llvm-project/llvm/lib/IR/VFABIDemangler.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

654 lines
24 KiB
C++
Raw Normal View History

//===- VFABIDemangler.cpp - Vector Function ABI demangler -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/VFABIDemangler.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/VectorTypeUtils.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <limits>
using namespace llvm;
#define DEBUG_TYPE "vfabi-demangler"
namespace {
/// Utilities for the Vector Function ABI name parser.
/// Return types for the parser functions.
enum class ParseRet {
OK, // Found.
None, // Not found.
Error // Syntax error.
};
/// Extracts the `<isa>` information from the mangled string, and
/// sets the `ISA` accordingly. If successful, the <isa> token is removed
/// from the input string `MangledName`.
static ParseRet tryParseISA(StringRef &MangledName, VFISAKind &ISA) {
if (MangledName.empty())
return ParseRet::Error;
if (MangledName.consume_front(VFABI::_LLVM_)) {
ISA = VFISAKind::LLVM;
} else {
ISA = StringSwitch<VFISAKind>(MangledName.take_front(1))
.Case("n", VFISAKind::AdvancedSIMD)
.Case("s", VFISAKind::SVE)
.Case("r", VFISAKind::RVV)
.Case("b", VFISAKind::SSE)
.Case("c", VFISAKind::AVX)
.Case("d", VFISAKind::AVX2)
.Case("e", VFISAKind::AVX512)
.Default(VFISAKind::Unknown);
MangledName = MangledName.drop_front(1);
}
return ParseRet::OK;
}
/// Extracts the `<mask>` information from the mangled string, and
/// sets `IsMasked` accordingly. If successful, the <mask> token is removed
/// from the input string `MangledName`.
static ParseRet tryParseMask(StringRef &MangledName, bool &IsMasked) {
if (MangledName.consume_front("M")) {
IsMasked = true;
return ParseRet::OK;
}
if (MangledName.consume_front("N")) {
IsMasked = false;
return ParseRet::OK;
}
return ParseRet::Error;
}
/// Extract the `<vlen>` information from the mangled string, and
/// sets `ParsedVF` accordingly. A `<vlen> == "x"` token is interpreted as a
/// scalable vector length and the boolean is set to true, otherwise a nonzero
/// unsigned integer will be directly used as a VF. On success, the `<vlen>`
/// token is removed from the input string `ParseString`.
static ParseRet tryParseVLEN(StringRef &ParseString, VFISAKind ISA,
std::pair<unsigned, bool> &ParsedVF) {
if (ParseString.consume_front("x")) {
// SVE is the only scalable ISA currently supported.
if (ISA != VFISAKind::SVE && ISA != VFISAKind::RVV) {
LLVM_DEBUG(dbgs() << "Vector function variant declared with scalable VF "
<< "but ISA supported for SVE and RVV only\n");
return ParseRet::Error;
}
// We can't determine the VF of a scalable vector by looking at the vlen
// string (just 'x'), so say we successfully parsed it but return a 'true'
// for the scalable field with an invalid VF field so that we know to look
// up the actual VF based on element types from the parameters or return.
ParsedVF = {0, true};
return ParseRet::OK;
}
unsigned VF = 0;
if (ParseString.consumeInteger(10, VF))
return ParseRet::Error;
[llvm][VectorUtils] Tweak VFShape for scalable vector functions. Summary: This patch makes sure that the field VFShape.VF is greater than zero when demangling the vector function name of scalable vector functions encoded in the "vector-function-abi-variant" attribute. This change is required to be able to provide instances of VFShape that can be used to query the VFDatabase for the vectorization passes, as such passes always require a positive value for the Vectorization Factor (VF) needed by the vectorization process. It is not possible to extract the value of VFShape.VF from the mangled name of scalable vector functions, because it is encoded as `x`. Therefore, the VFABI demangling function has been modified to extract such information from the IR declaration of the vector function, under the assumption that _all_ vectors in the signature of the vector function have the same number of lanes. Such assumption is valid because it is also assumed by the Vector Function ABI specifications supported by the demangling function (x86, AArch64, and LLVM internal one). The unit tests that demangle scalable names have been modified by adding the IR module that carries the declaration of the vector function name being demangled. In particular, the demangling function fails in the following cases: 1. When the declaration of the scalable vector function is not present in the module. 2. When the value of VFSHape.VF is not greater than 0. Reviewers: jdoerfert, sdesmalen, andwar Reviewed By: jdoerfert Subscribers: mgorny, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D73286
2020-01-22 22:34:27 +00:00
// The token `0` is invalid for VLEN.
