Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1136 lines
45 KiB
C++
Raw Normal View History

//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/STLExtras.h"
using namespace mlir;
using namespace mlir::tensor;
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *TensorDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<mlir::ConstantOp>(loc, type, value);
}
//===----------------------------------------------------------------------===//
// CastOp
//===----------------------------------------------------------------------===//
/// Determines whether tensor::CastOp casts to a more dynamic version of the
/// source tensor. This is useful to fold a tensor.cast into a consuming op and
/// implement canonicalization patterns for ops in different dialects that may
/// consume the results of tensor.cast operations. Such foldable tensor.cast
/// operations are typically inserted as `slice` ops and are canonicalized,
/// to preserve the type compatibility of their uses.
///
/// Returns true when all conditions are met:
/// 1. source and result are ranked tensors with same element type and rank.
/// 2. the tensor type has more static information than the result
///
/// Example:
/// ```mlir
/// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
/// %2 = consumer %1 ... : tensor<?x?xf32> ...
/// ```
///
/// folds into:
///
/// ```mlir
/// %2 = consumer %0 ... : tensor<8x16xf32> ...
/// ```
bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) {
if (!castOp)
return false;
RankedTensorType sourceType =
castOp.source().getType().dyn_cast<RankedTensorType>();
RankedTensorType resultType = castOp.getType().dyn_cast<RankedTensorType>();
// Requires RankedTensorType.
if (!sourceType || !resultType)
return false;
// Requires same elemental type.
if (sourceType.getElementType() != resultType.getElementType())
return false;
// Requires same rank.
if (sourceType.getRank() != resultType.getRank())
return false;
// If cast is towards more static sizes along any dimension, don't fold.
for (auto t : llvm::zip(sourceType.getShape(), resultType.getShape())) {
if (ShapedType::isDynamic(std::get<0>(t)) &&
!ShapedType::isDynamic(std::get<1>(t)))
return false;
}
return true;
}
/// Performs folding of any operand of `op` if it comes from a tensor::CastOp
/// that can be folded.
LogicalResult mlir::tensor::foldTensorCast(Operation *op) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
operand.set(castOp.getOperand());
folded = true;
}
}
return success(folded);
}
bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
auto aT = a.dyn_cast<TensorType>();
auto bT = b.dyn_cast<TensorType>();
if (!aT || !bT)
return false;
if (aT.getElementType() != bT.getElementType())
return false;
return succeeded(verifyCompatibleShape(aT, bT));
}
/// Compute a TensorType that has the joined shape knowledge of the two
/// given TensorTypes. The element types need to match.
static TensorType joinShapes(TensorType one, TensorType two) {
assert(one.getElementType() == two.getElementType());
if (!one.hasRank())
return two;
if (!two.hasRank())
return one;
int64_t rank = one.getRank();
if (rank != two.getRank())
return {};
SmallVector<int64_t, 4> join;
join.reserve(rank);
for (int64_t i = 0; i < rank; ++i) {
if (one.isDynamicDim(i)) {
join.push_back(two.getDimSize(i));
continue;
}
if (two.isDynamicDim(i)) {
join.push_back(one.getDimSize(i));
continue;
}
if (one.getDimSize(i) != two.getDimSize(i))
return {};
join.push_back(one.getDimSize(i));
}
return RankedTensorType::get(join, one.getElementType());
}
namespace {
/// Replaces chains of two tensor.cast operations by a single tensor.cast
/// operation if doing so does not remove runtime constraints.
struct ChainedTensorCast : public OpRewritePattern<CastOp> {
using OpRewritePattern<CastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CastOp tensorCast,
PatternRewriter &rewriter) const final {
auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>();
if (!tensorCastOperand)
return failure();
auto sourceType =
tensorCastOperand.getOperand().getType().cast<TensorType>();
auto intermediateType = tensorCastOperand.getType().cast<TensorType>();
auto resultType = tensorCast.getType().cast<TensorType>();
// We can remove the intermediate cast if joining all three produces the
// same result as just joining the source and result shapes.
auto firstJoin =
joinShapes(joinShapes(sourceType, intermediateType), resultType);
// The join might not exist if the cast sequence would fail at runtime.
