mirror of
https://github.com/ggerganov/llama.cpp.git
synced 2025-04-25 07:16:05 +00:00

* llama : refactor llama_context, llama_kv_cache, llm_build_context ggml-ci * graph : don't mutate the KV cache during defrag ggml-ci * context : reduce virtuals + remove test function ggml-ci * context : move interface implementation to source file + factory ggml-ci * graph : move KV cache build functions to llama_context impl ggml-ci * graph : remove model reference from build_pooling ggml-ci * graph : remove llama_model reference ggml-ci * kv_cache : provide rope factors ggml-ci * graph : rework inputs to use only unique_ptr, remove attn input abstraction ggml-ci * context : remove llama_context_i abstraction ggml-ci * context : clean-up ggml-ci * graph : clean-up ggml-ci * llama : remove redundant keywords (struct, enum) ggml-ci * model : adapt gemma3 ggml-ci * graph : restore same attention ops as on master ggml-ci * llama : remove TODO + fix indent ggml-ci
342 lines
10 KiB
C++
342 lines
10 KiB
C++
#include "arg.h"
|
|
#include "log.h"
|
|
#include "common.h"
|
|
#include "sampling.h"
|
|
#include "clip.h"
|
|
#include "stb_image.h"
|
|
#include "llama.h"
|
|
#include "ggml.h"
|
|
#include "console.h"
|
|
|
|
#include <vector>
|
|
#include <limits.h>
|
|
#include <inttypes.h>
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
#include <signal.h>
|
|
#include <unistd.h>
|
|
#elif defined (_WIN32)
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#ifndef NOMINMAX
|
|
#define NOMINMAX
|
|
#endif
|
|
#include <windows.h>
|
|
#include <signal.h>
|
|
#endif
|
|
|
|
static bool g_is_generating = false;
|
|
|
|
/**
|
|
* Please note that this is NOT a production-ready stuff.
|
|
* It is a playground for trying Gemma 3 vision capabilities.
|
|
* For contributors: please keep this code simple and easy to understand.
|
|
*/
|
|
|
|
static void show_additional_info(int /*argc*/, char ** argv) {
|
|
LOG(
|
|
"Experimental CLI for using Gemma 3 vision model\n\n"
|
|
"Usage: %s [options] -m <model> --mmproj <mmproj> --image <image> -p <prompt>\n\n"
|
|
" -m and --mmproj are required\n"
|
|
" --image and -p are optional, if NOT provided, the CLI will run in chat mode\n",
|
|
argv[0]
|
|
);
|
|
}
|
|
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
static void sigint_handler(int signo) {
|
|
if (signo == SIGINT) {
|
|
if (g_is_generating) {
|
|
g_is_generating = false;
|
|
} else {
|
|
console::cleanup();
|
|
LOG("\nInterrupted by user\n");
|
|
_exit(130);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
struct gemma3_context {
|
|
struct clip_ctx * ctx_clip = NULL;
|
|
common_init_result llama_init;
|
|
|
|
llama_model * model;
|
|
llama_context * lctx;
|
|
const llama_vocab * vocab;
|
|
llama_batch batch;
|
|
|
|
int n_threads = 1;
|
|
llama_pos n_past = 0;
|
|
|
|
gemma3_context(common_params & params) : llama_init(common_init_from_params(params)) {
|
|
model = llama_init.model.get();
|
|
lctx = llama_init.context.get();
|
|
vocab = llama_model_get_vocab(model);
|
|
n_threads = params.cpuparams.n_threads;
|
|
batch = llama_batch_init(params.n_batch, 0, 1);
|
|
init_clip_model(params);
|
|
}
|
|
|
|
void init_clip_model(common_params & params) {
|
|
const char * clip_path = params.mmproj.c_str();
|
|
ctx_clip = clip_model_load(clip_path, params.verbosity > 1);
|
|
}
|
|
|
|
~gemma3_context() {
|
|
clip_free(ctx_clip);
|
|
}
|
|
};
|
|
|
|
struct decode_embd_batch {
|
|
std::vector<llama_pos> pos;
|
|
std::vector<int32_t> n_seq_id;
|
|
