2020-12-11 14:20:03 -08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//
|
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2021-06-22 16:49:08 +09:00
|
|
|
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
|
2020-12-11 14:20:03 -08:00
|
|
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
2021-06-27 15:15:44 +09:00
|
|
|
#include "mlir/Dialect/Utils/StaticValueUtils.h"
|
2021-01-14 18:28:48 -08:00
|
|
|
#include "mlir/IR/BlockAndValueMapping.h"
|
2020-12-11 14:20:03 -08:00
|
|
|
#include "mlir/IR/Builders.h"
|
2021-01-14 18:28:48 -08:00
|
|
|
#include "mlir/IR/Matchers.h"
|
2020-12-15 16:47:19 -08:00
|
|
|
#include "mlir/IR/PatternMatch.h"
|
2020-12-11 14:20:03 -08:00
|
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
|
|
|
|
using namespace mlir;
|
|
|
|
using namespace mlir::tensor;
|
|
|
|
|
2021-07-01 09:58:48 +09:00
|
|
|
/// Materialize a single constant operation from a given attribute value with
|
|
|
|
/// the desired resultant type.
|
|
|
|
Operation *TensorDialect::materializeConstant(OpBuilder &builder,
|
|
|
|
Attribute value, Type type,
|
|
|
|
Location loc) {
|
|
|
|
return builder.create<mlir::ConstantOp>(loc, type, value);
|
|
|
|
}
|
|
|
|
|
2020-12-15 16:47:19 -08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// CastOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// Determines whether tensor::CastOp casts to a more dynamic version of the
|
|
|
|
/// source tensor. This is useful to fold a tensor.cast into a consuming op and
|
|
|
|
/// implement canonicalization patterns for ops in different dialects that may
|
|
|
|
/// consume the results of tensor.cast operations. Such foldable tensor.cast
|
2021-06-22 16:49:08 +09:00
|
|
|
/// operations are typically inserted as `slice` ops and are canonicalized,
|
2020-12-15 16:47:19 -08:00
|
|
|
/// to preserve the type compatibility of their uses.
|
|
|
|
///
|
|
|
|
/// Returns true when all conditions are met:
|
|
|
|
/// 1. source and result are ranked tensors with same element type and rank.
|
|
|
|
/// 2. the tensor type has more static information than the result
|
|
|
|
///
|
|
|
|
/// Example:
|
|
|
|
/// ```mlir
|
|
|
|
/// %1 = tensor.cast %0 : tensor<8x16xf32> to tensor<?x?xf32>
|
|
|
|
/// %2 = consumer %1 ... : tensor<?x?xf32> ...
|
|
|
|
/// ```
|
|
|
|
///
|
|
|
|
/// folds into:
|
|
|
|
///
|
|
|
|
/// ```mlir
|
|
|
|
/// %2 = consumer %0 ... : tensor<8x16xf32> ...
|
|
|
|
/// ```
|
|
|
|
bool mlir::tensor::canFoldIntoConsumerOp(CastOp castOp) {
|
|
|
|
if (!castOp)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
RankedTensorType sourceType =
|
|
|
|
castOp.source().getType().dyn_cast<RankedTensorType>();
|
|
|
|
RankedTensorType resultType = castOp.getType().dyn_cast<RankedTensorType>();
|
|
|
|
|
|
|
|
// Requires RankedTensorType.
|
|
|
|
if (!sourceType || !resultType)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Requires same elemental type.
|
|
|
|
if (sourceType.getElementType() != resultType.getElementType())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// Requires same rank.
|
|
|
|
if (sourceType.getRank() != resultType.getRank())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
// If cast is towards more static sizes along any dimension, don't fold.
|
|
|
|
for (auto t : llvm::zip(sourceType.getShape(), resultType.getShape())) {
|
|
|
|
if (ShapedType::isDynamic(std::get<0>(t)) &&
|
|
|
|
!ShapedType::isDynamic(std::get<1>(t)))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2021-02-19 17:04:12 +00:00
|
|
|
/// Performs folding of any operand of `op` if it comes from a tensor::CastOp
|
|
|
|
/// that can be folded.
|
|
|
|
LogicalResult mlir::tensor::foldTensorCast(Operation *op) {
|
|
|
|
bool folded = false;
|
|
|
|
for (OpOperand &operand : op->getOpOperands()) {
|
|
|
|
auto castOp = operand.get().getDefiningOp<tensor::CastOp>();
|
|
|
|
if (castOp && tensor::canFoldIntoConsumerOp(castOp)) {
|
|
|
|
operand.set(castOp.getOperand());
|
|
|
|
folded = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return success(folded);
|
|
|
|
}
|
|
|
|
|
2021-01-20 16:17:13 -08:00
|
|
|
bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
|
|
|
if (inputs.size() != 1 || outputs.size() != 1)
|
|
|
|
return false;
|
|
|
|
Type a = inputs.front(), b = outputs.front();
|
2020-12-15 16:47:19 -08:00
|
|
|
auto aT = a.dyn_cast<TensorType>();
|
|
|
|
auto bT = b.dyn_cast<TensorType>();
|
|
|
|
if (!aT || !bT)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
if (aT.getElementType() != bT.getElementType())
|
|
|
|
return false;
|
|
|
|
|
|
|
|
return succeeded(verifyCompatibleShape(aT, bT));
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Compute a TensorType that has the joined shape knowledge of the two
|
|
|
|
/// given TensorTypes. The element types need to match.
|
|
|
|
static TensorType joinShapes(TensorType one, TensorType two) {
|
|
|
|
assert(one.getElementType() == two.getElementType());
|
|
|
|
|
|
|
|
if (!one.hasRank())
|
|
|
|
return two;
|
|
|
|
if (!two.hasRank())
|
|
|
|
return one;
|
|
|
|
|
|
|
|
int64_t rank = one.getRank();
|
|
|
|
if (rank != two.getRank())
|
|
|
|
return {};
|
|
|
|
|
|
|
|
SmallVector<int64_t, 4> join;
|
|
|
|
join.reserve(rank);
|
|
|
|
for (int64_t i = 0; i < rank; ++i) {
|
|
|
|
if (one.isDynamicDim(i)) {
|
|
|
|
join.push_back(two.getDimSize(i));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (two.isDynamicDim(i)) {
|
|
|
|
join.push_back(one.getDimSize(i));
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
if (one.getDimSize(i) != two.getDimSize(i))
|
|
|
|
return {};
|
|
|
|
join.push_back(one.getDimSize(i));
|
|
|
|
}
|
|
|
|
return RankedTensorType::get(join, one.getElementType());
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// Replaces chains of two tensor.cast operations by a single tensor.cast
|
|
|
|
/// operation if doing so does not remove runtime constraints.