if (VF == 0)
return ParseRet::Error;
ParsedVF = {VF, false};
return ParseRet::OK;
}
/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
/// <token> <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `Pos` to
/// <number>, and return success. On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
///
/// The function expects <token> to be one of "ls", "Rs", "Us" or
/// "Ls".
static ParseRet tryParseLinearTokenWithRuntimeStep(StringRef &ParseString,
VFParamKind &PKind, int &Pos,
const StringRef Token) {
if (ParseString.consume_front(Token)) {
PKind = VFABI::getVFParamKindFromString(Token);
if (ParseString.consumeInteger(10, Pos))
return ParseRet::Error;
return ParseRet::OK;
}
return ParseRet::None;
}
/// The function looks for the following string at the beginning of
/// the input string `ParseString`:
///
/// <token> <number>
///
/// <token> is one of "ls", "Rs", "Us" or "Ls".
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos` to
/// <number>, and return success. On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseLinearWithRuntimeStep(StringRef &ParseString,
VFParamKind &PKind,
int &StepOrPos) {
ParseRet Ret;
// "ls" <RuntimeStepPos>
Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "ls");
if (Ret != ParseRet::None)
return Ret;
// "Rs" <RuntimeStepPos>
Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Rs");
if (Ret != ParseRet::None)
return Ret;
// "Ls" <RuntimeStepPos>
Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Ls");
if (Ret != ParseRet::None)
return Ret;
// "Us" <RuntimeStepPos>
Ret = tryParseLinearTokenWithRuntimeStep(ParseString, PKind, StepOrPos, "Us");
if (Ret != ParseRet::None)
return Ret;
return ParseRet::None;
}
/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
/// <token> {"n"} <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
/// <number>, and return success. On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
///
/// The function expects <token> to be one of "l", "R", "U" or
/// "L".
static ParseRet tryParseCompileTimeLinearToken(StringRef &ParseString,
VFParamKind &PKind,
int &LinearStep,
const StringRef Token) {
if (ParseString.consume_front(Token)) {
PKind = VFABI::getVFParamKindFromString(Token);
const bool Negate = ParseString.consume_front("n");
if (ParseString.consumeInteger(10, LinearStep))
LinearStep = 1;
if (Negate)
LinearStep *= -1;
return ParseRet::OK;
}
return ParseRet::None;
}
/// The function looks for the following strings at the beginning of
/// the input string `ParseString`:
///
/// ["l" | "R" | "U" | "L"] {"n"} <number>
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `LinearStep` to
/// <number>, and return success. On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseLinearWithCompileTimeStep(StringRef &ParseString,
VFParamKind &PKind,
int &StepOrPos) {
// "l" {"n"} <CompileTimeStep>
if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "l") ==
ParseRet::OK)
return ParseRet::OK;
// "R" {"n"} <CompileTimeStep>
if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "R") ==
ParseRet::OK)
return ParseRet::OK;
// "L" {"n"} <CompileTimeStep>
if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "L") ==
ParseRet::OK)
return ParseRet::OK;
// "U" {"n"} <CompileTimeStep>
if (tryParseCompileTimeLinearToken(ParseString, PKind, StepOrPos, "U") ==
ParseRet::OK)
return ParseRet::OK;
return ParseRet::None;
}
/// Looks into the <parameters> part of the mangled name in search
/// for valid paramaters at the beginning of the string
/// `ParseString`.