if (!firstJoin)
return failure();
// The newJoin always exists if the above join exists, it might just contain
// less information. If so, we cannot drop the intermediate cast, as doing
// so would remove runtime checks.
auto newJoin = joinShapes(sourceType, resultType);
if (firstJoin != newJoin)
return failure();
rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType,
tensorCastOperand.getOperand());
return success();
}
};
} // namespace
void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ChainedTensorCast>(context);
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
int64_t index) {
auto loc = result.location;
Value indexValue = builder.create<ConstantIndexOp>(loc, index);
build(builder, result, source, indexValue);
}
void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
Value index) {
auto indexTy = builder.getIndexType();
build(builder, result, indexTy, source, index);
}
Optional<int64_t> DimOp::getConstantIndex() {
if (auto constantOp = index().getDefiningOp<ConstantOp>())
return constantOp.getValue().cast<IntegerAttr>().getInt();
return {};
}
static LogicalResult verify(DimOp op) {
// Assume unknown index to be in range.
Optional<int64_t> index = op.getConstantIndex();
if (!index.hasValue())
return success();
// Check that constant index is not knowingly out of range.
auto type = op.source().getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
if (index.getValue() >= tensorType.getRank())
return op.emitOpError("index is out of range");
} else if (type.isa<UnrankedTensorType>()) {
// Assume index to be in range.
} else {
llvm_unreachable("expected operand with tensor type");
}
return success();
}
OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
// All forms of folding require a known index.
auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
if (!index)
return {};
// Folding for unranked types (UnrankedTensorType) is not supported.
auto tensorType = source().getType().dyn_cast<RankedTensorType>();
if (!tensorType)
return {};
// Fold if the shape extent along the given index is known.
if (!tensorType.isDynamicDim(index.getInt())) {
Builder builder(getContext());
return builder.getIndexAttr(tensorType.getShape()[index.getInt()]);
}
Operation *definingOp = source().getDefiningOp();
// Fold dim to the operand of tensor.generate.
if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
auto resultType =
fromElements.getResult().getType().cast<RankedTensorType>();
// The case where the type encodes the size of the dimension is handled
// above.
assert(resultType.getShape()[index.getInt()] ==
RankedTensorType::kDynamicSize);
// Find the operand of the fromElements that corresponds to this index.
auto dynExtents = fromElements.dynamicExtents().begin();
for (auto dim : resultType.getShape().take_front(index.getInt()))
if (dim == RankedTensorType::kDynamicSize)
dynExtents++;
return Value{*dynExtents};
}
// The size at the given index is now known to be a dynamic size.
unsigned unsignedIndex = index.getValue().getZExtValue();
if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
assert(sliceOp.isDynamicSize(unsignedIndex) &&
"Expected dynamic slice size");
return sliceOp.getDynamicSize(unsignedIndex);
}
// dim(cast) -> dim
if (succeeded(foldTensorCast(*this)))
return getResult();
return {};
}
namespace {
/// Fold dim of a cast into the dim of the source of the tensor cast.
struct DimOfCastOp : public OpRewritePattern<DimOp> {
using OpRewritePattern<DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DimOp dimOp,
PatternRewriter &rewriter) const override {
auto castOp = dimOp.source().getDefiningOp<CastOp>();
if (!castOp)
return failure();
Value newSource = castOp.getOperand();
rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index());
return success();
}
};
} // end anonymous namespace.
void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DimOfCastOp>(context);
}
//===----------------------------------------------------------------------===//
// ExtractOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ExtractOp op) {
// Verify the # indices match if we have a ranked type.
if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>())
if (tensorType.getRank() != static_cast<int64_t>(op.indices().size()))
return op.emitOpError("incorrect number of indices for extract_element");
return success();
}
OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) {
// The tensor operand must be a known constant.
Attribute tensor = operands.front();
if (!tensor)
return {};
// If this is a splat elements attribute, simply return the value. All of the
// elements of a splat attribute are the same.
if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>())
return splatTensor.getSplatValue();
// Otherwise, collect the constant indices into the tensor.
