llvm-project/compiler-rt/lib/xray/xray_trampoline_x86_64.S

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

322 lines
7.8 KiB
ArmAsm
Raw Permalink Normal View History

//===-- xray_trampoline_x86.s -----------------------------------*- ASM -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the X86-specific assembler for the trampolines.
//
//===----------------------------------------------------------------------===//
#include "../builtins/assembly.h"
#include "../sanitizer_common/sanitizer_asm.h"
// XRay trampolines which are not produced by intrinsics are not System V AMD64
// ABI compliant because they are called with a stack that is always misaligned
// by 8 bytes with respect to a 16 bytes alignment. This is because they are
// called immediately after the call to, or immediately before returning from,
// the function being instrumented. This saves space in the patch point, but
// misaligns the stack by 8 bytes.
.macro ALIGN_STACK_16B
#if defined(__APPLE__)
subq $$8, %rsp
#else
subq $8, %rsp
#endif
CFI_ADJUST_CFA_OFFSET(8)
.endm
.macro RESTORE_STACK_ALIGNMENT
#if defined(__APPLE__)
addq $$8, %rsp
#else
addq $8, %rsp
#endif
CFI_ADJUST_CFA_OFFSET(-8)
.endm
// This macro should lower the stack pointer by an odd multiple of 8.
.macro SAVE_REGISTERS
pushfq
CFI_ADJUST_CFA_OFFSET(8)
subq $240, %rsp
CFI_ADJUST_CFA_OFFSET(240)
movq %rbp, 232(%rsp)
movupd %xmm0, 216(%rsp)
movupd %xmm1, 200(%rsp)
movupd %xmm2, 184(%rsp)
movupd %xmm3, 168(%rsp)
movupd %xmm4, 152(%rsp)
movupd %xmm5, 136(%rsp)
movupd %xmm6, 120(%rsp)
movupd %xmm7, 104(%rsp)
movq %rdi, 96(%rsp)
movq %rax, 88(%rsp)
movq %rdx, 80(%rsp)
movq %rsi, 72(%rsp)
movq %rcx, 64(%rsp)
movq %r8, 56(%rsp)
movq %r9, 48(%rsp)
movq %r10, 40(%rsp)
movq %r11, 32(%rsp)
movq %r12, 24(%rsp)
movq %r13, 16(%rsp)
movq %r14, 8(%rsp)
movq %r15, 0(%rsp)
.endm
.macro RESTORE_REGISTERS
movq 232(%rsp), %rbp
movupd 216(%rsp), %xmm0
movupd 200(%rsp), %xmm1
movupd 184(%rsp), %xmm2
movupd 168(%rsp), %xmm3
movupd 152(%rsp), %xmm4
movupd 136(%rsp), %xmm5
movupd 120(%rsp) , %xmm6
movupd 104(%rsp) , %xmm7
movq 96(%rsp), %rdi
movq 88(%rsp), %rax
movq 80(%rsp), %rdx
movq 72(%rsp), %rsi
movq 64(%rsp), %rcx
movq 56(%rsp), %r8
movq 48(%rsp), %r9
movq 40(%rsp), %r10
movq 32(%rsp), %r11
movq 24(%rsp), %r12
movq 16(%rsp), %r13
movq 8(%rsp), %r14
movq 0(%rsp), %r15
addq $240, %rsp
CFI_ADJUST_CFA_OFFSET(-240)
popfq
CFI_ADJUST_CFA_OFFSET(-8)
.endm
.text
#if !defined(__APPLE__)
.section .text
.file "xray_trampoline_x86.S"
#else
.section __TEXT,__text
#endif
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
.macro LOAD_HANDLER_ADDR handler
#if !defined(XRAY_PIC)
movq ASM_SYMBOL(\handler)(%rip), %rax
#else
movq ASM_SYMBOL(\handler)@GOTPCREL(%rip), %rax
movq (%rax), %rax
#endif
.endm
//===----------------------------------------------------------------------===//
.globl ASM_SYMBOL(__xray_FunctionEntry)
ASM_HIDDEN(__xray_FunctionEntry)
.align 16, 0x90
ASM_TYPE_FUNCTION(__xray_FunctionEntry)
# LLVM-MCA-BEGIN __xray_FunctionEntry
ASM_SYMBOL(__xray_FunctionEntry):
CFI_STARTPROC
SAVE_REGISTERS
ALIGN_STACK_16B
// This load has to be atomic, it's concurrent with __xray_patch().
