llvm-project/clang/lib/Sema/HLSLExternalSemaSource.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

981 lines
38 KiB
C++
Raw Normal View History

//===--- HLSLExternalSemaSource.cpp - HLSL Sema Source --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/HLSLExternalSemaSource.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/Type.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaHLSL.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Frontend/HLSL/HLSLResource.h"
#include "llvm/Support/ErrorHandling.h"
#include <functional>
using namespace clang;
using namespace llvm::hlsl;
static FunctionDecl *lookupBuiltinFunction(Sema &S, StringRef Name);
namespace {
struct TemplateParameterListBuilder;
struct BuiltinTypeDeclBuilder {
Sema &SemaRef;
CXXRecordDecl *Record = nullptr;
ClassTemplateDecl *Template = nullptr;
ClassTemplateDecl *PrevTemplate = nullptr;
NamespaceDecl *HLSLNamespace = nullptr;
llvm::StringMap<FieldDecl *> Fields;
BuiltinTypeDeclBuilder(Sema &SemaRef, CXXRecordDecl *R)
: SemaRef(SemaRef), Record(R) {
Record->startDefinition();
Template = Record->getDescribedClassTemplate();
}
BuiltinTypeDeclBuilder(Sema &SemaRef, NamespaceDecl *Namespace,
StringRef Name)
: SemaRef(SemaRef), HLSLNamespace(Namespace) {
ASTContext &AST = SemaRef.getASTContext();
IdentifierInfo &II = AST.Idents.get(Name, tok::TokenKind::identifier);
LookupResult Result(SemaRef, &II, SourceLocation(), Sema::LookupTagName);
CXXRecordDecl *PrevDecl = nullptr;
if (SemaRef.LookupQualifiedName(Result, HLSLNamespace)) {
// Declaration already exists (from precompiled headers)
NamedDecl *Found = Result.getFoundDecl();
if (auto *TD = dyn_cast<ClassTemplateDecl>(Found)) {
PrevDecl = TD->getTemplatedDecl();
PrevTemplate = TD;
} else
PrevDecl = dyn_cast<CXXRecordDecl>(Found);
assert(PrevDecl && "Unexpected lookup result type.");
}
if (PrevDecl && PrevDecl->isCompleteDefinition()) {
Record = PrevDecl;
Template = PrevTemplate;
return;
}
Record = CXXRecordDecl::Create(AST, TagDecl::TagKind::Class, HLSLNamespace,
SourceLocation(), SourceLocation(), &II,
PrevDecl, true);
Record->setImplicit(true);
Record->setLexicalDeclContext(HLSLNamespace);
Record->setHasExternalLexicalStorage();
// Don't let anyone derive from built-in types.
Record->addAttr(FinalAttr::CreateImplicit(AST, SourceRange(),
FinalAttr::Keyword_final));
}
~BuiltinTypeDeclBuilder() {
if (HLSLNamespace && !Template && Record->getDeclContext() == HLSLNamespace)
HLSLNamespace->addDecl(Record);
}
BuiltinTypeDeclBuilder &
addMemberVariable(StringRef Name, QualType Type, llvm::ArrayRef<Attr *> Attrs,
AccessSpecifier Access = AccessSpecifier::AS_private) {
assert(!Record->isCompleteDefinition() && "record is already complete");
assert(Record->isBeingDefined() &&
"Definition must be started before adding members!");
ASTContext &AST = Record->getASTContext();
IdentifierInfo &II = AST.Idents.get(Name, tok::TokenKind::identifier);
TypeSourceInfo *MemTySource =
AST.getTrivialTypeSourceInfo(Type, SourceLocation());
auto *Field = FieldDecl::Create(
AST, Record, SourceLocation(), SourceLocation(), &II, Type, MemTySource,
nullptr, false, InClassInitStyle::ICIS_NoInit);
Field->setAccess(Access);
Field->setImplicit(true);
for (Attr *A : Attrs) {
if (A)
Field->addAttr(A);
}
Record->addDecl(Field);
Fields[Name] = Field;
return *this;
}
BuiltinTypeDeclBuilder &
addHandleMember(ResourceClass RC, ResourceKind RK, bool IsROV, bool RawBuffer,
AccessSpecifier Access = AccessSpecifier::AS_private) {
assert(!Record->isCompleteDefinition() && "record is already complete");
ASTContext &Ctx = SemaRef.getASTContext();
TypeSourceInfo *ElementTypeInfo = nullptr;
QualType ElemTy = Ctx.Char8Ty;
if (Template)
ElemTy = getFirstTemplateTypeParam();
ElementTypeInfo = Ctx.getTrivialTypeSourceInfo(ElemTy, SourceLocation());
// add handle member with resource type attributes
QualType AttributedResTy = QualType();
SmallVector<const Attr *> Attrs = {
HLSLResourceClassAttr::CreateImplicit(Ctx, RC),
IsROV ? HLSLROVAttr::CreateImplicit(Ctx) : nullptr,
RawBuffer ? HLSLRawBufferAttr::CreateImplicit(Ctx) : nullptr,
ElementTypeInfo
? HLSLContainedTypeAttr::CreateImplicit(Ctx, ElementTypeInfo)
: nullptr};
Attr *ResourceAttr = HLSLResourceAttr::CreateImplicit(Ctx, RK);
if (CreateHLSLAttributedResourceType(SemaRef, Ctx.HLSLResourceTy, Attrs,
AttributedResTy))
addMemberVariable("__handle", AttributedResTy, {ResourceAttr}, Access);
return *this;
}
BuiltinTypeDeclBuilder &addDefaultHandleConstructor() {
if (Record->isCompleteDefinition())
return *this;
ASTContext &AST = Record->getASTContext();
QualType ConstructorType =
AST.getFunctionType(AST.VoidTy, {}, FunctionProtoType::ExtProtoInfo());
CanQualType CanTy = Record->getTypeForDecl()->getCanonicalTypeUnqualified();
DeclarationName Name = AST.DeclarationNames.getCXXConstructorName(CanTy);
CXXConstructorDecl *Constructor = CXXConstructorDecl::Create(
AST, Record, SourceLocation(),