|
|
|
|
struct ChainedTensorCast : public OpRewritePattern<CastOp> {
|
|
|
|
using OpRewritePattern<CastOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(CastOp tensorCast,
|
|
|
|
PatternRewriter &rewriter) const final {
|
|
|
|
auto tensorCastOperand = tensorCast.getOperand().getDefiningOp<CastOp>();
|
|
|
|
|
|
|
|
if (!tensorCastOperand)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
auto sourceType =
|
|
|
|
tensorCastOperand.getOperand().getType().cast<TensorType>();
|
|
|
|
auto intermediateType = tensorCastOperand.getType().cast<TensorType>();
|
|
|
|
auto resultType = tensorCast.getType().cast<TensorType>();
|
|
|
|
|
|
|
|
// We can remove the intermediate cast if joining all three produces the
|
|
|
|
// same result as just joining the source and result shapes.
|
|
|
|
auto firstJoin =
|
|
|
|
joinShapes(joinShapes(sourceType, intermediateType), resultType);
|
|
|
|
|
|
|
|
// The join might not exist if the cast sequence would fail at runtime.
|
|
|
|
if (!firstJoin)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
// The newJoin always exists if the above join exists, it might just contain
|
|
|
|
// less information. If so, we cannot drop the intermediate cast, as doing
|
|
|
|
// so would remove runtime checks.
|
|
|
|
auto newJoin = joinShapes(sourceType, resultType);
|
|
|
|
if (firstJoin != newJoin)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
rewriter.replaceOpWithNewOp<CastOp>(tensorCast, resultType,
|
|
|
|
tensorCastOperand.getOperand());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2021-03-22 16:58:34 -07:00
|
|
|
void CastOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
2020-12-15 16:47:19 -08:00
|
|
|
MLIRContext *context) {
|
2021-03-22 16:58:34 -07:00
|
|
|
results.add<ChainedTensorCast>(context);
|
2020-12-15 16:47:19 -08:00
|
|
|
}
|
|
|
|
|
2021-07-01 09:58:48 +09:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// DimOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
|
|
|
|
int64_t index) {
|
|
|
|
auto loc = result.location;
|
|
|
|
Value indexValue = builder.create<ConstantIndexOp>(loc, index);
|
|
|
|
build(builder, result, source, indexValue);
|
|
|
|
}
|
|
|
|
|
|
|
|
void DimOp::build(OpBuilder &builder, OperationState &result, Value source,
|
|
|
|
Value index) {
|
|
|
|
auto indexTy = builder.getIndexType();
|
|
|
|
build(builder, result, indexTy, source, index);
|
|
|
|
}
|
|
|
|
|
|
|
|
Optional<int64_t> DimOp::getConstantIndex() {
|
|
|
|
if (auto constantOp = index().getDefiningOp<ConstantOp>())
|
|
|
|
return constantOp.getValue().cast<IntegerAttr>().getInt();
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
|
|
|
static LogicalResult verify(DimOp op) {
|
|
|
|
// Assume unknown index to be in range.
|
|
|
|
Optional<int64_t> index = op.getConstantIndex();
|
|
|
|
if (!index.hasValue())
|
|
|
|
return success();
|
|
|
|
|
|
|
|
// Check that constant index is not knowingly out of range.
|
|
|
|
auto type = op.source().getType();
|
|
|
|
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
|
|
|
if (index.getValue() >= tensorType.getRank())
|
|
|
|
return op.emitOpError("index is out of range");
|
|
|
|
} else if (type.isa<UnrankedTensorType>()) {
|
|
|
|
// Assume index to be in range.
|
|
|
|
} else {
|
|
|
|
llvm_unreachable("expected operand with tensor type");
|
|
|
|
}
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
|
|
|
|
// All forms of folding require a known index.
|
|
|
|
auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
|
|
|
|
if (!index)
|
|
|
|
return {};
|
|
|
|
|
|
|
|
// Folding for unranked types (UnrankedTensorType) is not supported.
|
|
|
|
auto tensorType = source().getType().dyn_cast<RankedTensorType>();
|
|
|
|
if (!tensorType)
|
|
|
|
return {};
|
|
|
|
|
|
|
|
// Fold if the shape extent along the given index is known.
|
|
|
|
if (!tensorType.isDynamicDim(index.getInt())) {
|
|
|
|
Builder builder(getContext());
|
|
|
|
return builder.getIndexAttr(tensorType.getShape()[index.getInt()]);
|
|
|
|
}
|
|
|
|
|
|
|
|
Operation *definingOp = source().getDefiningOp();
|
|
|
|
|
|
|
|
// Fold dim to the operand of tensor.generate.
|
|
|
|
if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
|
|
|
|
auto resultType =
|
|
|
|
fromElements.getResult().getType().cast<RankedTensorType>();
|
|
|
|
// The case where the type encodes the size of the dimension is handled
|
|
|
|
// above.
|
|
|
|
assert(resultType.getShape()[index.getInt()] ==
|
|
|
|
RankedTensorType::kDynamicSize);
|
|
|
|
|
|
|
|
// Find the operand of the fromElements that corresponds to this index.
|
|
|
|
auto dynExtents = fromElements.dynamicExtents().begin();
|
|
|
|
for (auto dim : resultType.getShape().take_front(index.getInt()))
|
|
|
|
if (dim == RankedTensorType::kDynamicSize)
|
|
|
|
dynExtents++;
|
|
|
|
|
|
|
|
return Value{*dynExtents};
|
|
|
|
}
|
|
|
|
|
|
|
|
// The size at the given index is now known to be a dynamic size.
|
|
|
|
unsigned unsignedIndex = index.getValue().getZExtValue();
|
|
|
|
|
2021-07-08 10:09:00 +00:00
|
|
|
if (auto sliceOp = dyn_cast_or_null<tensor::ExtractSliceOp>(definingOp)) {
|
|
|
|
assert(sliceOp.isDynamicSize(unsignedIndex) &&
|
|
|
|
"Expected dynamic slice size");
|
|
|
|
return sliceOp.getDynamicSize(unsignedIndex);
|
2021-07-01 09:58:48 +09:00
|
|
|
}
|
|
|
|
|
|
|
|
// dim(cast) -> dim
|
|
|
|
if (succeeded(foldTensorCast(*this)))
|
|
|
|
return getResult();
|
|
|
|
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
/// Fold dim of a cast into the dim of the source of the tensor cast.