// On x86/amd64, a simple (type-aligned) MOV instruction is enough.
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
LOAD_HANDLER_ADDR _ZN6__xray19XRayPatchedFunctionE
testq %rax, %rax
je LOCAL_LABEL(tmp0)
// The patched function prologue puts its xray_instr_map index into %r10d.
movl %r10d, %edi
xor %esi,%esi
callq *%rax
LOCAL_LABEL(tmp0):
RESTORE_STACK_ALIGNMENT
RESTORE_REGISTERS
retq
# LLVM-MCA-END
ASM_SIZE(__xray_FunctionEntry)
CFI_ENDPROC
//===----------------------------------------------------------------------===//
.globl ASM_SYMBOL(__xray_FunctionExit)
ASM_HIDDEN(__xray_FunctionExit)
.align 16, 0x90
ASM_TYPE_FUNCTION(__xray_FunctionExit)
# LLVM-MCA-BEGIN __xray_FunctionExit
ASM_SYMBOL(__xray_FunctionExit):
CFI_STARTPROC
ALIGN_STACK_16B
// Save the important registers first. Since we're assuming that this
// function is only jumped into, we only preserve the registers for
// returning.
subq $64, %rsp
CFI_ADJUST_CFA_OFFSET(64)
movq %rbp, 48(%rsp)
movupd %xmm0, 32(%rsp)
movupd %xmm1, 16(%rsp)
movq %rax, 8(%rsp)
movq %rdx, 0(%rsp)
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
LOAD_HANDLER_ADDR _ZN6__xray19XRayPatchedFunctionE
testq %rax,%rax
je LOCAL_LABEL(tmp2)
movl %r10d, %edi
movl $1, %esi
callq *%rax
LOCAL_LABEL(tmp2):
// Restore the important registers.
movq 48(%rsp), %rbp
movupd 32(%rsp), %xmm0
movupd 16(%rsp), %xmm1
movq 8(%rsp), %rax
movq 0(%rsp), %rdx
addq $64, %rsp
CFI_ADJUST_CFA_OFFSET(-64)
RESTORE_STACK_ALIGNMENT
retq
# LLVM-MCA-END
ASM_SIZE(__xray_FunctionExit)
CFI_ENDPROC
//===----------------------------------------------------------------------===//
.globl ASM_SYMBOL(__xray_FunctionTailExit)
ASM_HIDDEN(__xray_FunctionTailExit)
.align 16, 0x90
ASM_TYPE_FUNCTION(__xray_FunctionTailExit)
# LLVM-MCA-BEGIN __xray_FunctionTailExit
ASM_SYMBOL(__xray_FunctionTailExit):
CFI_STARTPROC
SAVE_REGISTERS
ALIGN_STACK_16B
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
LOAD_HANDLER_ADDR _ZN6__xray19XRayPatchedFunctionE
testq %rax,%rax
je LOCAL_LABEL(tmp4)
movl %r10d, %edi
movl $2, %esi
callq *%rax
LOCAL_LABEL(tmp4):
RESTORE_STACK_ALIGNMENT
RESTORE_REGISTERS
retq
# LLVM-MCA-END
ASM_SIZE(__xray_FunctionTailExit)
CFI_ENDPROC
//===----------------------------------------------------------------------===//
.globl ASM_SYMBOL(__xray_ArgLoggerEntry)
ASM_HIDDEN(__xray_ArgLoggerEntry)
.align 16, 0x90
ASM_TYPE_FUNCTION(__xray_ArgLoggerEntry)
# LLVM-MCA-BEGIN __xray_ArgLoggerEntry
ASM_SYMBOL(__xray_ArgLoggerEntry):
CFI_STARTPROC
SAVE_REGISTERS
ALIGN_STACK_16B
// Again, these function pointer loads must be atomic; MOV is fine.
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
LOAD_HANDLER_ADDR _ZN6__xray13XRayArgLoggerE
testq %rax, %rax
jne LOCAL_LABEL(arg1entryLog)
// If [arg1 logging handler] not set, defer to no-arg logging.