DeclarationNameInfo(Name, SourceLocation()), ConstructorType,
AST.getTrivialTypeSourceInfo(ConstructorType, SourceLocation()),
ExplicitSpecifier(), false, true, false,
ConstexprSpecKind::Unspecified);
Constructor->setBody(CompoundStmt::Create(
AST, {}, FPOptionsOverride(), SourceLocation(), SourceLocation()));
Constructor->setAccess(AccessSpecifier::AS_public);
Record->addDecl(Constructor);
return *this;
}
BuiltinTypeDeclBuilder &addArraySubscriptOperators() {
addArraySubscriptOperator(true);
addArraySubscriptOperator(false);
return *this;
}
BuiltinTypeDeclBuilder &addArraySubscriptOperator(bool IsConst) {
assert(!Record->isCompleteDefinition() && "record is already complete");
ASTContext &AST = Record->getASTContext();
QualType ElemTy = AST.Char8Ty;
if (Template)
ElemTy = getFirstTemplateTypeParam();
QualType ReturnTy = ElemTy;
FunctionProtoType::ExtProtoInfo ExtInfo;
// Subscript operators return references to elements, const makes the
// reference and method const so that the underlying data is not mutable.
if (IsConst) {
ExtInfo.TypeQuals.addConst();
ReturnTy.addConst();
}
ReturnTy = AST.getLValueReferenceType(ReturnTy);
QualType MethodTy =
AST.getFunctionType(ReturnTy, {AST.UnsignedIntTy}, ExtInfo);
auto *TSInfo = AST.getTrivialTypeSourceInfo(MethodTy, SourceLocation());
auto *MethodDecl = CXXMethodDecl::Create(
AST, Record, SourceLocation(),
DeclarationNameInfo(
AST.DeclarationNames.getCXXOperatorName(OO_Subscript),
SourceLocation()),
MethodTy, TSInfo, SC_None, false, false, ConstexprSpecKind::Unspecified,
SourceLocation());
IdentifierInfo &II = AST.Idents.get("Idx", tok::TokenKind::identifier);
auto *IdxParam = ParmVarDecl::Create(
AST, MethodDecl->getDeclContext(), SourceLocation(), SourceLocation(),
&II, AST.UnsignedIntTy,
AST.getTrivialTypeSourceInfo(AST.UnsignedIntTy, SourceLocation()),
SC_None, nullptr);
MethodDecl->setParams({IdxParam});
// Also add the parameter to the function prototype.
auto FnProtoLoc = TSInfo->getTypeLoc().getAs<FunctionProtoTypeLoc>();
FnProtoLoc.setParam(0, IdxParam);
// FIXME: Placeholder to make sure we return the correct type - create
// field of element_type and return reference to it. This field will go
// away once indexing into resources is properly implemented in
// llvm/llvm-project#95956.
if (Fields.count("e") == 0) {
addMemberVariable("e", ElemTy, {});
}
FieldDecl *ElemFieldDecl = Fields["e"];
auto *This =
CXXThisExpr::Create(AST, SourceLocation(),
MethodDecl->getFunctionObjectParameterType(), true);
Expr *ElemField = MemberExpr::CreateImplicit(
AST, This, false, ElemFieldDecl, ElemFieldDecl->getType(), VK_LValue,
OK_Ordinary);
auto *Return =
ReturnStmt::Create(AST, SourceLocation(), ElemField, nullptr);
MethodDecl->setBody(CompoundStmt::Create(AST, {Return}, FPOptionsOverride(),
SourceLocation(),
SourceLocation()));
MethodDecl->setLexicalDeclContext(Record);
MethodDecl->setAccess(AccessSpecifier::AS_public);
MethodDecl->addAttr(AlwaysInlineAttr::CreateImplicit(
[clang] Specify attribute syntax & spelling with a single argument When constructing an attribute, the syntactic form was specified using two arguments: an attribute-independent syntax type and an attribute-specific spelling index. This patch replaces them with a single argument. In most cases, that's done using a new Form class that combines the syntax and spelling into a single object. This has the minor benefit of removing a couple of constructors. But the main purpose is to allow additional information to be stored as well, beyond just the syntax and spelling enums. In the case of the attribute-specific Create and CreateImplicit functions, the patch instead uses the attribute-specific spelling enum. This helps to ensure that the syntax and spelling are consistent with each other and with the Attr.td definition. If a Create or CreateImplicit caller specified a syntax and a spelling, the patch drops the syntax argument and keeps the spelling. If the caller instead specified only a syntax (so that the spelling was SpellingNotCalculated), the patch simply drops the syntax argument. There were two cases of the latter: TargetVersion and Weak. TargetVersionAttrs were created with GNU syntax, which matches their definition in Attr.td, but which is also the default. WeakAttrs were created with Pragma syntax, which does not match their definition in Attr.td. Dropping the argument switches them to AS_GNU too (to match [GCC<"weak">]). Differential Revision: https://reviews.llvm.org/D148102
2023-04-11 16:11:32 +01:00
AST, SourceRange(), AlwaysInlineAttr::CXX11_clang_always_inline));
Record->addDecl(MethodDecl);
return *this;
}
FieldDecl *getResourceHandleField() {
auto I = Fields.find("__handle");
assert(I != Fields.end() &&
I->second->getType()->isHLSLAttributedResourceType() &&
"record does not have resource handle field");
return I->second;
}
QualType getFirstTemplateTypeParam() {
assert(Template && "record it not a template");
if (const auto *TTD = dyn_cast<TemplateTypeParmDecl>(
