546 lines
16 KiB
C++
Raw Normal View History

//===-- IRForTarget.cpp -------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Expression/IRForTarget.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/InstrTypes.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Target/TargetData.h"
#include "clang/AST/ASTContext.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Scalar.h"
#include "lldb/Core/StreamString.h"
#include "lldb/Expression/ClangExpressionDeclMap.h"
#include <map>
using namespace llvm;
IRForTarget::IRForTarget(const void *pid,
lldb_private::ClangExpressionDeclMap *decl_map,
const TargetData *target_data) :
ModulePass(pid),
m_decl_map(decl_map),
m_target_data(target_data)
{
}
IRForTarget::~IRForTarget()
{
}
static clang::NamedDecl *
DeclForGlobalValue(Module &module,
GlobalValue *global_value)
{
NamedMDNode *named_metadata = module.getNamedMetadata("clang.global.decl.ptrs");
if (!named_metadata)
return NULL;
unsigned num_nodes = named_metadata->getNumOperands();
unsigned node_index;
for (node_index = 0;
node_index < num_nodes;
++node_index)
{
MDNode *metadata_node = named_metadata->getOperand(node_index);
if (!metadata_node)
return NULL;
if (metadata_node->getNumOperands() != 2)
return NULL;
if (metadata_node->getOperand(0) != global_value)
continue;
ConstantInt *constant_int = dyn_cast<ConstantInt>(metadata_node->getOperand(1));
if (!constant_int)
return NULL;
uintptr_t ptr = constant_int->getZExtValue();
return reinterpret_cast<clang::NamedDecl *>(ptr);
}
return NULL;
}
bool
IRForTarget::MaybeHandleVariable(Module &M,
Value *V,
bool Store)
{
if (GlobalVariable *global_variable = dyn_cast<GlobalVariable>(V))
{
clang::NamedDecl *named_decl = DeclForGlobalValue(M, global_variable);
std::string name = named_decl->getName().str();
void *qual_type = NULL;
clang::ASTContext *ast_context = NULL;
if (clang::ValueDecl *value_decl = dyn_cast<clang::ValueDecl>(named_decl))
{
qual_type = value_decl->getType().getAsOpaquePtr();
ast_context = &value_decl->getASTContext();
}
else
{
return false;
}
const Type *value_type = global_variable->getType();
size_t value_size = m_target_data->getTypeStoreSize(value_type);
off_t value_alignment = m_target_data->getPrefTypeAlignment(value_type);
if (named_decl && !m_decl_map->AddValueToStruct(V,
named_decl,
name,
qual_type,
ast_context,
value_size,
value_alignment))
return false;
}
return true;
}
bool
IRForTarget::MaybeHandleCall(Module &M,
CallInst *C)
{
lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
Function *fun = C->getCalledFunction();
if (fun == NULL)
return true;
clang::NamedDecl *fun_decl = DeclForGlobalValue(M, fun);
if (!fun_decl)
{
if (log)
log->Printf("Function %s wasn't in the metadata", fun->getName().str().c_str());
return false;
}
uint64_t fun_addr;
Value **fun_value_ptr;
if (!m_decl_map->GetFunctionInfo(fun_decl, fun_value_ptr, fun_addr))
{
if (log)
log->Printf("Function %s had no address", fun_decl->getNameAsCString());
return false;
}
if (log)
log->Printf("Found %s at %llx", fun_decl->getNameAsCString(), fun_addr);
if (!*fun_value_ptr)
{
std::vector<const Type*> params;
const IntegerType *intptr_ty = Type::getIntNTy(M.getContext(),
(M.getPointerSize() == Module::Pointer64) ? 64 : 32);
FunctionType *fun_ty = FunctionType::get(intptr_ty, params, true);
PointerType *fun_ptr_ty = PointerType::getUnqual(fun_ty);
Constant *fun_addr_int = ConstantInt::get(intptr_ty, fun_addr, false);