|
|
|
|
struct DimOfCastOp : public OpRewritePattern<DimOp> {
|
|
|
|
using OpRewritePattern<DimOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(DimOp dimOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
auto castOp = dimOp.source().getDefiningOp<CastOp>();
|
|
|
|
if (!castOp)
|
|
|
|
return failure();
|
|
|
|
Value newSource = castOp.getOperand();
|
|
|
|
rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
|
|
void DimOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
|
|
MLIRContext *context) {
|
|
|
|
results.add<DimOfCastOp>(context);
|
|
|
|
}
|
|
|
|
|
2020-12-11 14:20:03 -08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ExtractOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static LogicalResult verify(ExtractOp op) {
|
|
|
|
// Verify the # indices match if we have a ranked type.
|
|
|
|
if (auto tensorType = op.tensor().getType().dyn_cast<RankedTensorType>())
|
|
|
|
if (tensorType.getRank() != static_cast<int64_t>(op.indices().size()))
|
|
|
|
return op.emitOpError("incorrect number of indices for extract_element");
|
|
|
|
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
OpFoldResult ExtractOp::fold(ArrayRef<Attribute> operands) {
|
|
|
|
// The tensor operand must be a known constant.
|
|
|
|
Attribute tensor = operands.front();
|
|
|
|
if (!tensor)
|
|
|
|
return {};
|
|
|
|
// If this is a splat elements attribute, simply return the value. All of the
|
|
|
|
// elements of a splat attribute are the same.
|
|
|
|
if (auto splatTensor = tensor.dyn_cast<SplatElementsAttr>())
|
|
|
|
return splatTensor.getSplatValue();
|
|
|
|
|
|
|
|
// Otherwise, collect the constant indices into the tensor.
|
|
|
|
SmallVector<uint64_t, 8> indices;
|
|
|
|
for (Attribute indice : llvm::drop_begin(operands, 1)) {
|
|
|
|
if (!indice || !indice.isa<IntegerAttr>())
|
|
|
|
return {};
|
|
|
|
indices.push_back(indice.cast<IntegerAttr>().getInt());
|
|
|
|
}
|
|
|
|
|
|
|
|
// If this is an elements attribute, query the value at the given indices.
|
|
|
|
auto elementsAttr = tensor.dyn_cast<ElementsAttr>();
|
|
|
|
if (elementsAttr && elementsAttr.isValidIndex(indices))
|
|
|
|
return elementsAttr.getValue(indices);
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
2021-01-14 18:28:48 -08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// FromElementsOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
void FromElementsOp::build(OpBuilder &builder, OperationState &result,
|
|
|
|
Type elementType, ValueRange elements) {
|
|
|
|
Type resultTy = RankedTensorType::get({static_cast<int64_t>(elements.size())},
|
|
|
|
elementType);
|
|
|
|
result.addOperands(elements);
|
|
|
|
result.addTypes(resultTy);
|
|
|
|
}
|
|
|
|
|
|
|
|
void FromElementsOp::build(OpBuilder &builder, OperationState &result,
|
|
|
|
ValueRange elements) {
|
|
|
|
assert(!elements.empty() && "expected at least one element");
|
|
|
|
build(builder, result, elements.front().getType(), elements);
|
|
|
|
}
|
|
|
|
|
2021-05-10 23:19:59 +02:00
|
|
|
OpFoldResult FromElementsOp::fold(ArrayRef<Attribute> operands) {
|
|
|
|
if (!llvm::is_contained(operands, nullptr))
|
|
|
|
return DenseElementsAttr::get(getType(), operands);
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
2021-01-14 18:28:48 -08:00
|
|
|
namespace {
|
|
|
|
|
|
|
|
// Canonicalizes the pattern of the form
|
|
|
|
//
|
|
|
|
// %tensor = tensor.from_elements(%element) : (i32) -> tensor<1xi32>
|
|
|
|
// %extracted_element = tensor.extract %tensor[%c0] : tensor<1xi32>
|
|
|
|
//
|
|
|
|
// to just %element.
|
|
|
|
struct ExtractElementFromTensorFromElements
|
|
|
|
: public OpRewritePattern<tensor::ExtractOp> {
|
|
|
|
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
|
|
|
|
PatternRewriter &rewriter) const final {
|
|
|
|
if (extract.indices().size() != 1)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
auto tensorFromElements = extract.tensor().getDefiningOp<FromElementsOp>();
|
|
|
|
if (tensorFromElements == nullptr)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
APInt index;
|
|
|
|
if (!matchPattern(*extract.indices().begin(), m_ConstantInt(&index)))
|
|
|
|
return failure();
|
2021-01-27 17:28:14 +01:00
|
|
|
// Prevent out of bounds accesses. This can happen in invalid code that will
|
|
|
|
// never execute.
|
|
|
|
if (tensorFromElements->getNumOperands() <= index.getZExtValue() ||
|
|
|
|
index.getSExtValue() < 0)
|
|
|
|
return failure();
|
2021-01-14 18:28:48 -08:00
|
|
|
rewriter.replaceOp(extract,
|
|
|
|
tensorFromElements.getOperand(index.getZExtValue()));
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2021-03-22 16:58:34 -07:00
|
|
|
void FromElementsOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
|
|
MLIRContext *context) {
|
|
|
|
results.add<ExtractElementFromTensorFromElements>(context);
|
2021-01-14 18:28:48 -08:00
|
|
|
}
|
|
|
|
|
2021-06-13 13:45:33 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// InsertOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static LogicalResult verify(InsertOp op) {
|
|
|
|
// Verify the # indices match if we have a ranked type.
|
|
|
|
if (auto destType = op.dest().getType().dyn_cast<RankedTensorType>())
|
|
|
|
if (destType.getRank() != static_cast<int64_t>(op.indices().size()))
|
|
|
|
return op.emitOpError("incorrect number of indices");
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
OpFoldResult InsertOp::fold(ArrayRef<Attribute> operands) {
|
|
|
|
Attribute scalar = operands[0];
|
|
|
|
Attribute dest = operands[1];
|
|
|
|
if (scalar && dest)
|
|
|
|
if (auto splatDest = dest.dyn_cast<SplatElementsAttr>())
|
|
|
|
if (scalar == splatDest.getSplatValue())
|
|
|
|
return dest;
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
2021-01-14 18:28:48 -08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// GenerateOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static LogicalResult verify(GenerateOp op) {
|
|
|
|
// Ensure that the tensor type has as many dynamic dimensions as are specified
|
|
|
|
// by the operands.
|
|
|
|
RankedTensorType resultTy = op.getType().cast<RankedTensorType>();
|
|
|
|
if (op.getNumOperands() != resultTy.getNumDynamicDims())
|
|
|
|
return op.emitError("must have as many index operands as dynamic extents "
|
|
|
|
"in the result type");
|
|
|
|
|
|
|
|
// Ensure that region arguments span the index space.