Template->getTemplateParameters()->getParam(0))) {
return QualType(TTD->getTypeForDecl(), 0);
}
return QualType();
}
BuiltinTypeDeclBuilder &startDefinition() {
assert(!Record->isCompleteDefinition() && "record is already complete");
Record->startDefinition();
return *this;
}
BuiltinTypeDeclBuilder &completeDefinition() {
assert(!Record->isCompleteDefinition() && "record is already complete");
assert(Record->isBeingDefined() &&
"Definition must be started before completing it.");
Record->completeDefinition();
return *this;
}
Expr *getConstantIntExpr(int value) {
ASTContext &AST = SemaRef.getASTContext();
return IntegerLiteral::Create(
AST, llvm::APInt(AST.getTypeSize(AST.IntTy), value, true), AST.IntTy,
SourceLocation());
}
TemplateParameterListBuilder addTemplateArgumentList();
BuiltinTypeDeclBuilder &addSimpleTemplateParams(ArrayRef<StringRef> Names,
ConceptDecl *CD);
// Builtin types methods
BuiltinTypeDeclBuilder &addIncrementCounterMethod();
BuiltinTypeDeclBuilder &addDecrementCounterMethod();
};
struct TemplateParameterListBuilder {
BuiltinTypeDeclBuilder &Builder;
llvm::SmallVector<NamedDecl *> Params;
TemplateParameterListBuilder(BuiltinTypeDeclBuilder &RB) : Builder(RB) {}
~TemplateParameterListBuilder() { finalizeTemplateArgs(); }
TemplateParameterListBuilder &
addTypeParameter(StringRef Name, QualType DefaultValue = QualType()) {
assert(!Builder.Record->isCompleteDefinition() &&
"record is already complete");
ASTContext &AST = Builder.SemaRef.getASTContext();
unsigned Position = static_cast<unsigned>(Params.size());
auto *Decl = TemplateTypeParmDecl::Create(
AST, Builder.Record->getDeclContext(), SourceLocation(),
SourceLocation(), /* TemplateDepth */ 0, Position,
&AST.Idents.get(Name, tok::TokenKind::identifier),
/* Typename */ true,
/* ParameterPack */ false,
/* HasTypeConstraint*/ false);
if (!DefaultValue.isNull())
Decl->setDefaultArgument(AST,
Builder.SemaRef.getTrivialTemplateArgumentLoc(
DefaultValue, QualType(), SourceLocation()));
Params.emplace_back(Decl);
return *this;
}
// The concept specialization expression (CSE) constructed in
// constructConceptSpecializationExpr is constructed so that it
// matches the CSE that is constructed when parsing the below C++ code:
//
// template<typename T>
// concept is_typed_resource_element_compatible =
// __builtin_hlsl_typed_resource_element_compatible<T>
//
// template<typename element_type> requires
// is_typed_resource_element_compatible<element_type>
// struct RWBuffer {
// element_type Val;
// };
//
// int fn() {
// RWBuffer<int> Buf;
// }
//
// When dumping the AST and filtering for "RWBuffer", the resulting AST
// structure is what we're trying to construct below, specifically the
// CSE portion.
ConceptSpecializationExpr *
constructConceptSpecializationExpr(Sema &S, ConceptDecl *CD) {
ASTContext &Context = S.getASTContext();
SourceLocation Loc = Builder.Record->getBeginLoc();
DeclarationNameInfo DNI(CD->getDeclName(), Loc);
NestedNameSpecifierLoc NNSLoc;
DeclContext *DC = Builder.Record->getDeclContext();
TemplateArgumentListInfo TALI(Loc, Loc);
// Assume that the concept decl has just one template parameter
// This parameter should have been added when CD was constructed
// in getTypedBufferConceptDecl
assert(CD->getTemplateParameters()->size() == 1 &&
"unexpected concept decl parameter count");
TemplateTypeParmDecl *ConceptTTPD = dyn_cast<TemplateTypeParmDecl>(
CD->getTemplateParameters()->getParam(0));
// this TemplateTypeParmDecl is the template for the resource, and is
// used to construct a template argumentthat will be used
// to construct the ImplicitConceptSpecializationDecl
TemplateTypeParmDecl *T = TemplateTypeParmDecl::Create(
Context, // AST context
Builder.Record->getDeclContext(), // DeclContext
SourceLocation(), SourceLocation(),
/*depth=*/0, // Depth in the template parameter list
/*position=*/0, // Position in the template parameter list
/*id=*/nullptr, // Identifier for 'T'
/*Typename=*/true, // Indicates this is a 'typename' or 'class'
/*ParameterPack=*/false, // Not a parameter pack
/*HasTypeConstraint=*/false // Has no type constraint
);
T->setDeclContext(DC);
QualType ConceptTType = Context.getTypeDeclType(ConceptTTPD);
// this is the 2nd template argument node, on which
// the concept constraint is actually being applied: 'element_type'
TemplateArgument ConceptTA = TemplateArgument(ConceptTType);
QualType CSETType = Context.getTypeDeclType(T);
// this is the 1st template argument node, which represents
// the abstract type that a concept would refer to: 'T'
TemplateArgument CSETA = TemplateArgument(CSETType);
ImplicitConceptSpecializationDecl *ImplicitCSEDecl =
ImplicitConceptSpecializationDecl::Create(
Context, Builder.Record->getDeclContext(), Loc, {CSETA});
// Constraint satisfaction is used to construct the
// ConceptSpecailizationExpr, and represents the 2nd Template Argument,
// located at the bottom of the sample AST above.