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
/// accordingly, and return success. On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseParameter(StringRef &ParseString, VFParamKind &PKind,
int &StepOrPos) {
if (ParseString.consume_front("v")) {
PKind = VFParamKind::Vector;
StepOrPos = 0;
return ParseRet::OK;
}
if (ParseString.consume_front("u")) {
PKind = VFParamKind::OMP_Uniform;
StepOrPos = 0;
return ParseRet::OK;
}
const ParseRet HasLinearRuntime =
tryParseLinearWithRuntimeStep(ParseString, PKind, StepOrPos);
if (HasLinearRuntime != ParseRet::None)
return HasLinearRuntime;
const ParseRet HasLinearCompileTime =
tryParseLinearWithCompileTimeStep(ParseString, PKind, StepOrPos);
if (HasLinearCompileTime != ParseRet::None)
return HasLinearCompileTime;
return ParseRet::None;
}
/// Looks into the <parameters> part of the mangled name in search
/// of a valid 'aligned' clause. The function should be invoked
/// after parsing a parameter via `tryParseParameter`.
///
/// On success, it removes the parsed parameter from `ParseString`,
/// sets `PKind` to the correspondent enum value, sets `StepOrPos`
/// accordingly, and return success. On a syntax error, it return a
/// parsing error. If nothing is parsed, it returns std::nullopt.
static ParseRet tryParseAlign(StringRef &ParseString, Align &Alignment) {
uint64_t Val;
// "a" <number>
if (ParseString.consume_front("a")) {
if (ParseString.consumeInteger(10, Val))
return ParseRet::Error;
if (!isPowerOf2_64(Val))
return ParseRet::Error;
Alignment = Align(Val);
return ParseRet::OK;
}
return ParseRet::None;
}
// Returns the 'natural' VF for a given scalar element type, based on the
// current architecture.
//
// For SVE (currently the only scalable architecture with a defined name
// mangling), we assume a minimum vector size of 128b and return a VF based on
// the number of elements of the given type which would fit in such a vector.
static std::optional<ElementCount> getElementCountForTy(const VFISAKind ISA,
const Type *Ty) {
assert((ISA == VFISAKind::SVE || ISA == VFISAKind::RVV) &&
"Scalable VF decoding only implemented for SVE and RVV\n");
if (Ty->isIntegerTy(64) || Ty->isDoubleTy() || Ty->isPointerTy())
return ElementCount::getScalable(2);
if (Ty->isIntegerTy(32) || Ty->isFloatTy())
return ElementCount::getScalable(4);
if (Ty->isIntegerTy(16) || Ty->is16bitFPTy())
return ElementCount::getScalable(8);
if (Ty->isIntegerTy(8))
return ElementCount::getScalable(16);
return std::nullopt;
[llvm][VectorUtils] Tweak VFShape for scalable vector functions. Summary: This patch makes sure that the field VFShape.VF is greater than zero when demangling the vector function name of scalable vector functions encoded in the "vector-function-abi-variant" attribute. This change is required to be able to provide instances of VFShape that can be used to query the VFDatabase for the vectorization passes, as such passes always require a positive value for the Vectorization Factor (VF) needed by the vectorization process. It is not possible to extract the value of VFShape.VF from the mangled name of scalable vector functions, because it is encoded as `x`. Therefore, the VFABI demangling function has been modified to extract such information from the IR declaration of the vector function, under the assumption that _all_ vectors in the signature of the vector function have the same number of lanes. Such assumption is valid because it is also assumed by the Vector Function ABI specifications supported by the demangling function (x86, AArch64, and LLVM internal one). The unit tests that demangle scalable names have been modified by adding the IR module that carries the declaration of the vector function name being demangled. In particular, the demangling function fails in the following cases: 1. When the declaration of the scalable vector function is not present in the module. 2. When the value of VFSHape.VF is not greater than 0. Reviewers: jdoerfert, sdesmalen, andwar Reviewed By: jdoerfert Subscribers: mgorny, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D73286
2020-01-22 22:34:27 +00:00
}
// Extract the VectorizationFactor from a given function signature, based
// on the widest scalar element types that will become vector parameters.
static std::optional<ElementCount>
getScalableECFromSignature(const FunctionType *Signature, const VFISAKind ISA,
const SmallVectorImpl<VFParameter> &Params) {
// Start with a very wide EC and drop when we find smaller ECs based on type.