|
|
|
|
if (!llvm::all_of(op.body().getArgumentTypes(),
|
|
|
|
[](Type ty) { return ty.isIndex(); }))
|
|
|
|
return op.emitError("all body arguments must be index");
|
|
|
|
if (op.body().getNumArguments() != resultTy.getRank())
|
|
|
|
return op.emitError("must have one body argument per input dimension");
|
|
|
|
|
|
|
|
// Ensure that the region yields an element of the right type.
|
|
|
|
auto yieldOp =
|
|
|
|
llvm::cast<YieldOp>(op.body().getBlocks().front().getTerminator());
|
|
|
|
if (yieldOp.value().getType() != resultTy.getElementType())
|
|
|
|
return op.emitOpError(
|
|
|
|
"body must be terminated with a `yield` operation of the tensor "
|
|
|
|
"element type");
|
|
|
|
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
void GenerateOp::build(
|
|
|
|
OpBuilder &b, OperationState &result, Type resultTy,
|
|
|
|
ValueRange dynamicExtents,
|
|
|
|
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
|
|
|
|
build(b, result, resultTy, dynamicExtents);
|
|
|
|
|
|
|
|
// Build and populate body.
|
|
|
|
OpBuilder::InsertionGuard guard(b);
|
|
|
|
Region *bodyRegion = result.regions.front().get();
|
|
|
|
auto rank = resultTy.cast<RankedTensorType>().getRank();
|
|
|
|
SmallVector<Type, 2> argumentTypes(rank, b.getIndexType());
|
|
|
|
Block *bodyBlock =
|
|
|
|
b.createBlock(bodyRegion, bodyRegion->end(), argumentTypes);
|
|
|
|
bodyBuilder(b, result.location, bodyBlock->getArguments());
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
|
|
/// Canonicalizes tensor.generate operations with a constant
|
|
|
|
/// operand into the equivalent operation with the operand expressed in the
|
|
|
|
/// result type, instead. We also insert a type cast to make sure that the
|
|
|
|
/// resulting IR is still well-typed.
|
|
|
|
struct StaticTensorGenerate : public OpRewritePattern<GenerateOp> {
|
|
|
|
using OpRewritePattern<GenerateOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(GenerateOp tensorFromElements,
|
|
|
|
PatternRewriter &rewriter) const final {
|
|
|
|
auto resultType =
|
|
|
|
tensorFromElements.getResult().getType().cast<RankedTensorType>();
|
|
|
|
|
|
|
|
if (resultType.hasStaticShape())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
SmallVector<Value, 4> newOperands;
|
|
|
|
SmallVector<int64_t, 4> newShape;
|
|
|
|
auto operandsIt = tensorFromElements.dynamicExtents().begin();
|
|
|
|
|
|
|
|
for (int64_t dim : resultType.getShape()) {
|
|
|
|
if (dim != RankedTensorType::kDynamicSize) {
|
|
|
|
newShape.push_back(dim);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
APInt index;
|
|
|
|
if (!matchPattern(*operandsIt, m_ConstantInt(&index))) {
|
|
|
|
newShape.push_back(RankedTensorType::kDynamicSize);
|
|
|
|
newOperands.push_back(*operandsIt++);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
newShape.push_back(index.getSExtValue());
|
|
|
|
operandsIt++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (newOperands.size() == tensorFromElements.dynamicExtents().size())
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
auto loc = tensorFromElements.getLoc();
|
|
|
|
auto newOp = rewriter.create<GenerateOp>(
|
|
|
|
loc, RankedTensorType::get(newShape, resultType.getElementType()),
|
|
|
|
newOperands);
|
|
|
|
rewriter.inlineRegionBefore(tensorFromElements.body(), newOp.body(),
|
|
|
|
newOp.body().begin());
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(tensorFromElements, resultType,
|
|
|
|
newOp);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Canonicalizes the pattern of the form
|
|
|
|
///
|
|
|
|
/// %tensor = tensor.generate %x {
|
|
|
|
/// ^bb0(%arg0: index): // no predecessors
|
|
|
|
/// <computation>
|
|
|
|
/// yield %1 : index
|
|
|
|
/// } : tensor<?xindex>
|
|
|
|
/// %extracted_element = tensor.extract %tensor[%c0] : tensor<?xi32>
|
|
|
|
///
|
|
|
|
/// to just <computation> with %arg0 replaced by %c0. We only do this if the
|
|
|
|
/// tensor.generate operation has no side-effects.
|
|
|
|
struct ExtractFromTensorGenerate : public OpRewritePattern<tensor::ExtractOp> {
|
|
|
|
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
|
|
|
|
PatternRewriter &rewriter) const final {
|
|
|
|
auto tensorFromElements = extract.tensor().getDefiningOp<GenerateOp>();
|
|
|
|
if (!tensorFromElements || !wouldOpBeTriviallyDead(tensorFromElements))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
BlockAndValueMapping mapping;
|
|
|
|
Block *body = tensorFromElements.getBody();
|
|
|
|
mapping.map(body->getArguments(), extract.indices());
|
|
|
|
for (auto &op : body->without_terminator())
|
|
|
|
rewriter.clone(op, mapping);
|
|
|
|
|
|
|
|
auto yield = cast<YieldOp>(body->getTerminator());
|
|
|
|
|
|
|
|
rewriter.replaceOp(extract, mapping.lookupOrDefault(yield.value()));
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Canonicalizes the pattern of the form
|
|
|
|
///
|
|
|
|
/// %val = tensor.cast %source : : tensor<?xi32> to tensor<2xi32>
|
|
|
|
/// %extracted_element = tensor.extract %val[%c0] : tensor<2xi32>
|
|
|
|
///
|
|
|
|
/// to
|
|
|
|
///
|
|
|
|
/// %extracted_element = tensor.extract %source[%c0] : tensor<?xi32>
|
|
|
|
struct ExtractFromTensorCast : public OpRewritePattern<tensor::ExtractOp> {
|
|
|
|
using OpRewritePattern<tensor::ExtractOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(tensor::ExtractOp extract,
|
|
|
|
PatternRewriter &rewriter) const final {
|
|
|
|
auto tensorCast = extract.tensor().getDefiningOp<tensor::CastOp>();
|
|
|
|
if (!tensorCast)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(extract, tensorCast.source(),
|
|
|
|
extract.indices());
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace
|
|
|
|
|
2021-03-22 16:58:34 -07:00
|
|
|
void GenerateOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
2021-01-14 18:28:48 -08:00
|
|
|
MLIRContext *context) {
|
|
|
|
// TODO: Move extract patterns to tensor::ExtractOp.