const ConstraintSatisfaction CS(CD, {ConceptTA});
TemplateArgumentLoc TAL = S.getTrivialTemplateArgumentLoc(
ConceptTA, QualType(), SourceLocation());
TALI.addArgument(TAL);
const ASTTemplateArgumentListInfo *ATALI =
ASTTemplateArgumentListInfo::Create(Context, TALI);
// In the concept reference, ATALI is what adds the extra
// TemplateArgument node underneath CSE
ConceptReference *CR =
ConceptReference::Create(Context, NNSLoc, Loc, DNI, CD, CD, ATALI);
ConceptSpecializationExpr *CSE =
ConceptSpecializationExpr::Create(Context, CR, ImplicitCSEDecl, &CS);
return CSE;
}
BuiltinTypeDeclBuilder &finalizeTemplateArgs(ConceptDecl *CD = nullptr) {
if (Params.empty())
return Builder;
ASTContext &AST = Builder.SemaRef.Context;
ConceptSpecializationExpr *CSE =
CD ? constructConceptSpecializationExpr(Builder.SemaRef, CD) : nullptr;
auto *ParamList = TemplateParameterList::Create(
AST, SourceLocation(), SourceLocation(), Params, SourceLocation(), CSE);
Builder.Template = ClassTemplateDecl::Create(
AST, Builder.Record->getDeclContext(), SourceLocation(),
DeclarationName(Builder.Record->getIdentifier()), ParamList,
Builder.Record);
Builder.Record->setDescribedClassTemplate(Builder.Template);
Builder.Template->setImplicit(true);
Builder.Template->setLexicalDeclContext(Builder.Record->getDeclContext());
// NOTE: setPreviousDecl before addDecl so new decl replace old decl when
// make visible.
Builder.Template->setPreviousDecl(Builder.PrevTemplate);
Builder.Record->getDeclContext()->addDecl(Builder.Template);
Params.clear();
QualType T = Builder.Template->getInjectedClassNameSpecialization();
T = AST.getInjectedClassNameType(Builder.Record, T);
return Builder;
}
};
// Builder for methods of builtin types. Allows adding methods to builtin types
// using the builder pattern like this:
//
// BuiltinTypeMethodBuilder(Sema, RecordBuilder, "MethodName", ReturnType)
// .addParam("param_name", Type, InOutModifier)
// .callBuiltin("builtin_name", BuiltinParams...)
// .finalizeMethod();
//
// The builder needs to have all of the method parameters before it can create
// a CXXMethodDecl. It collects them in addParam calls and when a first
// method that builds the body is called or when access to 'this` is needed it
// creates the CXXMethodDecl and ParmVarDecls instances. These can then be
// referenced from the body building methods. Destructor or an explicit call to
// finalizeMethod() will complete the method definition.
//
// The callBuiltin helper method accepts constants via `Expr *` or placeholder
// value arguments to indicate which function arguments to forward to the
// builtin.
//
// If the method that is being built has a non-void return type the
// finalizeMethod will create a return statent with the value of the last
// statement (unless the last statement is already a ReturnStmt).
struct BuiltinTypeMethodBuilder {
struct MethodParam {
const IdentifierInfo &NameII;
QualType Ty;
HLSLParamModifierAttr::Spelling Modifier;
MethodParam(const IdentifierInfo &NameII, QualType Ty,
HLSLParamModifierAttr::Spelling Modifier)
: NameII(NameII), Ty(Ty), Modifier(Modifier) {}
};
BuiltinTypeDeclBuilder &DeclBuilder;
DeclarationNameInfo NameInfo;
QualType ReturnTy;
CXXMethodDecl *Method;
llvm::SmallVector<MethodParam> Params;
llvm::SmallVector<Stmt *> StmtsList;
// Argument placeholders, inspired by std::placeholder. These are the indices
// of arguments to forward to `callBuiltin`, and additionally `Handle` which
// refers to the resource handle.
