llama.cpp/src/llama-adapter.h
Georgi Gerganov e0dbec0bc6
llama : refactor llama_context, llama_kv_cache, llm_build_context (#12181)
* llama : refactor llama_context, llama_kv_cache, llm_build_context

ggml-ci

* graph : don't mutate the KV cache during defrag

ggml-ci

* context : reduce virtuals + remove test function

ggml-ci

* context : move interface implementation to source file + factory

ggml-ci

* graph : move KV cache build functions to llama_context impl

ggml-ci

* graph : remove model reference from build_pooling

ggml-ci

* graph : remove llama_model reference

ggml-ci

* kv_cache : provide rope factors

ggml-ci

* graph : rework inputs to use only unique_ptr, remove attn input abstraction

ggml-ci

* context : remove llama_context_i abstraction

ggml-ci

* context : clean-up

ggml-ci

* graph : clean-up

ggml-ci

* llama : remove redundant keywords (struct, enum)

ggml-ci

* model : adapt gemma3

ggml-ci

* graph : restore same attention ops as on master

ggml-ci

* llama : remove TODO + fix indent

ggml-ci
2025-03-13 12:35:44 +02:00

77 lines
1.7 KiB
C++

#pragma once
#include "llama.h"
#include "ggml-cpp.h"
#include <string>
#include <unordered_map>
#include <vector>
// TODO: pimpl
//
// llama_adapter_cvec
//
struct llama_adapter_cvec {
ggml_tensor * tensor_for(int il) const;
ggml_tensor * apply_to(ggml_context * ctx, ggml_tensor * cur, int il) const;
bool apply(
const llama_model & model,
const float * data,
size_t len,
int32_t n_embd,
int32_t il_start,
int32_t il_end);
private:
bool init(const llama_model & model);
int32_t layer_start = -1;
int32_t layer_end = -1;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
std::vector<ggml_tensor *> tensors; // per layer
};
//
// llama_adapter_lora
//
struct llama_adapter_lora_weight {
ggml_tensor * a = nullptr;
ggml_tensor * b = nullptr;
// get actual scale based on rank and alpha
float get_scale(float alpha, float adapter_scale) const {
const float rank = (float) b->ne[0];
const float scale = alpha ? adapter_scale * alpha / rank : adapter_scale;
return scale;
}
llama_adapter_lora_weight() = default;
llama_adapter_lora_weight(ggml_tensor * a, ggml_tensor * b) : a(a), b(b) {}
};
struct llama_adapter_lora {
// map tensor name to lora_a_b
std::unordered_map<std::string, llama_adapter_lora_weight> ab_map;
std::vector<ggml_context_ptr> ctxs;
std::vector<ggml_backend_buffer_ptr> bufs;
float alpha;
llama_adapter_lora() = default;
~llama_adapter_lora() = default;
llama_adapter_lora_weight * get_weight(ggml_tensor * w);
};
using llama_adapter_loras = std::unordered_map<llama_adapter_lora *, float>;