is not None else ""
finetune = f"-{finetune_string.strip().replace(' ', '-')}" if finetune_string is not None else ""
version = f"-{version_string.strip().replace(' ', '-')}" if version_string is not None else ""
encoding = f"-{output_type.strip().replace(' ', '-').upper()}" if output_type is not None else ""
kind = f"-{model_type.strip().replace(' ', '-')}" if model_type is not None else ""
return f"{name}{parameters}{finetune}{version}{encoding}{kind}"
@dataclass
class RemoteTensor:
dtype: str
shape: tuple[int, ...]
offset_start: int
size: int
url: str
def data(self) -> bytearray:
# TODO: handle request errors (maybe with limited retries?)
# NOTE: using a bytearray, otherwise PyTorch complains the buffer is not writeable
data = bytearray(SafetensorRemote.get_data_by_range(url=self.url, start=self.offset_start, size=self.size))
return data
class SafetensorRemote:
"""
Uility class to handle remote safetensor files.
This class is designed to work with Hugging Face model repositories.
Example (one model has single safetensor file, the other has multiple):
for model_id in ["ngxson/TEST-Tiny-Llama4", "Qwen/Qwen2.5-7B-Instruct"]:
tensors = SafetensorRemote.get_list_tensors_hf_model(model_id)
print(tensors)
Example reading tensor data:
tensors = SafetensorRemote.get_list_tensors_hf_model(model_id)
for name, meta in tensors.items():
dtype, shape, offset_start, size, remote_safetensor_url = meta
# read the tensor data
data = SafetensorRemote.get_data_by_range(remote_safetensor_url, offset_start, size)
print(data)
"""
BASE_DOMAIN = "https://huggingface.co"
ALIGNMENT = 8 # bytes
@classmethod
def get_list_tensors_hf_model(cls, model_id: str) -> dict[str, RemoteTensor]:
"""
Get list of tensors from a Hugging Face model repository.
Returns a dictionary of tensor names and their metadata.
Each tensor is represented as a tuple of (dtype, shape, offset_start, size, remote_safetensor_url)
"""
# case 1: model has only one single model.safetensor file
is_single_file = cls.check_file_exist(f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors")
if is_single_file:
url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors"
return cls.get_list_tensors(url)
# case 2: model has multiple files
index_url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/model.safetensors.index.json"
is_multiple_files = cls.check_file_exist(index_url)
if is_multiple_files:
# read the index file
index_data = cls.get_data_by_range(index_url, 0)
index_str = index_data.decode('utf-8')
index_json = json.loads(index_str)
assert index_json.get("weight_map") is not None, "weight_map not found in index file"
weight_map = index_json["weight_map"]
# get the list of files
all_files = list(set(weight_map.values()))
all_files.sort() # make sure we load shard files in order
# get the list of tensors
tensors: dict[str, RemoteTensor] = {}
for file in all_files:
url = f"{cls.BASE_DOMAIN}/{model_id}/resolve/main/{file}"
for key, val in cls.get_list_tensors(url).items():
tensors[key] = val
return tensors
raise ValueError(f"Model {model_id} does not have any safetensor files")
@classmethod
def get_list_tensors(cls, url: str) -> dict[str, RemoteTensor]:
"""
Get list of tensors from a remote safetensor file.
Returns a dictionary of tensor names and their metadata.
Each tensor is represented as a tuple of (dtype, shape, offset_start, size)
"""
metadata, data_start_offset = cls.get_metadata(url)
res: dict[str, RemoteTensor] = {}
for name, meta in metadata.items():
if name == "__metadata__":
continue
if not isinstance(meta, dict):
raise ValueError(f"Invalid metadata for tensor '{name}': {meta}")
try:
dtype = meta["dtype"]
shape = meta["shape"]
offset_start_relative, offset_end_relative = meta["data_offsets"]
size = offset_end_relative - offset_start_relative
offset_start = data_start_offset + offset_start_relative
res[name] = RemoteTensor(dtype=dtype, shape=tuple(shape), offset_start=offset_start, size=size, url=url)
except KeyError as e:
raise ValueError(f"Missing key in metadata for tensor '{name}': {e}, meta = {meta}")
return res
@classmethod
def get_metadata(cls, url: str) -> tuple[dict, int]:
"""
Get JSON metadata from a remote safetensor file.
Returns tuple of (metadata, data_start_offset)
"""
# Request first 5MB of the file (hopefully enough for metadata)
read_size = 5 * 1024 * 1024
raw_data = cls.get_data_by_range(url, 0, read_size)
# Parse header
# First 8 bytes contain the metadata length as u64 little-endian
if len(raw_data) < 8:
raise ValueError("Not enough data to read metadata size")
metadata_length = int.from_bytes(raw_data[:8], byteorder='little')
# Calculate the data start offset
data_start_offset = 8 + metadata_length
alignment = SafetensorRemote.ALIGNMENT
if data_start_offset % alignment != 0:
data_start_offset += alignment - (data_start_offset % alignment)
# Check if we have enough data to read the metadata
if len(raw_data) < 8 + metadata_length:
raise ValueError(f"Could not read complete metadata. Need {8 + metadata_length} bytes, got {len(raw_data)}")
# Extract metadata bytes and parse as JSON
metadata_bytes = raw_data[8:8 + metadata_length]
metadata_str = metadata_bytes.decode('utf-8')
try:
metadata = json.loads(metadata_str)
return metadata, data_start_offset
except json.JSONDecodeError as e:
raise ValueError(f"Failed to parse safetensor metadata as JSON: {e}")
@classmethod
def get_data_by_range(cls, url: str, start: int, size: int = -1) -> bytes:
"""
Get raw byte data from a remote file by range.
If size is not specified, it will read the entire file.
"""
import requests
from urllib.parse import urlparse
parsed_url = urlparse(url)
if not parsed_url.scheme or not parsed_url.netloc:
raise ValueError(f"Invalid URL: {url}")
headers = cls._get_request_headers()
if size > -1:
headers["Range"] = f"bytes={start}-{start + size}"
response = requests.get(url, allow_redirects=True, headers=headers)
response.raise_for_status()
# Get raw byte data
return response.content[:size]
@classmethod
def check_file_exist(cls, url: str) -> bool:
"""
Check if a file exists at the given URL.
Returns True if the file exists, False otherwise.
"""
import requests
from urllib.parse import urlparse
parsed_url = urlparse(url)
if not parsed_url.scheme or not parsed_url.netloc:
raise ValueError(f"Invalid URL: {url}")
try:
headers = cls._get_request_headers()
headers["Range"] = "bytes=0-0"
response = requests.head(url, allow_redirects=True, headers=headers)
# Success (2xx) or redirect (3xx)
return 200 <= response.status_code < 400
except requests.RequestException:
return False
@classmethod
def _get_request_headers(cls) -> dict[str, str]:
"""Prepare common headers for requests."""
headers = {"User-Agent": "convert_hf_to_gguf"}
if os.environ.get("HF_TOKEN"):
headers["Authorization"] = f"Bearer {os.environ['HF_TOKEN']}"
return headers