enum class PlaceHolder { _0, _1, _2, _3, Handle = 127 };
Expr *convertPlaceholder(PlaceHolder PH) {
if (PH == PlaceHolder::Handle)
return getResourceHandleExpr();
ASTContext &AST = DeclBuilder.SemaRef.getASTContext();
ParmVarDecl *ParamDecl = Method->getParamDecl(static_cast<unsigned>(PH));
return DeclRefExpr::Create(
AST, NestedNameSpecifierLoc(), SourceLocation(), ParamDecl, false,
DeclarationNameInfo(ParamDecl->getDeclName(), SourceLocation()),
ParamDecl->getType(), VK_PRValue);
}
Expr *convertPlaceholder(Expr *E) { return E; }
public:
BuiltinTypeMethodBuilder(Sema &S, BuiltinTypeDeclBuilder &DB, StringRef Name,
QualType ReturnTy)
: DeclBuilder(DB), ReturnTy(ReturnTy), Method(nullptr) {
const IdentifierInfo &II =
S.getASTContext().Idents.get(Name, tok::TokenKind::identifier);
NameInfo = DeclarationNameInfo(DeclarationName(&II), SourceLocation());
}
BuiltinTypeMethodBuilder &addParam(StringRef Name, QualType Ty,
HLSLParamModifierAttr::Spelling Modifier =
HLSLParamModifierAttr::Keyword_in) {
assert(Method == nullptr && "Cannot add param, method already created");
const IdentifierInfo &II = DeclBuilder.SemaRef.getASTContext().Idents.get(
Name, tok::TokenKind::identifier);
Params.emplace_back(II, Ty, Modifier);
return *this;
}
private:
void createMethodDecl() {
assert(Method == nullptr && "Method already created");
// create method type
ASTContext &AST = DeclBuilder.SemaRef.getASTContext();
SmallVector<QualType> ParamTypes;
for (MethodParam &MP : Params)
ParamTypes.emplace_back(MP.Ty);
QualType MethodTy = AST.getFunctionType(ReturnTy, ParamTypes,
FunctionProtoType::ExtProtoInfo());
// create method decl
auto *TSInfo = AST.getTrivialTypeSourceInfo(MethodTy, SourceLocation());
Method =
CXXMethodDecl::Create(AST, DeclBuilder.Record, SourceLocation(),
NameInfo, MethodTy, TSInfo, SC_None, false, false,
ConstexprSpecKind::Unspecified, SourceLocation());
// create params & set them to the function prototype
SmallVector<ParmVarDecl *> ParmDecls;
auto FnProtoLoc =
Method->getTypeSourceInfo()->getTypeLoc().getAs<FunctionProtoTypeLoc>();
for (int I = 0, E = Params.size(); I != E; I++) {
MethodParam &MP = Params[I];
ParmVarDecl *Parm = ParmVarDecl::Create(
AST, Method->getDeclContext(), SourceLocation(), SourceLocation(),
&MP.NameII, MP.Ty,
AST.getTrivialTypeSourceInfo(MP.Ty, SourceLocation()), SC_None,
nullptr);
if (MP.Modifier != HLSLParamModifierAttr::Keyword_in) {
auto *Mod =
HLSLParamModifierAttr::Create(AST, SourceRange(), MP.Modifier);
Parm->addAttr(Mod);
}
ParmDecls.push_back(Parm);
FnProtoLoc.setParam(I, Parm);
}
Method->setParams({ParmDecls});
}
public:
~BuiltinTypeMethodBuilder() { finalizeMethod(); }
Expr *getResourceHandleExpr() {
// The first statement added to a method or access to 'this' creates the
// declaration.
if (!Method)
createMethodDecl();
ASTContext &AST = DeclBuilder.SemaRef.getASTContext();
CXXThisExpr *This = CXXThisExpr::Create(
AST, SourceLocation(), Method->getFunctionObjectParameterType(), true);
FieldDecl *HandleField = DeclBuilder.getResourceHandleField();
return MemberExpr::CreateImplicit(AST, This, false, HandleField,
HandleField->getType(), VK_LValue,
OK_Ordinary);
}
template <typename... Ts>
BuiltinTypeMethodBuilder &callBuiltin(StringRef BuiltinName, Ts... ArgSpecs) {
std::array<Expr *, sizeof...(ArgSpecs)> Args{
convertPlaceholder(std::forward<Ts>(ArgSpecs))...};
// The first statement added to a method or access to 'this` creates the
// declaration.
