Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

946 lines
36 KiB
C++
Raw Normal View History

//===--- Preamble.cpp - Reusing expensive parts of the AST ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Preamble.h"
#include "CollectMacros.h"
#include "Compiler.h"
#include "Config.h"
#include "Diagnostics.h"
#include "Headers.h"
#include "Protocol.h"
#include "SourceCode.h"
#include "clang-include-cleaner/Record.h"
#include "support/Logger.h"
#include "support/Path.h"
#include "support/ThreadsafeFS.h"
#include "support/Trace.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticLex.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/CompilerInvocation.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Frontend/PrecompiledPreamble.h"
#include "clang/Lex/HeaderSearch.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Serialization/ASTReader.h"
#include "clang/Tooling/CompilationDatabase.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/IntrusiveRefCntPtr.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <functional>
#include <memory>
#include <optional>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
#include <vector>
namespace clang {
namespace clangd {
namespace {
bool compileCommandsAreEqual(const tooling::CompileCommand &LHS,
const tooling::CompileCommand &RHS) {
// We don't check for Output, it should not matter to clangd.
return LHS.Directory == RHS.Directory && LHS.Filename == RHS.Filename &&
llvm::ArrayRef(LHS.CommandLine).equals(RHS.CommandLine);
}
class CppFilePreambleCallbacks : public PreambleCallbacks {
public:
CppFilePreambleCallbacks(
PathRef File, PreambleBuildStats *Stats, bool ParseForwardingFunctions,
std::function<void(CompilerInstance &)> BeforeExecuteCallback)
: File(File), Stats(Stats),
ParseForwardingFunctions(ParseForwardingFunctions),
BeforeExecuteCallback(std::move(BeforeExecuteCallback)) {}
IncludeStructure takeIncludes() { return std::move(Includes); }
MainFileMacros takeMacros() { return std::move(Macros); }
std::vector<PragmaMark> takeMarks() { return std::move(Marks); }
include_cleaner::PragmaIncludes takePragmaIncludes() {
return std::move(Pragmas);
}
std::optional<CapturedASTCtx> takeLife() { return std::move(CapturedCtx); }
bool isMainFileIncludeGuarded() const { return IsMainFileIncludeGuarded; }
void AfterExecute(CompilerInstance &CI) override {
// As part of the Preamble compilation, ASTConsumer
// PrecompilePreambleConsumer/PCHGenerator is setup. This would be called
// when Preamble consists of modules. Therefore while capturing AST context,
// we have to reset ast consumer and ASTMutationListener.
if (CI.getASTReader()) {
CI.getASTReader()->setDeserializationListener(nullptr);
// This just sets consumer to null when DeserializationListener is null.
CI.getASTReader()->StartTranslationUnit(nullptr);
}
CI.getASTContext().setASTMutationListener(nullptr);
CapturedCtx.emplace(CI);
const SourceManager &SM = CI.getSourceManager();
const FileEntry *MainFE = SM.getFileEntryForID(SM.getMainFileID());
IsMainFileIncludeGuarded =
CI.getPreprocessor().getHeaderSearchInfo().isFileMultipleIncludeGuarded(
MainFE);
if (Stats) {
const ASTContext &AST = CI.getASTContext();
Stats->BuildSize = AST.getASTAllocatedMemory();
Stats->BuildSize += AST.getSideTableAllocatedMemory();
Stats->BuildSize += AST.Idents.getAllocator().getTotalMemory();
Stats->BuildSize += AST.Selectors.getTotalMemory();
Stats->BuildSize += AST.getSourceManager().getContentCacheSize();
Stats->BuildSize += AST.getSourceManager().getDataStructureSizes();
Stats->BuildSize +=
AST.getSourceManager().getMemoryBufferSizes().malloc_bytes;
const Preprocessor &PP = CI.getPreprocessor();
Stats->BuildSize += PP.getTotalMemory();
if (PreprocessingRecord *PRec = PP.getPreprocessingRecord())
Stats->BuildSize += PRec->getTotalMemory();
Stats->BuildSize += PP.getHeaderSearchInfo().getTotalMemory();
}
}
void BeforeExecute(CompilerInstance &CI) override {
LangOpts = &CI.getLangOpts();
SourceMgr = &CI.getSourceManager();
PP = &CI.getPreprocessor();
Includes.collect(CI);
Pragmas.record(CI);
if (BeforeExecuteCallback)
BeforeExecuteCallback(CI);
}
std::unique_ptr<PPCallbacks> createPPCallbacks() override {
assert(SourceMgr && LangOpts && PP &&
"SourceMgr, LangOpts and PP must be set at this point");
return std::make_unique<PPChainedCallbacks>(
std::make_unique<CollectMainFileMacros>(*PP, Macros),
collectPragmaMarksCallback(*SourceMgr, Marks));
}
static bool isLikelyForwardingFunction(FunctionTemplateDecl *FT) {
const auto *FD = FT->getTemplatedDecl();
const auto NumParams = FD->getNumParams();
// Check whether its last parameter is a parameter pack...
if (NumParams > 0) {
const auto *LastParam = FD->getParamDecl(NumParams - 1);
if (const auto *PET = dyn_cast<PackExpansionType>(LastParam->getType())) {
// ... of the type T&&... or T...