Constant *fun_addr_ptr = ConstantExpr::getIntToPtr(fun_addr_int, fun_ptr_ty);
*fun_value_ptr = fun_addr_ptr;
}
C->setCalledFunction(*fun_value_ptr);
return true;
}
bool
IRForTarget::runOnBasicBlock(Module &M, BasicBlock &BB)
{
/////////////////////////////////////////////////////////////////////////
// Prepare the current basic block for execution in the remote process
//
BasicBlock::iterator ii;
for (ii = BB.begin();
ii != BB.end();
++ii)
{
Instruction &inst = *ii;
if (LoadInst *load = dyn_cast<LoadInst>(&inst))
if (!MaybeHandleVariable(M, load->getPointerOperand(), false))
return false;
if (StoreInst *store = dyn_cast<StoreInst>(&inst))
if (!MaybeHandleVariable(M, store->getPointerOperand(), true))
return false;
if (CallInst *call = dyn_cast<CallInst>(&inst))
if (!MaybeHandleCall(M, call))
return false;
}
return true;
}
static std::string
PrintValue(Value *V, bool truncate = false)
{
std::string s;
raw_string_ostream rso(s);
V->print(rso);
rso.flush();
if (truncate)
s.resize(s.length() - 1);
return s;
}
static bool isGuardVariableRef(Value *V)
{
ConstantExpr *C = dyn_cast<ConstantExpr>(V);
if (!C || C->getOpcode() != Instruction::BitCast)
return false;
GlobalVariable *GV = dyn_cast<GlobalVariable>(C->getOperand(0));
if (!GV || !GV->hasName() || !GV->getName().startswith("_ZGV"))
return false;
return true;
}
static void TurnGuardLoadIntoZero(Instruction* guard_load, Module &M)
{
Constant* zero(ConstantInt::get(Type::getInt8Ty(M.getContext()), 0, true));
Value::use_iterator ui;
for (ui = guard_load->use_begin();
ui != guard_load->use_end();
++ui)
{
if (isa<Constant>(*ui))
{
// do nothing for the moment
}
else
{
ui->replaceUsesOfWith(guard_load, zero);
}
}
guard_load->eraseFromParent();
}
static void ExciseGuardStore(Instruction* guard_store)
{
guard_store->eraseFromParent();
}
bool
IRForTarget::removeGuards(Module &M, BasicBlock &BB)
{
///////////////////////////////////////////////////////
// Eliminate any reference to guard variables found.
//
BasicBlock::iterator ii;
typedef SmallVector <Instruction*, 2> InstrList;
typedef InstrList::iterator InstrIterator;
InstrList guard_loads;
InstrList guard_stores;
for (ii = BB.begin();
ii != BB.end();
++ii)
{
Instruction &inst = *ii;
if (LoadInst *load = dyn_cast<LoadInst>(&inst))
if (isGuardVariableRef(load->getPointerOperand()))
guard_loads.push_back(&inst);
if (StoreInst *store = dyn_cast<StoreInst>(&inst))
if (isGuardVariableRef(store->getPointerOperand()))
guard_stores.push_back(&inst);
}
InstrIterator iter;
for (iter = guard_loads.begin();
iter != guard_loads.end();
++iter)
TurnGuardLoadIntoZero(*iter, M);
for (iter = guard_stores.begin();
iter != guard_stores.end();
++iter)
ExciseGuardStore(*iter);
return true;
}
// UnfoldConstant operates on a constant [C] which has just been replaced with a value
// [new_value]. We assume that new_value has been properly placed early in the function,
// most likely somewhere in front of the first instruction in the entry basic block
// [first_entry_instruction].
//
// UnfoldConstant reads through the uses of C and replaces C in those uses with new_value.
// Where those uses are constants, the function generates new instructions to compute the
// result of the new, non-constant expression and places them before first_entry_instruction.
// These instructions replace the constant uses, so UnfoldConstant calls itself recursively
// for those.