if (!Method)
createMethodDecl();
ASTContext &AST = DeclBuilder.SemaRef.getASTContext();
FunctionDecl *FD = lookupBuiltinFunction(DeclBuilder.SemaRef, BuiltinName);
DeclRefExpr *DRE = DeclRefExpr::Create(
AST, NestedNameSpecifierLoc(), SourceLocation(), FD, false,
FD->getNameInfo(), FD->getType(), VK_PRValue);
Expr *Call =
CallExpr::Create(AST, DRE, Args, FD->getReturnType(), VK_PRValue,
SourceLocation(), FPOptionsOverride());
StmtsList.push_back(Call);
return *this;
}
BuiltinTypeDeclBuilder &finalizeMethod() {
assert(!DeclBuilder.Record->isCompleteDefinition() &&
"record is already complete");
assert(
Method != nullptr &&
"method decl not created; are you missing a call to build the body?");
if (!Method->hasBody()) {
ASTContext &AST = DeclBuilder.SemaRef.getASTContext();
assert((ReturnTy == AST.VoidTy || !StmtsList.empty()) &&
"nothing to return from non-void method");
if (ReturnTy != AST.VoidTy) {
if (Expr *LastExpr = dyn_cast<Expr>(StmtsList.back())) {
assert(AST.hasSameUnqualifiedType(
isa<CallExpr>(LastExpr)
? cast<CallExpr>(LastExpr)->getCallReturnType(AST)
: LastExpr->getType(),
ReturnTy) &&
"Return type of the last statement must match the return type "
"of the method");
if (!isa<ReturnStmt>(LastExpr)) {
StmtsList.pop_back();
StmtsList.push_back(
ReturnStmt::Create(AST, SourceLocation(), LastExpr, nullptr));
}
}
}
Method->setBody(CompoundStmt::Create(AST, StmtsList, FPOptionsOverride(),
SourceLocation(), SourceLocation()));
Method->setLexicalDeclContext(DeclBuilder.Record);
Method->setAccess(AccessSpecifier::AS_public);
Method->addAttr(AlwaysInlineAttr::CreateImplicit(
AST, SourceRange(), AlwaysInlineAttr::CXX11_clang_always_inline));
DeclBuilder.Record->addDecl(Method);
}
return DeclBuilder;
}
};
} // namespace
TemplateParameterListBuilder BuiltinTypeDeclBuilder::addTemplateArgumentList() {
return TemplateParameterListBuilder(*this);
}
BuiltinTypeDeclBuilder &
BuiltinTypeDeclBuilder::addSimpleTemplateParams(ArrayRef<StringRef> Names,
ConceptDecl *CD = nullptr) {
if (Record->isCompleteDefinition()) {
assert(Template && "existing record it not a template");
assert(Template->getTemplateParameters()->size() == Names.size() &&
"template param count mismatch");
return *this;
}
TemplateParameterListBuilder Builder = this->addTemplateArgumentList();
for (StringRef Name : Names)
Builder.addTypeParameter(Name);
return Builder.finalizeTemplateArgs(CD);
}
BuiltinTypeDeclBuilder &BuiltinTypeDeclBuilder::addIncrementCounterMethod() {
using PH = BuiltinTypeMethodBuilder::PlaceHolder;
return BuiltinTypeMethodBuilder(SemaRef, *this, "IncrementCounter",
SemaRef.getASTContext().UnsignedIntTy)
.callBuiltin("__builtin_hlsl_buffer_update_counter", PH::Handle,
getConstantIntExpr(1))
.finalizeMethod();
}
BuiltinTypeDeclBuilder &BuiltinTypeDeclBuilder::addDecrementCounterMethod() {
using PH = BuiltinTypeMethodBuilder::PlaceHolder;
return BuiltinTypeMethodBuilder(SemaRef, *this, "DecrementCounter",
SemaRef.getASTContext().UnsignedIntTy)
.callBuiltin("__builtin_hlsl_buffer_update_counter", PH::Handle,
getConstantIntExpr(-1))
.finalizeMethod();
}
HLSLExternalSemaSource::~HLSLExternalSemaSource() {}
void HLSLExternalSemaSource::InitializeSema(Sema &S) {
SemaPtr = &S;
ASTContext &AST = SemaPtr->getASTContext();
// If the translation unit has external storage force external decls to load.
if (AST.getTranslationUnitDecl()->hasExternalLexicalStorage())
(void)AST.getTranslationUnitDecl()->decls_begin();
IdentifierInfo &HLSL = AST.Idents.get("hlsl", tok::TokenKind::identifier);
LookupResult Result(S, &HLSL, SourceLocation(), Sema::LookupNamespaceName);
NamespaceDecl *PrevDecl = nullptr;
if (S.LookupQualifiedName(Result, AST.getTranslationUnitDecl()))
PrevDecl = Result.getAsSingle<NamespaceDecl>();
HLSLNamespace = NamespaceDecl::Create(
AST, AST.getTranslationUnitDecl(), /*Inline=*/false, SourceLocation(),
SourceLocation(), &HLSL, PrevDecl, /*Nested=*/false);
HLSLNamespace->setImplicit(true);
HLSLNamespace->setHasExternalLexicalStorage();
AST.getTranslationUnitDecl()->addDecl(HLSLNamespace);
// Force external decls in the HLSL namespace to load from the PCH.
(void)HLSLNamespace->getCanonicalDecl()->decls_begin();
defineTrivialHLSLTypes();
defineHLSLTypesWithForwardDeclarations();
// This adds a `using namespace hlsl` directive. In DXC, we don't put HLSL's
// built in types inside a namespace, but we are planning to change that in
// the near future. In order to be source compatible older versions of HLSL
// will need to implicitly use the hlsl namespace. For now in clang everything
// will get added to the namespace, and we can remove the using directive for
// future language versions to match HLSL's evolution.