std::vector<llama_seq_id> seq_id_0;
|
|
std::vector<llama_seq_id *> seq_ids;
|
|
std::vector<int8_t> logits;
|
|
llama_batch batch;
|
|
decode_embd_batch(float * embd, int32_t n_tokens, llama_pos pos_0, llama_seq_id seq_id) {
|
|
pos .resize(n_tokens);
|
|
n_seq_id.resize(n_tokens);
|
|
seq_ids .resize(n_tokens + 1);
|
|
logits .resize(n_tokens);
|
|
seq_id_0.resize(1);
|
|
seq_id_0[0] = seq_id;
|
|
seq_ids [n_tokens] = nullptr;
|
|
batch = {
|
|
/*n_tokens =*/ n_tokens,
|
|
/*tokens =*/ nullptr,
|
|
/*embd =*/ embd,
|
|
/*pos =*/ pos.data(),
|
|
/*n_seq_id =*/ n_seq_id.data(),
|
|
/*seq_id =*/ seq_ids.data(),
|
|
/*logits =*/ logits.data(),
|
|
};
|
|
for (int i = 0; i < n_tokens; i++) {
|
|
batch.pos [i] = pos_0 + i;
|
|
batch.n_seq_id[i] = 1;
|
|
batch.seq_id [i] = seq_id_0.data();
|
|
batch.logits [i] = false;
|
|
}
|
|
}
|
|
};
|
|
|
|
static int eval_text(gemma3_context & ctx, std::string input, bool logits_last = false) {
|
|
llama_tokens tokens = common_tokenize(ctx.lctx, input, false, true);
|
|
common_batch_clear(ctx.batch);
|
|
for (llama_token & t : tokens) {
|
|
common_batch_add(ctx.batch, t, ctx.n_past++, {0}, false);
|
|
}
|
|
if (logits_last) {
|
|
ctx.batch.logits[ctx.batch.n_tokens - 1] = true;
|
|
}
|
|
// LOG("eval_text (n_tokens = %d): %s\n", (int)tokens.size(), input.c_str());
|
|
if (llama_decode(ctx.lctx, ctx.batch)) {
|
|
LOG_ERR("Failed to decode text\n");
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int eval_image(gemma3_context & ctx, std::string & fname) {
|
|
std::vector<float> image_embd_v;
|
|
int n_embd = llama_model_n_embd(ctx.model);
|
|
int n_tokens = 256;
|
|
image_embd_v.resize(n_tokens * n_embd);
|
|
|
|
bool ok;
|
|
struct clip_image_u8 * img_u8 = clip_image_u8_init();
|
|
ok = clip_image_load_from_file(fname.c_str(), img_u8);
|
|
if (!ok) {
|
|
LOG_ERR("Unable to load image %s\n", fname.c_str());
|
|
clip_image_u8_free(img_u8);
|
|
return 2; // non-fatal error
|
|
}
|
|
|
|
clip_image_f32_batch batch_f32;
|
|
ok = clip_image_preprocess(ctx.ctx_clip, img_u8, &batch_f32);
|
|
if (!ok) {
|
|
LOG_ERR("Unable to preprocess image\n");
|
|
clip_image_f32_batch_free(&batch_f32);
|
|
clip_image_u8_free(img_u8);
|
|
return 1;
|
|
}
|
|
|
|
int64_t t0 = ggml_time_ms();
|
|
LOG("Encoding image %s\n", fname.c_str());
|
|
ok = clip_image_batch_encode(ctx.ctx_clip, ctx.n_threads, &batch_f32, image_embd_v.data());
|
|
if (!ok) {
|
|
LOG_ERR("Unable to encode image\n");
|
|
clip_image_f32_batch_free(&batch_f32);
|
|
clip_image_u8_free(img_u8);
|
|
return 1;
|
|
}
|
|
LOG("Image encoded in %" PRId64 " ms\n", ggml_time_ms() - t0);
|
|
|
|
clip_image_f32_batch_free(&batch_f32);
|
|
clip_image_u8_free(img_u8);
|
|
|
|
// decode image embeddings
|
|
int64_t t1 = ggml_time_ms();
|
|
eval_text(ctx, "<start_of_image>");
|
|
llama_set_causal_attn(ctx.lctx, false);
|
|
decode_embd_batch batch_img(image_embd_v.data(), n_tokens, ctx.n_past, 0);
|
|
if (llama_decode(ctx.lctx, batch_img.batch)) {
|
|
LOG_ERR("failed to decode image\n");
|
|
return 1;
|
|
}
|
|
ctx.n_past += n_tokens;
|
|
llama_set_causal_attn(ctx.lctx, true);
|
|
eval_text(ctx, "<end_of_image>");
|
|
LOG("Image decoded in %" PRId64 " ms\n", ggml_time_ms() - t1);
|
|
return 0;
|
|
}
|
|
|
|
static int generate_response(gemma3_context & ctx, common_sampler * smpl, int n_predict) {
|
|
for (int i = 0; i < n_predict; i++) {
|
|
if (i > n_predict || !g_is_generating) {
|
|
printf("\n");
|
|
break;
|
|
}
|
|
|
|
llama_token token_id = common_sampler_sample(smpl, ctx.lctx, -1);
|
|