|
2021-03-22 16:58:34 -07:00
|
|
|
results.add<ExtractFromTensorGenerate, ExtractFromTensorCast,
|
|
|
|
StaticTensorGenerate>(context);
|
2021-01-14 18:28:48 -08:00
|
|
|
}
|
|
|
|
|
2021-04-22 14:50:13 +02:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ReshapeOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
static int64_t GetNumElements(ShapedType type) {
|
|
|
|
int64_t numElements = 1;
|
|
|
|
for (auto dim : type.getShape())
|
|
|
|
numElements *= dim;
|
|
|
|
return numElements;
|
|
|
|
}
|
|
|
|
|
|
|
|
static LogicalResult verify(ReshapeOp op) {
|
|
|
|
TensorType operandType = op.source().getType().cast<TensorType>();
|
|
|
|
TensorType resultType = op.result().getType().cast<TensorType>();
|
|
|
|
|
|
|
|
if (operandType.getElementType() != resultType.getElementType())
|
|
|
|
return op.emitOpError("element types of source and destination tensor "
|
|
|
|
"types should be the same");
|
|
|
|
|
|
|
|
int64_t shapeSize =
|
|
|
|
op.shape().getType().cast<RankedTensorType>().getDimSize(0);
|
|
|
|
auto resultRankedType = resultType.dyn_cast<RankedTensorType>();
|
|
|
|
auto operandRankedType = operandType.dyn_cast<RankedTensorType>();
|
|
|
|
|
|
|
|
if (resultRankedType) {
|
|
|
|
if (operandRankedType && resultRankedType.hasStaticShape() &&
|
|
|
|
operandRankedType.hasStaticShape()) {
|
|
|
|
if (GetNumElements(operandRankedType) != GetNumElements(resultRankedType))
|
|
|
|
return op.emitOpError("source and destination tensor should have the "
|
|
|
|
"same number of elements");
|
|
|
|
}
|
|
|
|
if (shapeSize == TensorType::kDynamicSize)
|
|
|
|
return op.emitOpError("cannot use shape operand with dynamic length to "
|
|
|
|
"reshape to statically-ranked tensor type");
|
|
|
|
if (shapeSize != resultRankedType.getRank())
|
|
|
|
return op.emitOpError(
|
|
|
|
"length of shape operand differs from the result's tensor rank");
|
|
|
|
}
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
2021-06-22 16:49:08 +09:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// ExtractSliceOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// An extract_slice op result type can be fully inferred from the source type
|
|
|
|
/// and the static representation of offsets, sizes and strides. Special
|
|
|
|
/// sentinels encode the dynamic case.
|
|
|
|
Type ExtractSliceOp::inferResultType(RankedTensorType sourceRankedTensorType,
|
|
|
|
ArrayRef<int64_t> leadingStaticOffsets,
|
|
|
|
ArrayRef<int64_t> leadingStaticSizes,
|
|
|
|
ArrayRef<int64_t> leadingStaticStrides) {
|
|
|
|
// An extract_slice op may specify only a leading subset of offset/sizes/
|
|
|
|
// strides in which case we complete with offset=0, sizes from memref type and
|
|
|
|
// strides=1.
|
|
|
|
unsigned rank = sourceRankedTensorType.getRank();
|
|
|
|
assert(leadingStaticSizes.size() <= rank &&
|
|
|
|
"unexpected leadingStaticSizes overflow");
|
|
|
|
auto staticSizes = llvm::to_vector<4>(leadingStaticSizes);
|
|
|
|
unsigned numTrailingSizes = rank - staticSizes.size();
|
|
|
|
llvm::append_range(staticSizes, sourceRankedTensorType.getShape().take_back(
|
|
|
|
numTrailingSizes));
|
|
|
|
return RankedTensorType::get(staticSizes,
|
|
|
|
sourceRankedTensorType.getElementType());
|
|
|
|
}
|
|
|
|
|
|
|
|
Type ExtractSliceOp::inferResultType(
|
|
|
|
RankedTensorType sourceRankedTensorType,
|
|
|
|
ArrayRef<OpFoldResult> leadingStaticOffsets,
|
|
|
|
ArrayRef<OpFoldResult> leadingStaticSizes,
|
|
|
|
ArrayRef<OpFoldResult> leadingStaticStrides) {
|
|
|
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
|
|
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
|
|
|
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
|
|
|
|
staticOffsets, ShapedType::kDynamicStrideOrOffset);
|
|
|
|
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
|
|
|
|
ShapedType::kDynamicSize);
|
|
|
|
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
|
|
|
|
staticStrides, ShapedType::kDynamicStrideOrOffset);
|
|
|
|
return ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
|
|
|
|
staticSizes, staticStrides);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// An extract_slice op result type can be fully inferred from the source type
|
|
|
|
/// and the static representation of offsets, sizes and strides. Special
|
|
|
|
/// sentinels encode the dynamic case.
|
|
|
|
Type ExtractSliceOp::inferRankReducedResultType(
|
|
|
|
unsigned resultRank, RankedTensorType sourceRankedTensorType,
|
|
|
|
ArrayRef<int64_t> leadingStaticOffsets,
|
|
|
|
ArrayRef<int64_t> leadingStaticSizes,
|
|
|
|
ArrayRef<int64_t> leadingStaticStrides) {
|
|
|
|
auto inferredType =
|
|
|
|
inferResultType(sourceRankedTensorType, leadingStaticOffsets,
|
|
|
|
leadingStaticSizes, leadingStaticStrides)
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
int rankDiff = inferredType.getRank() - resultRank;
|
|
|
|
if (rankDiff > 0) {
|
|
|
|
auto shape = inferredType.getShape();
|
|
|
|
llvm::SmallDenseSet<unsigned> dimsToProject;
|
|
|
|
mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
|
|
|
|
SmallVector<int64_t> projectedShape;
|
|
|
|
for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
|
|
|
|
if (!dimsToProject.contains(pos))
|
|
|
|
projectedShape.push_back(shape[pos]);
|
|
|
|
inferredType =
|
|
|
|
RankedTensorType::get(projectedShape, inferredType.getElementType());
|
|
|
|
}
|
|
|
|
return inferredType;
|
|
|
|
}
|
|
|
|
|
|
|
|
Type ExtractSliceOp::inferRankReducedResultType(
|
|
|
|
unsigned resultRank, RankedTensorType sourceRankedTensorType,
|
|
|
|
ArrayRef<OpFoldResult> leadingStaticOffsets,
|
|
|
|
ArrayRef<OpFoldResult> leadingStaticSizes,
|
|
|
|
ArrayRef<OpFoldResult> leadingStaticStrides) {
|
|
|
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
|
|
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
|
|
|
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
|
|
|
|
staticOffsets, ShapedType::kDynamicStrideOrOffset);
|
|
|
|
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
|
|
|
|
ShapedType::kDynamicSize);
|
|
|
|
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
|
|
|
|
staticStrides, ShapedType::kDynamicStrideOrOffset);
|
|
|
|
return ExtractSliceOp::inferRankReducedResultType(
|
|
|
|
resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
|
|
|
|
staticStrides);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Build an ExtractSliceOp with mixed static and dynamic entries and custom
|
|
|
|
/// result type. If the type passed is nullptr, it is inferred.
