llvm-project/mlir/lib/IR/SymbolTable.cpp

315 lines
12 KiB
C++
Raw Normal View History

//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/SymbolTable.h"
#include "llvm/ADT/SmallString.h"
using namespace mlir;
/// Return true if the given operation is unknown and may potentially define a
/// symbol table.
static bool isPotentiallyUnknownSymbolTable(Operation *op) {
return !op->getDialect() && op->getNumRegions() == 1;
}
//===----------------------------------------------------------------------===//
// SymbolTable
//===----------------------------------------------------------------------===//
/// Build a symbol table with the symbols within the given operation.
SymbolTable::SymbolTable(Operation *op) : context(op->getContext()) {
assert(op->hasTrait<OpTrait::SymbolTable>() &&
"expected operation to have SymbolTable trait");
assert(op->getNumRegions() == 1 &&
"expected operation to have a single region");
for (auto &block : op->getRegion(0)) {
for (auto &op : block) {
auto nameAttr = op.getAttrOfType<StringAttr>(getSymbolAttrName());
if (!nameAttr)
continue;
auto inserted = symbolTable.insert({nameAttr.getValue(), &op});
(void)inserted;
assert(inserted.second &&
"expected region to contain uniquely named symbol operations");
}
}
}
/// Look up a symbol with the specified name, returning null if no such name
/// exists. Names never include the @ on them.
Operation *SymbolTable::lookup(StringRef name) const {
return symbolTable.lookup(name);
}
/// Erase the given symbol from the table.
void SymbolTable::erase(Operation *symbol) {
auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName());
assert(nameAttr && "expected valid 'name' attribute");
auto it = symbolTable.find(nameAttr.getValue());
if (it != symbolTable.end() && it->second == symbol)
symbolTable.erase(it);
}
/// Insert a new symbol into the table, and rename it as necessary to avoid
/// collisions.
void SymbolTable::insert(Operation *symbol) {
auto nameAttr = symbol->getAttrOfType<StringAttr>(getSymbolAttrName());
assert(nameAttr && "expected valid 'name' attribute");
// Add this symbol to the symbol table, uniquing the name if a conflict is
// detected.
if (symbolTable.insert({nameAttr.getValue(), symbol}).second)
return;
// If a conflict was detected, then the symbol will not have been added to
// the symbol table. Try suffixes until we get to a unique name that works.
SmallString<128> nameBuffer(nameAttr.getValue());
unsigned originalLength = nameBuffer.size();
// Iteratively try suffixes until we find one that isn't used.
do {
nameBuffer.resize(originalLength);
nameBuffer += '_';
nameBuffer += std::to_string(uniquingCounter++);
} while (!symbolTable.insert({nameBuffer, symbol}).second);
symbol->setAttr(getSymbolAttrName(), StringAttr::get(nameBuffer, context));
}
/// Returns the operation registered with the given symbol name with the
/// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
/// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
/// was found.
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
StringRef symbol) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Look for a symbol with the given name.
for (auto &block : symbolTableOp->getRegion(0)) {
for (auto &op : block) {
auto nameAttr = op.template getAttrOfType<StringAttr>(
mlir::SymbolTable::getSymbolAttrName());
if (nameAttr && nameAttr.getValue() == symbol)
return &op;
}
}
return nullptr;
}
/// Returns the operation registered with the given symbol name within the
/// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
/// nullptr if no valid symbol was found.
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
StringRef symbol) {
assert(from && "expected valid operation");
while (!from->hasTrait<OpTrait::SymbolTable>()) {
from = from->getParentOp();
// Check that this is a valid op and isn't an unknown symbol table.
if (!from || isPotentiallyUnknownSymbolTable(from))
return nullptr;
}
return lookupSymbolIn(from, symbol);
}
//===----------------------------------------------------------------------===//
// SymbolTable Trait Types
//===----------------------------------------------------------------------===//
LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) {
if (op->getNumRegions() != 1)
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one region";
// Check that all symbols are uniquely named within child regions.
llvm::StringMap<Location> nameToOrigLoc;
for (auto &block : op->getRegion(0)) {
for (auto &op : block) {
// Check for a symbol name attribute.
auto nameAttr =
op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
if (!nameAttr)
continue;
// Try to insert this symbol into the table.
auto it = nameToOrigLoc.try_emplace(nameAttr.getValue(), op.getLoc());
if (!it.second)
return op.emitError()
.append("redefinition of symbol named '", nameAttr.getValue(), "'")
.attachNote(it.first->second)
.append("see existing symbol definition here");
}
}
return success();
}
//===----------------------------------------------------------------------===//
// SymbolTable Trait Types
//===----------------------------------------------------------------------===//
/// Walk all of the symbol references within the given operation, invoking the
/// provided callback for each found use.
static WalkResult
walkSymbolRefs(Operation *op,
function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
// Check to see if the operation has any attributes.