static bool
UnfoldConstant(Constant *C, Value *new_value, Instruction *first_entry_instruction)
{
lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
Value::use_iterator ui;
for (ui = C->use_begin();
ui != C->use_end();
++ui)
{
User *user = *ui;
if (Constant *constant = dyn_cast<Constant>(user))
{
// synthesize a new non-constant equivalent of the constant
if (ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant))
{
switch (constant_expr->getOpcode())
{
default:
if (log)
log->Printf("Unhandled constant expression type: %s", PrintValue(constant_expr).c_str());
return false;
case Instruction::BitCast:
{
// UnaryExpr
// OperandList[0] is value
Value *s = constant_expr->getOperand(0);
if (s == C)
s = new_value;
BitCastInst *bit_cast(new BitCastInst(s, C->getType(), "", first_entry_instruction));
UnfoldConstant(constant_expr, bit_cast, first_entry_instruction);
}
break;
case Instruction::GetElementPtr:
{
// GetElementPtrConstantExpr
// OperandList[0] is base
// OperandList[1]... are indices
Value *ptr = constant_expr->getOperand(0);
if (ptr == C)
ptr = new_value;
SmallVector<Value*, 16> indices;
unsigned operand_index;
unsigned num_operands = constant_expr->getNumOperands();
for (operand_index = 1;
operand_index < num_operands;
++operand_index)
{
Value *operand = constant_expr->getOperand(operand_index);
if (operand == C)
operand = new_value;
indices.push_back(operand);
}
GetElementPtrInst *get_element_ptr(GetElementPtrInst::Create(ptr, indices.begin(), indices.end(), "", first_entry_instruction));
UnfoldConstant(constant_expr, get_element_ptr, first_entry_instruction);
}
break;
}
}
else
{
if (log)
log->Printf("Unhandled constant type: %s", PrintValue(constant).c_str());
return false;
}
}
else
{
// simple fall-through case for non-constants
user->replaceUsesOfWith(C, new_value);
}
}
return true;
}
bool
IRForTarget::replaceVariables(Module &M, Function *F)
{
lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
m_decl_map->DoStructLayout();
if (log)
log->Printf("Element arrangement:");
uint32_t num_elements;
uint32_t element_index;
size_t size;
off_t alignment;
if (!m_decl_map->GetStructInfo (num_elements, size, alignment))
return false;
Function::arg_iterator iter(F->getArgumentList().begin());
if (iter == F->getArgumentList().end())
return false;
Argument *argument = iter;
if (!argument->getName().equals("___clang_arg"))
return false;
if (log)
log->Printf("Arg: %s", PrintValue(argument).c_str());
BasicBlock &entry_block(F->getEntryBlock());
Instruction *first_entry_instruction(entry_block.getFirstNonPHIOrDbg());
if (!first_entry_instruction)
return false;
LLVMContext &context(M.getContext());
const IntegerType *offset_type(Type::getInt32Ty(context));
if (!offset_type)
return false;
for (element_index = 0; element_index < num_elements; ++element_index)
{
const clang::NamedDecl *decl;
Value *value;
off_t offset;
if (!m_decl_map->GetStructElement (decl, value, offset, element_index))
return false;
if (log)
log->Printf(" %s (%s) placed at %d",
decl->getIdentifier()->getNameStart(),
PrintValue(value, true).c_str(),
offset);
ConstantInt *offset_int(ConstantInt::getSigned(offset_type, offset));
GetElementPtrInst *get_element_ptr = GetElementPtrInst::Create(argument, offset_int, "", first_entry_instruction);
BitCastInst *bit_cast = new BitCastInst(get_element_ptr, value->getType(), "", first_entry_instruction);
if (Constant *constant = dyn_cast<Constant>(value))
UnfoldConstant(constant, bit_cast, first_entry_instruction);
else
value->replaceAllUsesWith(bit_cast);
}
if (log)
log->Printf("Total structure [align %d, size %d]", alignment, size);
return true;
}
bool
IRForTarget::runOnModule(Module &M)
{
lldb_private::Log *log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
Function* function = M.getFunction(StringRef("___clang_expr"));
if (!function)
{
if (log)
log->Printf("Couldn't find ___clang_expr() in the module");
return false;
}
Function::iterator bbi;
for (bbi = function->begin();
bbi != function->end();
++bbi)
{
if (!runOnBasicBlock(M, *bbi))
return false;
if (!removeGuards(M, *bbi))
return false;
}
// TEMPORARY FOR DEBUGGING
M.dump();
if (!replaceVariables(M, function))
return false;
if (log)
{
std::string s;
raw_string_ostream oss(s);
M.print(oss, NULL);
oss.flush();
log->Printf("Module after preparing for execution: \n%s", s.c_str());
}
return true;
}
void
IRForTarget::assignPassManager(PMStack &PMS,
PassManagerType T)
{
}
PassManagerType
IRForTarget::getPotentialPassManagerType() const
{
return PMT_ModulePassManager;
}