SmallVector<uint64_t, 8> indices;
for (Attribute indice : llvm::drop_begin(operands, 1)) {
if (!indice || !indice.isa<IntegerAttr>())
return {};
indices.push_back(indice.cast<IntegerAttr>().getInt());
}
// If this is an elements attribute, query the value at the given indices.
auto elementsAttr = tensor.dyn_cast<ElementsAttr>();
if (elementsAttr && elementsAttr.isValidIndex(indices))
return elementsAttr.getValue(indices);
return {};
}
//===----------------------------------------------------------------------===//
// FromElementsOp
//===----------------------------------------------------------------------===//
void FromElementsOp::build(OpBuilder &builder, OperationState &result,
Type elementType, ValueRange elements) {
Type resultTy = RankedTensorType::get({static_cast<int64_t>(elements.size())},
elementType);
result.addOperands(elements);
result.addTypes(resultTy);
}
void FromElementsOp::build(OpBuilder &builder, OperationState &result,
ValueRange elements) {
assert(!elements.empty() && "expected at least one element");
build(builder, result, elements.front().getType(), elements);
}
OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) {
if (!llvm::is_contained(operands, nullptr))
return DenseElementsAttr::get(getType(), operands);
return {};
}
namespace {
// Canonicalizes the pattern of the form
//
// %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32>
// %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32>
//
// to just %element.
struct ExtractElementFromTensorFromElements
: public OpRewritePattern<tensor::ExtractOp> {
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
PatternRewriter &rewriter) const final {
if (extract.indices().size() != 1)
return failure();
auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>();
if (tensorFromElements == nullptr)
return failure();
APInt index;
if (!matchPattern(*extract.indices().begin(), m_ConstantInt(&index)))
return failure();
// Prevent out of bounds accesses. This can happen in invalid code that will
// never execute.
if (tensorFromElements->getNumOperands() <= index.getZExtValue() ||
index.getSExtValue() < 0)
return failure();
rewriter.replaceOp(extract,
tensorFromElements.getOperand(index.getZExtValue()));
return success();
}
};
} // namespace
void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ExtractElementFromTensorFromElements>(context);
}
//===----------------------------------------------------------------------===//
// InsertOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(InsertOp op) {
// Verify the # indices match if we have a ranked type.
if (auto destType = op.dest().getType().dyn_cast<RankedTensorType>())
if (destType.getRank() != static_cast<int64_t>(op.indices().size()))
return op.emitOpError("incorrect number of indices");
return success();
}
OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) {
Attribute scalar = operands[0];
Attribute dest = operands[1];
if (scalar && dest)
if (auto splatDest = dest.dyn_cast<SplatElementsAttr>())
if (scalar == splatDest.getSplatValue())
return dest;
return {};
}
//===----------------------------------------------------------------------===//
// GenerateOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(GenerateOp op) {
// Ensure that the tensor type has as many dynamic dimensions as are specified
// by the operands.
RankedTensorType resultTy = op.getType().cast<RankedTensorType>();
if (op.getNumOperands() != resultTy.getNumDynamicDims())
return op.emitError("must have as many index operands as dynamic extents "
"in the result type");
// Ensure that region arguments span the index space.
if (!llvm::all_of(op.body().getArgumentTypes(),
[](Type ty) { return ty.isIndex(); }))
return op.emitError("all body arguments must be index");
if (op.body().getNumArguments() != resultTy.getRank())
return op.emitError("must have one body argument per input dimension");
// Ensure that the region yields an element of the right type.
auto yieldOp =
llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator());
if (yieldOp.value().getType() != resultTy.getElementType())
return op.emitOpError(
"body must be terminated with a `yield` operation of the tensor "
"element type");
return success();
}
void GenerateOp::build(
OpBuilder &b, OperationState &result, Type resultTy,
ValueRange dynamicExtents,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
build(b, result, resultTy, dynamicExtents);
// Build and populate body.