|
|
|
|
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
|
|
|
|
RankedTensorType resultType, Value source,
|
|
|
|
ArrayRef<OpFoldResult> offsets,
|
|
|
|
ArrayRef<OpFoldResult> sizes,
|
|
|
|
ArrayRef<OpFoldResult> strides,
|
|
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
|
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
|
|
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
|
|
|
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
|
|
|
|
ShapedType::kDynamicStrideOrOffset);
|
|
|
|
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
|
|
|
|
ShapedType::kDynamicSize);
|
|
|
|
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
|
|
|
|
ShapedType::kDynamicStrideOrOffset);
|
|
|
|
auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
|
|
|
|
// Structuring implementation this way avoids duplication between builders.
|
|
|
|
if (!resultType) {
|
|
|
|
resultType =
|
|
|
|
ExtractSliceOp::inferResultType(sourceRankedTensorType, staticOffsets,
|
|
|
|
staticSizes, staticStrides)
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
}
|
|
|
|
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
|
|
|
|
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
|
|
|
|
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
|
|
|
|
result.addAttributes(attrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Build an ExtractSliceOp with mixed static and dynamic entries and inferred
|
|
|
|
/// result type.
|
|
|
|
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
|
|
|
|
ArrayRef<OpFoldResult> offsets,
|
|
|
|
ArrayRef<OpFoldResult> sizes,
|
|
|
|
ArrayRef<OpFoldResult> strides,
|
|
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
|
|
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Build an ExtractSliceOp with dynamic entries and custom result type. If the
|
|
|
|
/// type passed is nullptr, it is inferred.
|
|
|
|
void ExtractSliceOp::build(OpBuilder &b, OperationState &result,
|
|
|
|
RankedTensorType resultType, Value source,
|
|
|
|
ValueRange offsets, ValueRange sizes,
|
|
|
|
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
|
|
|
|
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
|
|
|
|
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
|
|
|
|
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
|
|
|
|
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
|
|
|
|
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
|
|
|
|
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
|
|
|
|
build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Build an ExtractSliceOp with dynamic entries and inferred result type.
|
|
|
|
void ExtractSliceOp::build(OpBuilder &b, OperationState &result, Value source,
|
|
|
|
ValueRange offsets, ValueRange sizes,
|
|
|
|
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
|
|
|
|
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
enum SliceVerificationResult {
|
|
|
|
Success,
|
|
|
|
RankTooLarge,
|
|
|
|
SizeMismatch,
|
|
|
|
ElemTypeMismatch,
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Checks if `original` Type type can be rank reduced to `reduced` type.
|
|
|
|
/// This function is slight variant of `is subsequence` algorithm where
|
|
|
|
/// not matching dimension must be 1.
|
|
|
|
static SliceVerificationResult
|
|
|
|
isRankReducedType(Type originalType, Type candidateReducedType,
|
|
|
|
std::string *errMsg = nullptr) {
|
|
|
|
if (originalType == candidateReducedType)
|
|
|
|
return SliceVerificationResult::Success;
|
|
|
|
if (!originalType.isa<RankedTensorType>())
|
|
|
|
return SliceVerificationResult::Success;
|
|
|
|
if (originalType.isa<RankedTensorType>() &&
|
|
|
|
!candidateReducedType.isa<RankedTensorType>())
|
|
|
|
return SliceVerificationResult::Success;
|
|
|
|
|
|
|
|
ShapedType originalShapedType = originalType.cast<ShapedType>();
|
|
|
|
ShapedType candidateReducedShapedType =
|
|
|
|
candidateReducedType.cast<ShapedType>();
|
|
|
|
|
|
|
|
// Rank and size logic is valid for all ShapedTypes.
|
|
|
|
ArrayRef<int64_t> originalShape = originalShapedType.getShape();
|
|
|
|
ArrayRef<int64_t> candidateReducedShape =
|
|
|
|
candidateReducedShapedType.getShape();
|
|
|
|
unsigned originalRank = originalShape.size(),
|
|
|
|
candidateReducedRank = candidateReducedShape.size();
|
|
|
|
if (candidateReducedRank > originalRank)
|
|
|
|
return SliceVerificationResult::RankTooLarge;
|
|
|
|
|
|
|
|
auto optionalUnusedDimsMask =
|
|
|
|
computeRankReductionMask(originalShape, candidateReducedShape);
|
|
|
|
|
|
|
|
// Sizes cannot be matched in case empty vector is returned.
|
|
|
|
if (!optionalUnusedDimsMask.hasValue())
|
|
|
|
return SliceVerificationResult::SizeMismatch;
|
|
|
|
|
|
|
|
if (originalShapedType.getElementType() !=
|
|
|
|
candidateReducedShapedType.getElementType())
|
|
|
|
return SliceVerificationResult::ElemTypeMismatch;
|
|
|
|
|
|
|
|
// We are done for the tensor case.
|
|
|
|
if (originalType.isa<RankedTensorType>())
|
|
|
|
return SliceVerificationResult::Success;
|
|
|
|
|
|
|
|
return SliceVerificationResult::Success;
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename OpTy>
|
|
|
|
static LogicalResult produceSliceErrorMsg(SliceVerificationResult result,
|
|
|
|
OpTy op, Type expectedType,
|
|
|
|
StringRef errMsg = "") {
|
|
|
|
auto memrefType = expectedType.cast<ShapedType>();
|
|
|
|
switch (result) {
|
|
|
|
case SliceVerificationResult::Success:
|
|
|
|
return success();
|
|
|
|
case SliceVerificationResult::RankTooLarge:
|
|
|
|
return op.emitError("expected result rank to be smaller or equal to ")
|
|
|
|
<< "the source rank. " << errMsg;
|
|
|
|
case SliceVerificationResult::SizeMismatch:
|
|
|
|
return op.emitError("expected result type to be ")
|
|
|
|
<< expectedType
|
|
|
|
<< " or a rank-reduced version. (mismatch of result sizes) "
|
|
|
|
<< errMsg;
|
|
|
|
case SliceVerificationResult::ElemTypeMismatch:
|
|
|
|
return op.emitError("expected result element type to be ")
|
|
|
|
<< memrefType.getElementType() << errMsg;
|
|
|
|
}
|
|
|
|
llvm_unreachable("unexpected extract_slice op verification result");
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Verifier for ExtractSliceOp.