auto *UsingDecl = UsingDirectiveDecl::Create(
AST, AST.getTranslationUnitDecl(), SourceLocation(), SourceLocation(),
NestedNameSpecifierLoc(), SourceLocation(), HLSLNamespace,
AST.getTranslationUnitDecl());
AST.getTranslationUnitDecl()->addDecl(UsingDecl);
}
void HLSLExternalSemaSource::defineHLSLVectorAlias() {
ASTContext &AST = SemaPtr->getASTContext();
llvm::SmallVector<NamedDecl *> TemplateParams;
auto *TypeParam = TemplateTypeParmDecl::Create(
AST, HLSLNamespace, SourceLocation(), SourceLocation(), 0, 0,
&AST.Idents.get("element", tok::TokenKind::identifier), false, false);
TypeParam->setDefaultArgument(
AST, SemaPtr->getTrivialTemplateArgumentLoc(
TemplateArgument(AST.FloatTy), QualType(), SourceLocation()));
TemplateParams.emplace_back(TypeParam);
auto *SizeParam = NonTypeTemplateParmDecl::Create(
AST, HLSLNamespace, SourceLocation(), SourceLocation(), 0, 1,
&AST.Idents.get("element_count", tok::TokenKind::identifier), AST.IntTy,
false, AST.getTrivialTypeSourceInfo(AST.IntTy));
llvm::APInt Val(AST.getIntWidth(AST.IntTy), 4);
TemplateArgument Default(AST, llvm::APSInt(std::move(Val)), AST.IntTy,
/*IsDefaulted=*/true);
SizeParam->setDefaultArgument(
AST, SemaPtr->getTrivialTemplateArgumentLoc(Default, AST.IntTy,
SourceLocation(), SizeParam));
TemplateParams.emplace_back(SizeParam);
auto *ParamList =
TemplateParameterList::Create(AST, SourceLocation(), SourceLocation(),
TemplateParams, SourceLocation(), nullptr);
IdentifierInfo &II = AST.Idents.get("vector", tok::TokenKind::identifier);
QualType AliasType = AST.getDependentSizedExtVectorType(
AST.getTemplateTypeParmType(0, 0, false, TypeParam),
DeclRefExpr::Create(
AST, NestedNameSpecifierLoc(), SourceLocation(), SizeParam, false,
DeclarationNameInfo(SizeParam->getDeclName(), SourceLocation()),
AST.IntTy, VK_LValue),
SourceLocation());
auto *Record = TypeAliasDecl::Create(AST, HLSLNamespace, SourceLocation(),
SourceLocation(), &II,
AST.getTrivialTypeSourceInfo(AliasType));
Record->setImplicit(true);
auto *Template =
TypeAliasTemplateDecl::Create(AST, HLSLNamespace, SourceLocation(),
Record->getIdentifier(), ParamList, Record);
Record->setDescribedAliasTemplate(Template);
Template->setImplicit(true);
Template->setLexicalDeclContext(Record->getDeclContext());
HLSLNamespace->addDecl(Template);
}
void HLSLExternalSemaSource::defineTrivialHLSLTypes() {
defineHLSLVectorAlias();
}
/// Set up common members and attributes for buffer types
static BuiltinTypeDeclBuilder setupBufferType(CXXRecordDecl *Decl, Sema &S,
ResourceClass RC, ResourceKind RK,
bool IsROV, bool RawBuffer) {
return BuiltinTypeDeclBuilder(S, Decl)
.addHandleMember(RC, RK, IsROV, RawBuffer)
.addDefaultHandleConstructor();
}
static Expr *constructTypedBufferConstraintExpr(Sema &S, SourceLocation NameLoc,
TemplateTypeParmDecl *T) {
ASTContext &Context = S.getASTContext();
// Obtain the QualType for 'unsigned long'
QualType BoolTy = Context.BoolTy;
// Create a QualType that points to this TemplateTypeParmDecl
QualType TType = Context.getTypeDeclType(T);
// Create a TypeSourceInfo for the template type parameter 'T'
TypeSourceInfo *TTypeSourceInfo =
Context.getTrivialTypeSourceInfo(TType, NameLoc);
TypeTraitExpr *TypedResExpr = TypeTraitExpr::Create(
Context, BoolTy, NameLoc, UTT_IsTypedResourceElementCompatible,
{TTypeSourceInfo}, NameLoc, true);
return TypedResExpr;
}
static ConceptDecl *constructTypedBufferConceptDecl(Sema &S,
NamespaceDecl *NSD) {
ASTContext &Context = S.getASTContext();
DeclContext *DC = NSD->getDeclContext();
SourceLocation DeclLoc = SourceLocation();
IdentifierInfo &ElementTypeII = Context.Idents.get("element_type");
TemplateTypeParmDecl *T = TemplateTypeParmDecl::Create(
Context, NSD->getDeclContext(), DeclLoc, DeclLoc,
/*depth=*/0,
/*position=*/0,
/*id=*/&ElementTypeII,
/*Typename=*/true,
/*ParameterPack=*/false);
T->setDeclContext(DC);
T->setReferenced();
// Create and Attach Template Parameter List to ConceptDecl
TemplateParameterList *ConceptParams = TemplateParameterList::Create(
Context, DeclLoc, DeclLoc, {T}, DeclLoc, nullptr);
DeclarationName DeclName = DeclarationName(
&Context.Idents.get("__is_typed_resource_element_compatible"));
Expr *ConstraintExpr = constructTypedBufferConstraintExpr(S, DeclLoc, T);
// Create a ConceptDecl
ConceptDecl *CD =
ConceptDecl::Create(Context, NSD->getDeclContext(), DeclLoc, DeclName,
ConceptParams, ConstraintExpr);