OpBuilder::InsertionGuard guard(b);
Region *bodyRegion = result.regions.front().get();
auto rank = resultTy.cast<RankedTensorType>().getRank();
SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
Block *bodyBlock =
b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes);
bodyBuilder(b, result.location, bodyBlock->getArguments());
}
namespace {
/// Canonicalizes tensor.generate operations with a constant
/// operand into the equivalent operation with the operand expressed in the
/// result type, instead. We also insert a type cast to make sure that the
/// resulting IR is still well-typed.
struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
using OpRewritePattern<GenerateOp>::OpRewritePattern;
LogicalResult matchAndRewrite(GenerateOp tensorFromElements,
PatternRewriter &rewriter) const final {
auto resultType =
tensorFromElements.getResult().getType().cast<RankedTensorType>();
if (resultType.hasStaticShape())
return failure();
SmallVector<Value, 4> newOperands;
SmallVector<int64_t, 4> newShape;
auto operandsIt = tensorFromElements.dynamicExtents().begin();
for (int64_t dim : resultType.getShape()) {
if (dim != RankedTensorType::kDynamicSize) {
newShape.push_back(dim);
continue;
}
APInt index;
if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
newShape.push_back(RankedTensorType::kDynamicSize);
newOperands.push_back(*operandsIt++);
continue;
}
newShape.push_back(index.getSExtValue());
operandsIt++;
}
if (newOperands.size() == tensorFromElements.dynamicExtents().size())
return failure();
auto loc = tensorFromElements.getLoc();
auto newOp = rewriter.create<GenerateOp>(
loc, RankedTensorType::get(newShape, resultType.getElementType()),
newOperands);
rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(),
newOp.body().begin());
rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType,
newOp);
return success();
}
};
/// Canonicalizes the pattern of the form
///
/// %tensor = tensor.generate %x {
/// ^bb0(%arg0: index): // no predecessors
/// <computation>
/// yield %1 : index
/// } : tensor<?xindex>
/// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
///
/// to just <computation> with %arg0 replaced by %c0. We only do this if the
/// tensor.generate operation has no side-effects.
struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> {
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
PatternRewriter &rewriter) const final {
auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>();
if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
return failure();
BlockAndValueMapping mapping;
Block *body = tensorFromElements.getBody();
mapping.map(body->getArguments(), extract.indices());
for (auto &op : body->without_terminator())
rewriter.clone(op, mapping);
auto yield = cast<YieldOp>(body->getTerminator());
rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value()));
return success();
}
};
/// Canonicalizes the pattern of the form
///
/// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32>
/// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
///
/// to
///
/// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
PatternRewriter &rewriter) const final {
auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>();
if (!tensorCast)
return failure();
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(),
extract.indices());
return success();
}
};
} // namespace
void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
// TODO: Move extract patterns to tensor::ExtractOp.
results.add<ExtractFromTensorGenerate, ExtractFromTensorCast,
StaticTensorGenerate>(context);
}
//===----------------------------------------------------------------------===//
// ReshapeOp
//===----------------------------------------------------------------------===//
static int64_t GetNumElements(ShapedType type) {
int64_t numElements = 1;
for (auto dim : type.getShape())
numElements *= dim;
return numElements;
}
static LogicalResult verify(ReshapeOp op) {
TensorType operandType = op.source().getType().cast<TensorType>();
TensorType resultType = op.result().getType().cast<TensorType>();
if (operandType.getElementType() != resultType.getElementType())
return op.emitOpError("element types of source and destination tensor "
"types should be the same");
int64_t shapeSize =
op.shape().getType().cast<RankedTensorType>().getDimSize(0);
auto resultRankedType = resultType.dyn_cast<RankedTensorType>();
auto operandRankedType = operandType.dyn_cast<RankedTensorType>();
if (resultRankedType) {
if (operandRankedType && resultRankedType.hasStaticShape() &&
operandRankedType.hasStaticShape()) {
if (GetNumElements(operandRankedType) != GetNumElements(resultRankedType))
return op.emitOpError("source and destination tensor should have the "
"same number of elements");
}
if (shapeSize == TensorType::kDynamicSize)
return op.emitOpError("cannot use shape operand with dynamic length to "
"reshape to statically-ranked tensor type");
if (shapeSize != resultRankedType.getRank())
return op.emitOpError(
"length of shape operand differs from the result's tensor rank");
}
return success();
}
//===----------------------------------------------------------------------===//
// ExtractSliceOp
//===----------------------------------------------------------------------===//
/// An extract_slice op result type can be fully inferred from the source type
/// and the static representation of offsets, sizes and strides. Special
/// sentinels encode the dynamic case.