ElementCount MinEC =
ElementCount::getScalable(std::numeric_limits<unsigned int>::max());
for (auto &Param : Params) {
// Only vector parameters are used when determining the VF; uniform or
// linear are left as scalars, so do not affect VF.
if (Param.ParamKind == VFParamKind::Vector) {
Type *PTy = Signature->getParamType(Param.ParamPos);
std::optional<ElementCount> EC = getElementCountForTy(ISA, PTy);
// If we have an unknown scalar element type we can't find a reasonable
// VF.
if (!EC)
return std::nullopt;
// Find the smallest VF, based on the widest scalar type.
if (ElementCount::isKnownLT(*EC, MinEC))
MinEC = *EC;
}
}
// Also check the return type if not void.
Type *RetTy = Signature->getReturnType();
if (!RetTy->isVoidTy()) {
// If the return type is a struct, only allow unpacked struct literals.
StructType *StructTy = dyn_cast<StructType>(RetTy);
if (StructTy && !isUnpackedStructLiteral(StructTy))
return std::nullopt;
for (Type *RetTy : getContainedTypes(RetTy)) {
std::optional<ElementCount> ReturnEC = getElementCountForTy(ISA, RetTy);
// If we have an unknown scalar element type we can't find a reasonable
// VF.
if (!ReturnEC)
return std::nullopt;
if (ElementCount::isKnownLT(*ReturnEC, MinEC))
MinEC = *ReturnEC;
}
}
// The SVE Vector function call ABI bases the VF on the widest element types
// present, and vector arguments containing types of that width are always
// considered to be packed. Arguments with narrower elements are considered
// to be unpacked.
if (MinEC.getKnownMinValue() < std::numeric_limits<unsigned int>::max())
return MinEC;
return std::nullopt;
[llvm][VectorUtils] Tweak VFShape for scalable vector functions. Summary: This patch makes sure that the field VFShape.VF is greater than zero when demangling the vector function name of scalable vector functions encoded in the "vector-function-abi-variant" attribute. This change is required to be able to provide instances of VFShape that can be used to query the VFDatabase for the vectorization passes, as such passes always require a positive value for the Vectorization Factor (VF) needed by the vectorization process. It is not possible to extract the value of VFShape.VF from the mangled name of scalable vector functions, because it is encoded as `x`. Therefore, the VFABI demangling function has been modified to extract such information from the IR declaration of the vector function, under the assumption that _all_ vectors in the signature of the vector function have the same number of lanes. Such assumption is valid because it is also assumed by the Vector Function ABI specifications supported by the demangling function (x86, AArch64, and LLVM internal one). The unit tests that demangle scalable names have been modified by adding the IR module that carries the declaration of the vector function name being demangled. In particular, the demangling function fails in the following cases: 1. When the declaration of the scalable vector function is not present in the module. 2. When the value of VFSHape.VF is not greater than 0. Reviewers: jdoerfert, sdesmalen, andwar Reviewed By: jdoerfert Subscribers: mgorny, kristof.beyls, hiraditya, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D73286
2020-01-22 22:34:27 +00:00
}
} // namespace
// Format of the ABI name:
// _ZGV<isa><mask><vlen><parameters>_<scalarname>[(<redirection>)]
std::optional<VFInfo> VFABI::tryDemangleForVFABI(StringRef MangledName,
const FunctionType *FTy) {
const StringRef OriginalName = MangledName;
// Assume there is no custom name <redirection>, and therefore the
// vector name consists of
// _ZGV<isa><mask><vlen><parameters>_<scalarname>.
StringRef VectorName = MangledName;
// Parse the fixed size part of the mangled name
if (!MangledName.consume_front("_ZGV"))
return std::nullopt;
// Extract ISA. An unknow ISA is also supported, so we accept all
// values.
VFISAKind ISA;
if (tryParseISA(MangledName, ISA) != ParseRet::OK)
return std::nullopt;
// Extract <mask>.
bool IsMasked;
if (tryParseMask(MangledName, IsMasked) != ParseRet::OK)
return std::nullopt;
// Parse the variable size, starting from <vlen>.
std::pair<unsigned, bool> ParsedVF;
if (tryParseVLEN(MangledName, ISA, ParsedVF) != ParseRet::OK)
return std::nullopt;
// Parse the <parameters>.