// Attach the template parameter list to the ConceptDecl
CD->setTemplateParameters(ConceptParams);
// Add the concept declaration to the Translation Unit Decl
NSD->getDeclContext()->addDecl(CD);
return CD;
}
void HLSLExternalSemaSource::defineHLSLTypesWithForwardDeclarations() {
CXXRecordDecl *Decl;
ConceptDecl *TypedBufferConcept =
constructTypedBufferConceptDecl(*SemaPtr, HLSLNamespace);
Decl = BuiltinTypeDeclBuilder(*SemaPtr, HLSLNamespace, "RWBuffer")
.addSimpleTemplateParams({"element_type"}, TypedBufferConcept)
.Record;
onCompletion(Decl, [this](CXXRecordDecl *Decl) {
setupBufferType(Decl, *SemaPtr, ResourceClass::UAV,
ResourceKind::TypedBuffer, /*IsROV=*/false,
/*RawBuffer=*/false)
.addArraySubscriptOperators()
.completeDefinition();
});
Decl =
BuiltinTypeDeclBuilder(*SemaPtr, HLSLNamespace, "RasterizerOrderedBuffer")
.addSimpleTemplateParams({"element_type"})
.Record;
onCompletion(Decl, [this](CXXRecordDecl *Decl) {
setupBufferType(Decl, *SemaPtr, ResourceClass::UAV,
ResourceKind::TypedBuffer, /*IsROV=*/true,
/*RawBuffer=*/false)
.addArraySubscriptOperators()
.completeDefinition();
});
Decl = BuiltinTypeDeclBuilder(*SemaPtr, HLSLNamespace, "StructuredBuffer")
.addSimpleTemplateParams({"element_type"})
.Record;
onCompletion(Decl, [this](CXXRecordDecl *Decl) {
setupBufferType(Decl, *SemaPtr, ResourceClass::SRV, ResourceKind::RawBuffer,
/*IsROV=*/false, /*RawBuffer=*/true)
.addArraySubscriptOperators()
.completeDefinition();
});
Decl = BuiltinTypeDeclBuilder(*SemaPtr, HLSLNamespace, "RWStructuredBuffer")
.addSimpleTemplateParams({"element_type"})
.Record;
onCompletion(Decl, [this](CXXRecordDecl *Decl) {
setupBufferType(Decl, *SemaPtr, ResourceClass::UAV, ResourceKind::RawBuffer,
/*IsROV=*/false, /*RawBuffer=*/true)
.addArraySubscriptOperators()
.addIncrementCounterMethod()
.addDecrementCounterMethod()
.completeDefinition();
});
Decl =
BuiltinTypeDeclBuilder(*SemaPtr, HLSLNamespace, "AppendStructuredBuffer")
.addSimpleTemplateParams({"element_type"})
.Record;
onCompletion(Decl, [this](CXXRecordDecl *Decl) {
setupBufferType(Decl, *SemaPtr, ResourceClass::UAV, ResourceKind::RawBuffer,
/*IsROV=*/false, /*RawBuffer=*/true)
.completeDefinition();
});
Decl =
BuiltinTypeDeclBuilder(*SemaPtr, HLSLNamespace, "ConsumeStructuredBuffer")
.addSimpleTemplateParams({"element_type"})
.Record;
onCompletion(Decl, [this](CXXRecordDecl *Decl) {
setupBufferType(Decl, *SemaPtr, ResourceClass::UAV, ResourceKind::RawBuffer,
/*IsROV=*/false, /*RawBuffer=*/true)
.completeDefinition();
});
Decl = BuiltinTypeDeclBuilder(*SemaPtr, HLSLNamespace,
"RasterizerOrderedStructuredBuffer")
.addSimpleTemplateParams({"element_type"})
.Record;
onCompletion(Decl, [this](CXXRecordDecl *Decl) {
setupBufferType(Decl, *SemaPtr, ResourceClass::UAV, ResourceKind::RawBuffer,
/*IsROV=*/true, /*RawBuffer=*/true)
.addArraySubscriptOperators()
.addIncrementCounterMethod()
.addDecrementCounterMethod()
.completeDefinition();
});
}
void HLSLExternalSemaSource::onCompletion(CXXRecordDecl *Record,
CompletionFunction Fn) {
if (!Record->isCompleteDefinition())
Completions.insert(std::make_pair(Record->getCanonicalDecl(), Fn));
}
void HLSLExternalSemaSource::CompleteType(TagDecl *Tag) {
if (!isa<CXXRecordDecl>(Tag))
return;
auto Record = cast<CXXRecordDecl>(Tag);
// If this is a specialization, we need to get the underlying templated
// declaration and complete that.
if (auto TDecl = dyn_cast<ClassTemplateSpecializationDecl>(Record))
Record = TDecl->getSpecializedTemplate()->getTemplatedDecl();
Record = Record->getCanonicalDecl();
auto It = Completions.find(Record);
if (It == Completions.end())
return;
It->second(Record);
}
static FunctionDecl *lookupBuiltinFunction(Sema &S, StringRef Name) {
IdentifierInfo &II =
S.getASTContext().Idents.get(Name, tok::TokenKind::identifier);
DeclarationNameInfo NameInfo =
DeclarationNameInfo(DeclarationName(&II), SourceLocation());
LookupResult R(S, NameInfo, Sema::LookupOrdinaryName);
// AllowBuiltinCreation is false but LookupDirect will create
// the builtin when searching the global scope anyways...
S.LookupName(R, S.getCurScope());
// FIXME: If the builtin function was user-declared in global scope,
// this assert *will* fail. Should this call LookupBuiltin instead?
assert(R.isSingleResult() &&
"Since this is a builtin it should always resolve!");
return cast<FunctionDecl>(R.getFoundDecl());
}