Type ExtractSliceOp::inferResultType(RankedTensorType sourceRankedTensorType,
ArrayRef<int64_t> leadingStaticOffsets,
ArrayRef<int64_t> leadingStaticSizes,
ArrayRef<int64_t> leadingStaticStrides) {
// An extract_slice op may specify only a leading subset of offset/sizes/
// strides in which case we complete with offset=0, sizes from memref type and
// strides=1.
unsigned rank = sourceRankedTensorType.getRank();
assert(leadingStaticSizes.size() <= rank &&
"unexpected leadingStaticSizes overflow");
auto staticSizes = llvm::to_vector<4>(leadingStaticSizes);
unsigned numTrailingSizes = rank - staticSizes.size();
llvm::append_range(staticSizes, sourceRankedTensorType.getShape().take_back(
numTrailingSizes));
return RankedTensorType::get(staticSizes,
sourceRankedTensorType.getElementType());
}
Type ExtractSliceOp::inferResultType(
RankedTensorType sourceRankedTensorType,
ArrayRef<OpFoldResult> leadingStaticOffsets,
ArrayRef<OpFoldResult> leadingStaticSizes,
ArrayRef<OpFoldResult> leadingStaticStrides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
staticOffsets, ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
staticStrides, ShapedType::kDynamicStrideOrOffset);
return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
staticSizes, staticStrides);
}
/// An extract_slice op result type can be fully inferred from the source type
/// and the static representation of offsets, sizes and strides. Special
/// sentinels encode the dynamic case.
Type ExtractSliceOp::inferRankReducedResultType(
unsigned resultRank, RankedTensorType sourceRankedTensorType,
ArrayRef<int64_t> leadingStaticOffsets,
ArrayRef<int64_t> leadingStaticSizes,
ArrayRef<int64_t> leadingStaticStrides) {
auto inferredType =
inferResultType(sourceRankedTensorType, leadingStaticOffsets,
leadingStaticSizes, leadingStaticStrides)
.cast<RankedTensorType>();
int rankDiff = inferredType.getRank() - resultRank;
if (rankDiff > 0) {
auto shape = inferredType.getShape();
llvm::SmallDenseSet<unsigned> dimsToProject;
mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
SmallVector<int64_t> projectedShape;
for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
if (!dimsToProject.contains(pos))
projectedShape.push_back(shape[pos]);
inferredType =
RankedTensorType::get(projectedShape, inferredType.getElementType());
}
return inferredType;
}
Type ExtractSliceOp::inferRankReducedResultType(
unsigned resultRank, RankedTensorType sourceRankedTensorType,
ArrayRef<OpFoldResult> leadingStaticOffsets,
ArrayRef<OpFoldResult> leadingStaticSizes,
ArrayRef<OpFoldResult> leadingStaticStrides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
staticOffsets, ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
staticStrides, ShapedType::kDynamicStrideOrOffset);
return ExtractSliceOp::inferRankReducedResultType(
resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
staticStrides);
}
/// Build an ExtractSliceOp with mixed static and dynamic entries and custom
/// result type. If the type passed is nullptr, it is inferred.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
RankedTensorType resultType, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
ShapedType::kDynamicStrideOrOffset);
auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
// Structuring implementation this way avoids duplication between builders.
if (!resultType) {
resultType =
ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
staticSizes, staticStrides)
.cast<RankedTensorType>();
}
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
/// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
/// result type.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}
/// Build an ExtractSliceOp with dynamic entries and custom result type. If the
/// type passed is nullptr, it is inferred.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
RankedTensorType resultType, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
}
/// Build an ExtractSliceOp with dynamic entries and inferred result type.
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}
enum SliceVerificationResult {
Success,
RankTooLarge,
SizeMismatch,
ElemTypeMismatch,
};
/// Checks if `original` Type type can be rank reduced to `reduced` type.