ParseRet ParamFound;
SmallVector<VFParameter, 8> Parameters;
do {
const unsigned ParameterPos = Parameters.size();
VFParamKind PKind;
int StepOrPos;
ParamFound = tryParseParameter(MangledName, PKind, StepOrPos);
// Bail off if there is a parsing error in the parsing of the parameter.
if (ParamFound == ParseRet::Error)
return std::nullopt;
if (ParamFound == ParseRet::OK) {
Align Alignment;
// Look for the alignment token "a <number>".
const ParseRet AlignFound = tryParseAlign(MangledName, Alignment);
// Bail off if there is a syntax error in the align token.
if (AlignFound == ParseRet::Error)
return std::nullopt;
// Add the parameter.
Parameters.push_back({ParameterPos, PKind, StepOrPos, Alignment});
}
} while (ParamFound == ParseRet::OK);
// A valid MangledName must have at least one valid entry in the
// <parameters>.
if (Parameters.empty())
return std::nullopt;
// If the number of arguments of the scalar function does not match the
// vector variant we have just demangled then reject the mapping.
if (Parameters.size() != FTy->getNumParams())
return std::nullopt;
// Figure out the number of lanes in vectors for this function variant. This
// is easy for fixed length, as the vlen encoding just gives us the value
// directly. However, if the vlen mangling indicated that this function
// variant expects scalable vectors we need to work it out based on the
// demangled parameter types and the scalar function signature.
std::optional<ElementCount> EC;
if (ParsedVF.second) {
EC = getScalableECFromSignature(FTy, ISA, Parameters);
if (!EC)
return std::nullopt;
} else
EC = ElementCount::getFixed(ParsedVF.first);
// Check for the <scalarname> and the optional <redirection>, which
// are separated from the prefix with "_"
if (!MangledName.consume_front("_"))
return std::nullopt;
// The rest of the string must be in the format:
// <scalarname>[(<redirection>)]
const StringRef ScalarName =
MangledName.take_while([](char In) { return In != '('; });
if (ScalarName.empty())
return std::nullopt;
// Reduce MangledName to [(<redirection>)].
MangledName = MangledName.ltrim(ScalarName);
// Find the optional custom name redirection.
if (MangledName.consume_front("(")) {
if (!MangledName.consume_back(")"))
return std::nullopt;
// Update the vector variant with the one specified by the user.
VectorName = MangledName;
// If the vector name is missing, bail out.
if (VectorName.empty())
return std::nullopt;
}
// LLVM internal mapping via the TargetLibraryInfo (TLI) must be
// redirected to an existing name.
if (ISA == VFISAKind::LLVM && VectorName == OriginalName)
return std::nullopt;
// When <mask> is "M", we need to add a parameter that is used as
// global predicate for the function.
if (IsMasked) {
const unsigned Pos = Parameters.size();
Parameters.push_back({Pos, VFParamKind::GlobalPredicate});
}
// Asserts for parameters of type `VFParamKind::GlobalPredicate`, as
// prescribed by the Vector Function ABI specifications supported by
// this parser:
// 1. Uniqueness.
// 2. Must be the last in the parameter list.
2022-09-03 11:17:35 -07:00
const auto NGlobalPreds =
llvm::count_if(Parameters, [](const VFParameter &PK) {
return PK.ParamKind == VFParamKind::GlobalPredicate;
});
assert(NGlobalPreds < 2 && "Cannot have more than one global predicate.");
if (NGlobalPreds)
assert(Parameters.back().ParamKind == VFParamKind::GlobalPredicate &&
"The global predicate must be the last parameter");
const VFShape Shape({*EC, Parameters});
return VFInfo({Shape, std::string(ScalarName), std::string(VectorName), ISA});
}
VFParamKind VFABI::getVFParamKindFromString(const StringRef Token) {
const VFParamKind ParamKind = StringSwitch<VFParamKind>(Token)
.Case("v", VFParamKind::Vector)
.Case("l", VFParamKind::OMP_Linear)
.Case("R", VFParamKind::OMP_LinearRef)
.Case("L", VFParamKind::OMP_LinearVal)
.Case("U", VFParamKind::OMP_LinearUVal)
.Case("ls", VFParamKind::OMP_LinearPos)
.Case("Ls", VFParamKind::OMP_LinearValPos)
.Case("Rs", VFParamKind::OMP_LinearRefPos)
.Case("Us", VFParamKind::OMP_LinearUValPos)
.Case("u", VFParamKind::OMP_Uniform)
.Default(VFParamKind::Unknown);
if (ParamKind != VFParamKind::Unknown)
return ParamKind;
// This function should never be invoked with an invalid input.