|
|
|
|
static LogicalResult verify(ExtractSliceOp op) {
|
|
|
|
// Verify result type against inferred type.
|
|
|
|
auto expectedType = ExtractSliceOp::inferResultType(
|
|
|
|
op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()),
|
|
|
|
extractFromI64ArrayAttr(op.static_sizes()),
|
|
|
|
extractFromI64ArrayAttr(op.static_strides()));
|
|
|
|
auto result = isRankReducedType(expectedType, op.getType());
|
|
|
|
return produceSliceErrorMsg(result, op, expectedType);
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Infer the canonical type of the result of an extract_slice op. Returns a
|
|
|
|
/// type with rank `resultRank` that is either the rank of the rank-reduced
|
|
|
|
/// type, or the non-rank-reduced type.
|
|
|
|
static RankedTensorType
|
|
|
|
getCanonicalSliceResultType(unsigned resultRank, RankedTensorType sourceType,
|
|
|
|
ArrayRef<OpFoldResult> mixedOffsets,
|
|
|
|
ArrayRef<OpFoldResult> mixedSizes,
|
|
|
|
ArrayRef<OpFoldResult> mixedStrides) {
|
|
|
|
auto resultType =
|
|
|
|
ExtractSliceOp::inferRankReducedResultType(
|
|
|
|
resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
if (resultType.getRank() != resultRank) {
|
|
|
|
resultType = ExtractSliceOp::inferResultType(sourceType, mixedOffsets,
|
|
|
|
mixedSizes, mixedStrides)
|
|
|
|
.cast<RankedTensorType>();
|
|
|
|
}
|
|
|
|
return resultType;
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
/// Pattern to rewrite an extract_slice op with tensor::Cast arguments.
|
|
|
|
/// This essentially pushes memref_cast past its consuming slice when
|
|
|
|
/// `canFoldIntoConsumerOp` is true.
|
|
|
|
///
|
|
|
|
/// Example:
|
|
|
|
/// ```
|
|
|
|
/// %0 = tensor.cast %V : tensor<16x16xf32> to tensor<?x?xf32>
|
|
|
|
/// %1 = tensor.extract_slice %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to
|
|
|
|
/// tensor<3x4xf32>
|
|
|
|
/// ```
|
|
|
|
/// is rewritten into:
|
|
|
|
/// ```
|
|
|
|
/// %0 = tensor.extract_slice %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to
|
|
|
|
/// tensor<3x4xf32> %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
|
|
|
|
/// ```
|
|
|
|
class ExtractSliceOpCastFolder final : public OpRewritePattern<ExtractSliceOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<ExtractSliceOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(ExtractSliceOp sliceOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
// Any constant operand, just return to let SubViewOpConstantFolder kick in.
|
|
|
|
if (llvm::any_of(sliceOp.getOperands(), [](Value operand) {
|
|
|
|
return matchPattern(operand, matchConstantIndex());
|
|
|
|
}))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
auto castOp = sliceOp.source().getDefiningOp<tensor::CastOp>();
|
|
|
|
if (!castOp)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
if (!canFoldIntoConsumerOp(castOp))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
/// Deduce the type of the result to use for the canonicalized operation.
|
|
|
|
RankedTensorType resultType = getCanonicalSliceResultType(
|
|
|
|
sliceOp.getType().getRank(), sliceOp.getSourceType(),
|
|
|
|
sliceOp.getMixedOffsets(), sliceOp.getMixedSizes(),
|
|
|
|
sliceOp.getMixedStrides());
|
|
|
|
Value newSlice = rewriter.create<ExtractSliceOp>(
|
|
|
|
sliceOp.getLoc(), resultType, castOp.source(), sliceOp.offsets(),
|
|
|
|
sliceOp.sizes(), sliceOp.strides(), sliceOp.static_offsets(),
|
|
|
|
sliceOp.static_sizes(), sliceOp.static_strides());
|
|
|
|
rewriter.replaceOpWithNewOp<tensor::CastOp>(sliceOp, sliceOp.getType(),
|
|
|
|
newSlice);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
/// Return the canonical type of the result of an extract_slice op.
|
|
|
|
struct SliceReturnTypeCanonicalizer {
|
|
|
|
RankedTensorType operator()(ExtractSliceOp op,
|
|
|
|
ArrayRef<OpFoldResult> mixedOffsets,
|
|
|
|
ArrayRef<OpFoldResult> mixedSizes,
|
|
|
|
ArrayRef<OpFoldResult> mixedStrides) {
|
|
|
|
return getCanonicalSliceResultType(op.getType().getRank(),
|
|
|
|
op.getSourceType(), mixedOffsets,
|
|
|
|
mixedSizes, mixedStrides);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/// A canonicalizer wrapper to replace ExtractSliceOps.
|
|
|
|
struct SliceCanonicalizer {
|
|
|
|
void operator()(PatternRewriter &rewriter, ExtractSliceOp op,
|
|
|
|
ExtractSliceOp newOp) {
|
|
|
|
Value replacement = newOp.getResult();
|
|
|
|
if (replacement.getType() != op.getType())
|
|
|
|
replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
|
|
|
|
replacement);
|
|
|
|
rewriter.replaceOp(op, replacement);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
void ExtractSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
|
|
MLIRContext *context) {
|
|
|
|
results.add<
|
|
|
|
OpWithOffsetSizesAndStridesConstantArgumentFolder<
|
|
|
|
ExtractSliceOp, SliceReturnTypeCanonicalizer, SliceCanonicalizer>,
|
|
|
|
ExtractSliceOpCastFolder>(context);
|
|
|
|
}
|
|
|
|
|
|
|
|
//
|
|
|
|
static LogicalResult
|
|
|
|
foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
|
|
|
|
ShapedType shapedType) {
|
|
|
|
OpBuilder b(op.getContext());
|
|
|
|
for (OpFoldResult ofr : op.getMixedOffsets())
|
2021-06-27 15:15:44 +09:00
|
|
|
if (getConstantIntValue(ofr) != static_cast<int64_t>(0))
|
2021-06-22 16:49:08 +09:00
|
|
|
return failure();
|
|
|
|
// Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
|
|
|
|
// is appropriate.