/// This function is slight variant of `is subsequence` algorithm where
/// not matching dimension must be 1.
static SliceVerificationResult
isRankReducedType(Type originalType, Type candidateReducedType,
std::string *errMsg = nullptr) {
if (originalType == candidateReducedType)
return SliceVerificationResult::Success;
if (!originalType.isa<RankedTensorType>())
return SliceVerificationResult::Success;
if (originalType.isa<RankedTensorType>() &&
!candidateReducedType.isa<RankedTensorType>())
return SliceVerificationResult::Success;
ShapedType originalShapedType = originalType.cast<ShapedType>();
ShapedType candidateReducedShapedType =
candidateReducedType.cast<ShapedType>();
// Rank and size logic is valid for all ShapedTypes.
ArrayRef<int64_t> originalShape = originalShapedType.getShape();
ArrayRef<int64_t> candidateReducedShape =
candidateReducedShapedType.getShape();
unsigned originalRank = originalShape.size(),
candidateReducedRank = candidateReducedShape.size();
if (candidateReducedRank > originalRank)
return SliceVerificationResult::RankTooLarge;
auto optionalUnusedDimsMask =
computeRankReductionMask(originalShape, candidateReducedShape);
// Sizes cannot be matched in case empty vector is returned.
if (!optionalUnusedDimsMask.hasValue())
return SliceVerificationResult::SizeMismatch;
if (originalShapedType.getElementType() !=
candidateReducedShapedType.getElementType())
return SliceVerificationResult::ElemTypeMismatch;
// We are done for the tensor case.
if (originalType.isa<RankedTensorType>())
return SliceVerificationResult::Success;
return SliceVerificationResult::Success;
}
template <typename OpTy>
static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
OpTy op, Type expectedType,
StringRef errMsg = "") {
auto memrefType = expectedType.cast<ShapedType>();
switch (result) {
case SliceVerificationResult::Success:
return success();
case SliceVerificationResult::RankTooLarge:
return op.emitError("expected result rank to be smaller or equal to ")
<< "the source rank. " << errMsg;
case SliceVerificationResult::SizeMismatch:
return op.emitError("expected result type to be ")
<< expectedType
<< " or a rank-reduced version. (mismatch of result sizes) "
<< errMsg;
case SliceVerificationResult::ElemTypeMismatch:
return op.emitError("expected result element type to be ")
<< memrefType.getElementType() << errMsg;
}
llvm_unreachable("unexpected extract_slice op verification result");
}
/// Verifier for ExtractSliceOp.
static LogicalResult verify(ExtractSliceOp op) {
// Verify result type against inferred type.
auto expectedType = ExtractSliceOp::inferResultType(
op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()),
extractFromI64ArrayAttr(op.static_sizes()),
extractFromI64ArrayAttr(op.static_strides()));
auto result = isRankReducedType(expectedType, op.getType());
return produceSliceErrorMsg(result, op, expectedType);
}
/// Infer the canonical type of the result of an extract_slice op. Returns a
/// type with rank `resultRank` that is either the rank of the rank-reduced
/// type, or the non-rank-reduced type.
static RankedTensorType
getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType,
ArrayRef<OpFoldResult> mixedOffsets,
ArrayRef<OpFoldResult> mixedSizes,
ArrayRef<OpFoldResult> mixedStrides) {
auto resultType =
ExtractSliceOp::inferRankReducedResultType(
resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
.cast<RankedTensorType>();
if (resultType.getRank() != resultRank) {
resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets,
mixedSizes, mixedStrides)
.cast<RankedTensorType>();
}
return resultType;
}
namespace {
/// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
/// This essentially pushes memref_cast past its consuming slice when
/// `canFoldIntoConsumerOp` is true.
///
/// Example:
/// ```
/// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
/// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
/// tensor<3x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
/// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
/// ```
class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
public:
using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
PatternRewriter &rewriter) const override {
// Any constant operand, just return to let SubViewOpConstantFolder kick in.
if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>();
if (!castOp)
return failure();
if (!canFoldIntoConsumerOp(castOp))
return failure();
/// Deduce the type of the result to use for the canonicalized operation.