llvm_unreachable("This fuction should be invoken only on parameters"
" that have a textual representation in the mangled name"
" of the Vector Function ABI");
}
void VFABI::getVectorVariantNames(
const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
if (S.empty())
return;
SmallVector<StringRef, 8> ListAttr;
S.split(ListAttr, ",");
for (const auto &S : SetVector<StringRef>(llvm::from_range, ListAttr)) {
std::optional<VFInfo> Info =
VFABI::tryDemangleForVFABI(S, CI.getFunctionType());
if (Info && CI.getModule()->getFunction(Info->VectorName)) {
LLVM_DEBUG(dbgs() << "VFABI: Adding mapping '" << S << "' for " << CI
<< "\n");
VariantMappings.push_back(std::string(S));
} else
LLVM_DEBUG(dbgs() << "VFABI: Invalid mapping '" << S << "'\n");
}
}
FunctionType *VFABI::createFunctionType(const VFInfo &Info,
const FunctionType *ScalarFTy) {
// Create vector parameter types
SmallVector<Type *, 8> VecTypes;
ElementCount VF = Info.Shape.VF;
int ScalarParamIndex = 0;
for (auto VFParam : Info.Shape.Parameters) {
if (VFParam.ParamKind == VFParamKind::GlobalPredicate) {
VectorType *MaskTy =
VectorType::get(Type::getInt1Ty(ScalarFTy->getContext()), VF);
VecTypes.push_back(MaskTy);
continue;
}
Type *OperandTy = ScalarFTy->getParamType(ScalarParamIndex++);
if (VFParam.ParamKind == VFParamKind::Vector)
OperandTy = VectorType::get(OperandTy, VF);
VecTypes.push_back(OperandTy);
}
auto *RetTy = ScalarFTy->getReturnType();
if (!RetTy->isVoidTy())
RetTy = toVectorizedTy(RetTy, VF);
return FunctionType::get(RetTy, VecTypes, false);
}
void VFABI::setVectorVariantNames(CallInst *CI,
ArrayRef<std::string> VariantMappings) {
if (VariantMappings.empty())
return;
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
for (const std::string &VariantMapping : VariantMappings)
Out << VariantMapping << ",";
// Get rid of the trailing ','.
assert(!Buffer.str().empty() && "Must have at least one char.");
Buffer.pop_back();
Module *M = CI->getModule();
#ifndef NDEBUG
for (const std::string &VariantMapping : VariantMappings) {
LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << VariantMapping << "'\n");
std::optional<VFInfo> VI =
VFABI::tryDemangleForVFABI(VariantMapping, CI->getFunctionType());
assert(VI && "Cannot add an invalid VFABI name.");
assert(M->getNamedValue(VI->VectorName) &&
"Cannot add variant to attribute: "
"vector function declaration is missing.");
}
#endif
CI->addFnAttr(
Attribute::get(M->getContext(), MappingsAttrName, Buffer.str()));
}
bool VFShape::hasValidParameterList() const {
for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
++Pos) {
assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
switch (Parameters[Pos].ParamKind) {
default: // Nothing to check.
break;
case VFParamKind::OMP_Linear:
case VFParamKind::OMP_LinearRef:
case VFParamKind::OMP_LinearVal:
case VFParamKind::OMP_LinearUVal:
// Compile time linear steps must be non-zero.
if (Parameters[Pos].LinearStepOrPos == 0)
return false;
break;
case VFParamKind::OMP_LinearPos:
case VFParamKind::OMP_LinearRefPos:
case VFParamKind::OMP_LinearValPos:
case VFParamKind::OMP_LinearUValPos:
// The runtime linear step must be referring to some other
// parameters in the signature.
if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
return false;
// The linear step parameter must be marked as uniform.
if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
VFParamKind::OMP_Uniform)
return false;
// The linear step parameter can't point at itself.
if (Parameters[Pos].LinearStepOrPos == int(Pos))
return false;
break;
case VFParamKind::GlobalPredicate:
// The global predicate must be the unique. Can be placed anywhere in the
// signature.
for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
return false;
break;
}
}
return true;
}