|
|
|
|
auto shape = shapedType.getShape();
|
|
|
|
for (auto it : llvm::zip(op.getMixedSizes(), shape))
|
2021-06-27 15:15:44 +09:00
|
|
|
if (getConstantIntValue(std::get<0>(it)) != std::get<1>(it))
|
2021-06-22 16:49:08 +09:00
|
|
|
return failure();
|
|
|
|
for (OpFoldResult ofr : op.getMixedStrides())
|
2021-06-27 15:15:44 +09:00
|
|
|
if (getConstantIntValue(ofr) != static_cast<int64_t>(1))
|
2021-06-22 16:49:08 +09:00
|
|
|
return failure();
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
|
|
|
|
OpFoldResult ExtractSliceOp::fold(ArrayRef<Attribute>) {
|
|
|
|
if (getSourceType() == getType() &&
|
|
|
|
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
|
|
|
|
return this->source();
|
|
|
|
return OpFoldResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// InsertSliceOp
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
// Build a InsertSliceOp with mixed static and dynamic entries.
|
|
|
|
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
|
|
|
|
Value dest, ArrayRef<OpFoldResult> offsets,
|
|
|
|
ArrayRef<OpFoldResult> sizes,
|
|
|
|
ArrayRef<OpFoldResult> strides,
|
|
|
|
ArrayRef<NamedAttribute> attrs) {
|
|
|
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
|
|
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
|
|
|
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
|
|
|
|
ShapedType::kDynamicStrideOrOffset);
|
|
|
|
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
|
|
|
|
ShapedType::kDynamicSize);
|
|
|
|
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
|
|
|
|
ShapedType::kDynamicStrideOrOffset);
|
|
|
|
build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
|
|
|
|
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
|
|
|
|
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
|
|
|
|
result.addAttributes(attrs);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Build a InsertSliceOp with dynamic entries.
|
|
|
|
void InsertSliceOp::build(OpBuilder &b, OperationState &result, Value source,
|
|
|
|
Value dest, ValueRange offsets, ValueRange sizes,
|
|
|
|
ValueRange strides, ArrayRef<NamedAttribute> attrs) {
|
|
|
|
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
|
|
|
|
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
|
|
|
|
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
|
|
|
|
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
|
|
|
|
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
|
|
|
|
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
|
|
|
|
build(b, result, source, dest, offsetValues, sizeValues, strideValues);
|
|
|
|
}
|
|
|
|
|
|
|
|
OpFoldResult InsertSliceOp::fold(ArrayRef<Attribute>) {
|
|
|
|
if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
|
|
|
|
getSourceType() == getType() &&
|
|
|
|
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
|
|
|
|
return this->source();
|
|
|
|
return OpFoldResult();
|
|
|
|
}
|
|
|
|
|
|
|
|
namespace {
|
|
|
|
/// Pattern to rewrite a insert_slice op with constant arguments.
|
|
|
|
class InsertSliceOpConstantArgumentFolder final
|
|
|
|
: public OpRewritePattern<InsertSliceOp> {
|
|
|
|
public:
|
|
|
|
using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
// No constant operand, just return.
|
|
|
|
if (llvm::none_of(insertSliceOp.getOperands(), [](Value operand) {
|
|
|
|
return matchPattern(operand, matchConstantIndex());
|
|
|
|
}))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
// At least one of offsets/sizes/strides is a new constant.
|
|
|
|
// Form the new list of operands and constant attributes from the
|
|
|
|
// existing.
|
|
|
|
SmallVector<OpFoldResult> mixedOffsets(insertSliceOp.getMixedOffsets());
|
|
|
|
SmallVector<OpFoldResult> mixedSizes(insertSliceOp.getMixedSizes());
|
|
|
|
SmallVector<OpFoldResult> mixedStrides(insertSliceOp.getMixedStrides());
|
|
|
|
canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
|
|
|
|
canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
|
|
|
|
canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
|
|
|
|
|
|
|
|
// Create the new op in canonical form.
|
|
|
|
rewriter.replaceOpWithNewOp<InsertSliceOp>(
|
|
|
|
insertSliceOp, insertSliceOp.source(), insertSliceOp.dest(),
|
|
|
|
mixedOffsets, mixedSizes, mixedStrides);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Fold tensor_casts with insert_slice operations.
|
|
|
|
struct InsertSliceOpCastFolder final : public OpRewritePattern<InsertSliceOp> {
|
|
|
|
using OpRewritePattern<InsertSliceOp>::OpRewritePattern;
|
|
|
|
|
|
|
|
LogicalResult matchAndRewrite(InsertSliceOp insertSliceOp,
|
|
|
|
PatternRewriter &rewriter) const override {
|
|
|
|
if (llvm::any_of(insertSliceOp.getOperands(), [](Value operand) {
|
|
|
|
return matchPattern(operand, matchConstantIndex());
|
|
|
|
}))
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
|
|
|
|
auto castOp = v.getDefiningOp<tensor::CastOp>();
|
|
|
|
if (!castOp || !canFoldIntoConsumerOp(castOp))
|
|
|
|
return llvm::None;
|
|
|
|
return castOp.source();
|
|
|
|
};
|
|
|
|
Optional<Value> sourceCastSource =
|
|
|
|
getSourceOfCastOp(insertSliceOp.source());
|
|
|
|
Optional<Value> destCastSource = getSourceOfCastOp(insertSliceOp.dest());
|
|
|
|
if (!sourceCastSource && !destCastSource)
|
|
|
|
return failure();
|
|
|
|
|
|
|
|
Value replacement = rewriter.create<InsertSliceOp>(
|
|
|
|
insertSliceOp.getLoc(),
|
|
|
|
(sourceCastSource ? *sourceCastSource : insertSliceOp.source()),
|
|
|
|
(destCastSource ? *destCastSource : insertSliceOp.dest()),
|
|
|
|
insertSliceOp.getMixedOffsets(), insertSliceOp.getMixedSizes(),
|
|
|
|
insertSliceOp.getMixedStrides());
|
|
|
|
|
|
|
|
if (replacement.getType() != insertSliceOp.getType()) {
|
|
|
|
replacement = rewriter.create<tensor::CastOp>(
|
|
|
|
insertSliceOp.getLoc(), insertSliceOp.getType(), replacement);
|
|
|
|
}
|
|
|
|
rewriter.replaceOp(insertSliceOp, replacement);
|
|
|
|
return success();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
} // namespace
|
|
|
|
|
|
|
|
void InsertSliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
|
|
|
|
MLIRContext *context) {
|
|
|
|
results.add<InsertSliceOpConstantArgumentFolder, InsertSliceOpCastFolder>(
|
|
|
|
context);
|
|
|
|
}
|
|
|
|
|
2020-12-11 14:20:03 -08:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// TableGen'd op method definitions
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#define GET_OP_CLASSES
|
|
|
|
#include "mlir/Dialect/Tensor/IR/TensorOps.cpp.inc"
|