DictionaryAttr attrDict = op->getAttrList().getDictionary();
if (!attrDict)
return WalkResult::advance();
// A worklist of a container attribute and the current index into the held
// attribute list.
SmallVector<std::pair<Attribute, unsigned>, 1> worklist;
worklist.push_back({attrDict, /*index*/ 0});
// Process the symbol references within the given nested attribute range.
auto processAttrs = [&](unsigned &index, auto attrRange) -> WalkResult {
for (Attribute attr : llvm::drop_begin(attrRange, index)) {
// Make sure to keep the index counter in sync.
++index;
/// Check for a nested container attribute, these will also need to be
/// walked.
if (attr.isa<ArrayAttr>() || attr.isa<DictionaryAttr>()) {
worklist.push_back({attr, /*index*/ 0});
return WalkResult::advance();
}
// Invoke the provided callback if we find a symbol use and check for a
// requested interrupt.
if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
if (callback(SymbolTable::SymbolUse(op, symbolRef)).wasInterrupted())
return WalkResult::interrupt();
}
// Pop this container attribute from the worklist.
worklist.pop_back();
return WalkResult::advance();
};
WalkResult result = WalkResult::advance();
do {
Attribute attr = worklist.back().first;
unsigned &index = worklist.back().second;
// Process the given attribute, which is guaranteed to be a container.
if (auto dict = attr.dyn_cast<DictionaryAttr>())
result = processAttrs(index, make_second_range(dict.getValue()));
else
result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
} while (!worklist.empty() && !result.wasInterrupted());
return result;
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables, and will also only return uses on
/// 'from' if it does not also define a symbol table.
static Optional<WalkResult>
walkSymbolUses(Operation *from,
function_ref<WalkResult(SymbolTable::SymbolUse)> callback) {
// If from is not a symbol table, check for uses. A symbol table defines a new
// scope, so we can't walk the attributes from the symbol table op.
if (!from->hasTrait<OpTrait::SymbolTable>()) {
if (walkSymbolRefs(from, callback).wasInterrupted())
return WalkResult::interrupt();
}
SmallVector<Region *, 1> worklist;
worklist.reserve(from->getNumRegions());
for (Region &region : from->getRegions())
worklist.push_back(&region);
while (!worklist.empty()) {
Region *region = worklist.pop_back_val();
for (Block &block : *region) {
for (Operation &op : block) {
if (walkSymbolRefs(&op, callback).wasInterrupted())
return WalkResult::interrupt();
// If this operation has regions, and it as well as its dialect arent't
// registered then conservatively fail. The operation may define a
// symbol table, so we can't opaquely know if we should traverse to find
// nested uses.
if (isPotentiallyUnknownSymbolTable(&op))
return llvm::None;
// If this op defines a new symbol table scope, we can't traverse. Any
// symbol references nested within 'op' are different semantically.
if (!op.hasTrait<OpTrait::SymbolTable>()) {
for (Region &region : op.getRegions())
worklist.push_back(&region);
}
}
}
}
return WalkResult::advance();
}
/// Get an iterator range for all of the uses, for any symbol, that are nested
/// within the given operation 'from'. This does not traverse into any nested
/// symbol tables, and will also only return uses on 'from' if it does not
/// also define a symbol table. This function returns None if there are any
/// unknown operations that may potentially be symbol tables.
auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
std::vector<SymbolUse> uses;
Optional<WalkResult> result = walkSymbolUses(from, [&](SymbolUse symbolUse) {
uses.push_back(symbolUse);
return WalkResult::advance();
});
return result ? Optional<UseRange>(std::move(uses)) : Optional<UseRange>();
}
/// Get all of the uses of the given symbol that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables, and will also only return uses on
/// 'from' if it does not also define a symbol table. This function returns
/// None if there are any unknown operations that may potentially be symbol
/// tables.
auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
-> Optional<UseRange> {
SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext());
std::vector<SymbolUse> uses;
Optional<WalkResult> result = walkSymbolUses(from, [&](SymbolUse symbolUse) {
if (symbolRefAttr == symbolUse.getSymbolRef())
uses.push_back(symbolUse);
return WalkResult::advance();
});
return result ? Optional<UseRange>(std::move(uses)) : Optional<UseRange>();
}
/// Return if the given symbol is known to have no uses that are nested within
/// the given operation 'from'. This does not traverse into any nested symbol
/// tables, and will also only count uses on 'from' if it does not also define
/// a symbol table. This function will also return false if there are any
/// unknown operations that may potentially be symbol tables.
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
SymbolRefAttr symbolRefAttr = SymbolRefAttr::get(symbol, from->getContext());
// Walk all of the symbol uses looking for a reference to 'symbol'.
Optional<WalkResult> walkResult =
walkSymbolUses(from, [&](SymbolUse symbolUse) {
return symbolUse.getSymbolRef() == symbolRefAttr
? WalkResult::interrupt()
: WalkResult::advance();
});
return !walkResult || !walkResult->wasInterrupted();
}