RankedTensorType resultType = getCanonicalSliceResultType(
sliceOp.getType().getRank(), sliceOp.getSourceType(),
sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(),
sliceOp.getMixedStrides());
Value newSlice = rewriter.create<ExtractSliceOp>(
sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(),
sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
sliceOp.static_sizes(), sliceOp.static_strides());
rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(),
newSlice);
return success();
}
};
} // namespace
/// Return the canonical type of the result of an extract_slice op.
struct SliceReturnTypeCanonicalizer {
RankedTensorType operator()(ExtractSliceOp op,
ArrayRef<OpFoldResult> mixedOffsets,
ArrayRef<OpFoldResult> mixedSizes,
ArrayRef<OpFoldResult> mixedStrides) {
return getCanonicalSliceResultType(op.getType().getRank(),
op.getSourceType(), mixedOffsets,
mixedSizes, mixedStrides);
}
};
/// A canonicalizer wrapper to replace ExtractSliceOps.
struct SliceCanonicalizer {
void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
ExtractSliceOp newOp) {
Value replacement = newOp.getResult();
if (replacement.getType() != op.getType())
replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
replacement);
rewriter.replaceOp(op, replacement);
}
};
void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<
OpWithOffsetSizesAndStridesConstantArgumentFolder<
ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
ExtractSliceOpCastFolder>(context);
}
//
static LogicalResult
foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
ShapedType shapedType) {
OpBuilder b(op.getContext());
for (OpFoldResult ofr : op.getMixedOffsets())
if (getConstantIntValue(ofr) != static_cast<int64_t>(0))
return failure();
// Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
// is appropriate.
auto shape = shapedType.getShape();
for (auto it : llvm::zip(op.getMixedSizes(), shape))
if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it))
return failure();
for (OpFoldResult ofr : op.getMixedStrides())
if (getConstantIntValue(ofr) != static_cast<int64_t>(1))
return failure();
return success();
}
OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) {
if (getSourceType() == getType() &&
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
return this->source();
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// InsertSliceOp
//===----------------------------------------------------------------------===//
// Build a InsertSliceOp with mixed static and dynamic entries.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
Value dest, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
ShapedType::kDynamicStrideOrOffset);
build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
// Build a InsertSliceOp with dynamic entries.
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
Value dest, ValueRange offsets, ValueRange sizes,
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, source, dest, offsetValues, sizeValues, strideValues);
}
OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) {
if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
getSourceType() == getType() &&
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
return this->source();
return OpFoldResult();
}
namespace {
/// Pattern to rewrite a insert_slice op with constant arguments.
class InsertSliceOpConstantArgumentFolder final
: public OpRewritePattern<InsertSliceOp> {
public:
using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
PatternRewriter &rewriter) const override {
// No constant operand, just return.
if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
// At least one of offsets/sizes/strides is a new constant.
// Form the new list of operands and constant attributes from the
// existing.
SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
// Create the new op in canonical form.
rewriter.replaceOpWithNewOp<InsertSliceOp>(
insertSliceOp, insertSliceOp.source(), insertSliceOp.dest(),
mixedOffsets, mixedSizes, mixedStrides);
return success();
}
};
/// Fold tensor_casts with insert_slice operations.
struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> {
using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
PatternRewriter &rewriter) const override {
if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
auto castOp = v.getDefiningOp<tensor::CastOp>();
if (!castOp || !canFoldIntoConsumerOp(castOp))
return llvm::None;
return castOp.source();
};
Optional<Value> sourceCastSource =
getSourceOfCastOp(insertSliceOp.source());
Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest());
if (!sourceCastSource && !destCastSource)
return failure();
Value replacement = rewriter.create<InsertSliceOp>(
insertSliceOp.getLoc(),
(sourceCastSource ? *sourceCastSource : insertSliceOp.source()),
(destCastSource ? *destCastSource : insertSliceOp.dest()),
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
insertSliceOp.getMixedStrides());
if (replacement.getType() != insertSliceOp.getType()) {
replacement = rewriter.create<tensor::CastOp>(
insertSliceOp.getLoc(), insertSliceOp.getType(), replacement);
}
rewriter.replaceOp(insertSliceOp, replacement);
return success();
}
};
} // namespace
void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder>(
context);
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"