common_sampler_accept(smpl, token_id, true);
|
|
|
|
if (llama_vocab_is_eog(ctx.vocab, token_id)) {
|
|
printf("\n");
|
|
break; // end of generation
|
|
}
|
|
|
|
printf("%s", common_token_to_piece(ctx.lctx, token_id).c_str());
|
|
fflush(stdout);
|
|
|
|
// eval the token
|
|
common_batch_clear(ctx.batch);
|
|
common_batch_add(ctx.batch, token_id, ctx.n_past++, {0}, true);
|
|
if (llama_decode(ctx.lctx, ctx.batch)) {
|
|
LOG_ERR("failed to decode token\n");
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int main(int argc, char ** argv) {
|
|
ggml_time_init();
|
|
|
|
common_params params;
|
|
params.sampling.temp = 0.2; // lower temp by default for better quality
|
|
|
|
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_LLAVA, show_additional_info)) {
|
|
return 1;
|
|
}
|
|
|
|
common_init();
|
|
|
|
if (params.mmproj.empty()) {
|
|
show_additional_info(argc, argv);
|
|
return 1;
|
|
}
|
|
|
|
gemma3_context ctx(params);
|
|
printf("%s: %s\n", __func__, params.model.c_str());
|
|
|
|
bool is_single_turn = !params.prompt.empty() && !params.image.empty();
|
|
|
|
struct common_sampler * smpl = common_sampler_init(ctx.model, params.sampling);
|
|
int n_predict = params.n_predict < 0 ? INT_MAX : params.n_predict;
|
|
|
|
// ctrl+C handling
|
|
{
|
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
struct sigaction sigint_action;
|
|
sigint_action.sa_handler = sigint_handler;
|
|
sigemptyset (&sigint_action.sa_mask);
|
|
sigint_action.sa_flags = 0;
|
|
sigaction(SIGINT, &sigint_action, NULL);
|
|
#elif defined (_WIN32)
|
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
|
};
|
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
#endif
|
|
}
|
|
|
|
if (eval_text(ctx, "<bos>")) {
|
|
return 1;
|
|
}
|
|
|
|
if (is_single_turn) {
|
|
g_is_generating = true;
|
|
if (eval_text(ctx, "<start_of_turn>user\n")) {
|
|
return 1;
|
|
}
|
|
for (auto & fname : params.image) {
|
|
if (eval_image(ctx, fname)) {
|
|
return 1;
|
|
}
|
|
}
|
|
if (eval_text(ctx, params.prompt + "<end_of_turn><start_of_turn>model\n", true)) {
|
|
return 1;
|
|
}
|
|
if (generate_response(ctx, smpl, n_predict)) {
|
|
return 1;
|
|
}
|
|
|
|
} else {
|
|
LOG("\n Running in chat mode, available commands:");
|
|
LOG("\n /image <path> load an image");
|
|
LOG("\n /clear clear the chat history");
|
|
LOG("\n /quit or /exit exit the program");
|
|
LOG("\n");
|
|
|
|
if (eval_text(ctx, "<start_of_turn>user\n")) {
|
|
return 1;
|
|
}
|
|
|
|
while (true) {
|
|
g_is_generating = false;
|
|
LOG("\n> ");
|
|
console::set_display(console::user_input);
|
|
std::string line;
|
|
console::readline(line, false);
|
|
console::set_display(console::reset);
|
|
line = string_strip(line);
|
|
if (line.empty()) {
|
|
continue;
|
|
}
|
|
if (line == "/quit" || line == "/exit") {
|
|
break;
|
|
}
|
|
if (line == "/clear") {
|
|
ctx.n_past = 0;
|
|
llama_kv_self_seq_rm(ctx.lctx, 0, 1, -1); // keep BOS
|
|
LOG("Chat history cleared\n\n");
|
|
continue;
|
|
}
|
|
g_is_generating = true;
|
|
if (line.find("/image") == 0) {
|
|
std::string image = line.substr(7);
|
|
int res = eval_image(ctx, image);
|
|
if (res == 2) {
|
|
continue; // image not found
|
|
}
|
|
if (res) {
|
|
return 1;
|
|
}
|
|
continue;
|
|
}
|
|
if (eval_text(ctx, line + "<end_of_turn><start_of_turn>model\n", true)) {
|
|
return 1;
|
|
}
|
|
if (generate_response(ctx, smpl, n_predict)) {
|
|
return 1;
|
|
}
|
|
if (eval_text(ctx, "<end_of_turn><start_of_turn>user\n")) {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|