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
LOAD_HANDLER_ADDR _ZN6__xray19XRayPatchedFunctionE
testq %rax, %rax
je LOCAL_LABEL(arg1entryFail)
LOCAL_LABEL(arg1entryLog):
// First argument will become the third
movq %rdi, %rdx
// XRayEntryType::LOG_ARGS_ENTRY into the second
mov $0x3, %esi
// 32-bit function ID becomes the first
movl %r10d, %edi
callq *%rax
LOCAL_LABEL(arg1entryFail):
RESTORE_STACK_ALIGNMENT
RESTORE_REGISTERS
retq
# LLVM-MCA-END
ASM_SIZE(__xray_ArgLoggerEntry)
CFI_ENDPROC
//===----------------------------------------------------------------------===//
// __xray_*Event have default visibility so that they can be referenced by user
// DSOs that do not link against the runtime.
.global ASM_SYMBOL(__xray_CustomEvent)
.align 16, 0x90
ASM_TYPE_FUNCTION(__xray_CustomEvent)
# LLVM-MCA-BEGIN __xray_CustomEvent
ASM_SYMBOL(__xray_CustomEvent):
CFI_STARTPROC
SAVE_REGISTERS
// We take two arguments to this trampoline, which should be in rdi and rsi
// already.
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
LOAD_HANDLER_ADDR _ZN6__xray22XRayPatchedCustomEventE
testq %rax,%rax
je LOCAL_LABEL(customEventCleanup)
callq *%rax
LOCAL_LABEL(customEventCleanup):
RESTORE_REGISTERS
retq
# LLVM-MCA-END
ASM_SIZE(__xray_CustomEvent)
CFI_ENDPROC
//===----------------------------------------------------------------------===//
.global ASM_SYMBOL(__xray_TypedEvent)
.align 16, 0x90
ASM_TYPE_FUNCTION(__xray_TypedEvent)
# LLVM-MCA-BEGIN __xray_TypedEvent
ASM_SYMBOL(__xray_TypedEvent):
CFI_STARTPROC
SAVE_REGISTERS
// We pass three arguments to this trampoline, which should be in rdi, rsi
// and rdx without our intervention.
Reapply " [XRay] Add support for instrumentation of DSOs on x86_64 (#90959)" (#113548) This fixes remaining issues in my previous PR #90959. Changes: - Removed dependency on LLVM header in `xray_interface.cpp` - Fixed XRay patching for some targets due to missing changes in architecture-specific patching functions - Addressed some remaining compiler warnings that I missed in the previous patch - Formatting I have tested these changes on `x86_64` (natively), as well as `ppc64le`, `aarch64` and `arm32` (cross-compiled and emulated using qemu). **Original description:** This PR introduces shared library (DSO) support for XRay based on a revised version of the implementation outlined in [this RFC](https://discourse.llvm.org/t/rfc-upstreaming-dso-instrumentation-support-for-xray/73000). The feature enables the patching and handling of events from DSOs, supporting both libraries linked at startup or explicitly loaded, e.g. via `dlopen`. This patch adds the following: - The `-fxray-shared` flag to enable the feature (turned off by default) - A small runtime library that is linked into every instrumented DSO, providing position-independent trampolines and code to register with the main XRay runtime - Changes to the XRay runtime to support management and patching of multiple objects These changes are fully backward compatible, i.e. running without instrumented DSOs will produce identical traces (in terms of recorded function IDs) to the previous implementation. Due to my limited ability to test on other architectures, this feature is only implemented and tested with x86_64. Extending support to other architectures is fairly straightforward, requiring only a position-independent implementation of the architecture-specific trampoline implementation (see `compiler-rt/lib/xray/xray_trampoline_x86_64.S` for reference). This patch does not include any functionality to resolve function IDs from DSOs for the provided logging/tracing modes. These modes still work and will record calls from DSOs, but symbol resolution for these functions in not available. Getting this to work properly requires recording information about the loaded DSOs and should IMO be discussed in a separate RFC, as there are mulitple feasible approaches. --------- Co-authored-by: Sebastian Kreutzer <sebastian.kreutzer@tu-darmstadt.de>
2024-10-25 09:15:25 +01:00
LOAD_HANDLER_ADDR _ZN6__xray21XRayPatchedTypedEventE
testq %rax,%rax
je LOCAL_LABEL(typedEventCleanup)
callq *%rax
LOCAL_LABEL(typedEventCleanup):
RESTORE_REGISTERS
retq
# LLVM-MCA-END
ASM_SIZE(__xray_TypedEvent)
CFI_ENDPROC
//===----------------------------------------------------------------------===//
NO_EXEC_STACK_DIRECTIVE