const auto BaseType = PET->getPattern().getNonReferenceType();
if (const auto *TTPT =
dyn_cast<TemplateTypeParmType>(BaseType.getTypePtr())) {
// ... whose template parameter comes from the function directly
if (FT->getTemplateParameters()->getDepth() == TTPT->getDepth()) {
return true;
}
}
}
}
return false;
}
bool shouldSkipFunctionBody(Decl *D) override {
// Usually we don't need to look inside the bodies of header functions
// to understand the program. However when forwarding function like
// emplace() forward their arguments to some other function, the
// interesting overload resolution happens inside the forwarding
// function's body. To provide more meaningful diagnostics,
// code completion, and parameter hints we should parse (and later
// instantiate) the bodies.
if (auto *FT = llvm::dyn_cast<clang::FunctionTemplateDecl>(D)) {
if (ParseForwardingFunctions) {
// Don't skip parsing the body if it looks like a forwarding function
if (isLikelyForwardingFunction(FT))
return false;
} else {
// By default, only take care of make_unique
// std::make_unique is trivial, and we diagnose bad constructor calls.
if (const auto *II = FT->getDeclName().getAsIdentifierInfo()) {
if (II->isStr("make_unique") && FT->isInStdNamespace())
return false;
}
}
}
return true;
}
private:
PathRef File;
IncludeStructure Includes;
include_cleaner::PragmaIncludes Pragmas;
MainFileMacros Macros;
std::vector<PragmaMark> Marks;
bool IsMainFileIncludeGuarded = false;
const clang::LangOptions *LangOpts = nullptr;
const SourceManager *SourceMgr = nullptr;
const Preprocessor *PP = nullptr;
PreambleBuildStats *Stats;
bool ParseForwardingFunctions;
std::function<void(CompilerInstance &)> BeforeExecuteCallback;
std::optional<CapturedASTCtx> CapturedCtx;
};
// Represents directives other than includes, where basic textual information is
// enough.
struct TextualPPDirective {
unsigned DirectiveLine;
// Full text that's representing the directive, including the `#`.
std::string Text;
unsigned Offset;
tok::PPKeywordKind Directive = tok::PPKeywordKind::pp_not_keyword;
// Name of the macro being defined in the case of a #define directive.
std::string MacroName;
bool operator==(const TextualPPDirective &RHS) const {
return std::tie(DirectiveLine, Offset, Text) ==
std::tie(RHS.DirectiveLine, RHS.Offset, RHS.Text);
}
};
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
// Formats a PP directive consisting of Prefix (e.g. "#define ") and Body ("X
// 10"). The formatting is copied so that the tokens in Body have PresumedLocs
// with correct columns and lines.
std::string spellDirective(llvm::StringRef Prefix,
CharSourceRange DirectiveRange,
const LangOptions &LangOpts, const SourceManager &SM,
unsigned &DirectiveLine, unsigned &Offset) {
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
std::string SpelledDirective;
llvm::raw_string_ostream OS(SpelledDirective);
OS << Prefix;
// Make sure DirectiveRange is a char range and doesn't contain macro ids.
DirectiveRange = SM.getExpansionRange(DirectiveRange);
if (DirectiveRange.isTokenRange()) {
DirectiveRange.setEnd(
Lexer::getLocForEndOfToken(DirectiveRange.getEnd(), 0, SM, LangOpts));
}
auto DecompLoc = SM.getDecomposedLoc(DirectiveRange.getBegin());
DirectiveLine = SM.getLineNumber(DecompLoc.first, DecompLoc.second);
Offset = DecompLoc.second;
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
auto TargetColumn = SM.getColumnNumber(DecompLoc.first, DecompLoc.second) - 1;
// Pad with spaces before DirectiveRange to make sure it will be on right
// column when patched.
if (Prefix.size() <= TargetColumn) {
// There is enough space for Prefix and space before directive, use it.
// We try to squeeze the Prefix into the same line whenever we can, as
// putting onto a separate line won't work at the beginning of the file.
OS << std::string(TargetColumn - Prefix.size(), ' ');
} else {
// Prefix was longer than the space we had. We produce e.g.:
// #line N-1
// #define \
// X 10
OS << "\\\n" << std::string(TargetColumn, ' ');
// Decrement because we put an additional line break before
// DirectiveRange.begin().
--DirectiveLine;
}
OS << toSourceCode(SM, DirectiveRange.getAsRange());
return OS.str();
}
// Collects #define directives inside the main file.
struct DirectiveCollector : public PPCallbacks {
DirectiveCollector(const Preprocessor &PP,
std::vector<TextualPPDirective> &TextualDirectives)
: LangOpts(PP.getLangOpts()), SM(PP.getSourceManager()),
TextualDirectives(TextualDirectives) {}
void FileChanged(SourceLocation Loc, FileChangeReason Reason,
SrcMgr::CharacteristicKind FileType,
FileID PrevFID) override {
InMainFile = SM.isWrittenInMainFile(Loc);
}
void MacroDefined(const Token &MacroNameTok,
const MacroDirective *MD) override {
if (!InMainFile)
return;
TextualDirectives.emplace_back();
TextualPPDirective &TD = TextualDirectives.back();
TD.Directive = tok::pp_define;
TD.MacroName = MacroNameTok.getIdentifierInfo()->getName().str();
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
const auto *MI = MD->getMacroInfo();
TD.Text =
spellDirective("#define ",
CharSourceRange::getTokenRange(
MI->getDefinitionLoc(), MI->getDefinitionEndLoc()),
LangOpts, SM, TD.DirectiveLine, TD.Offset);
}
private:
bool InMainFile = true;
const LangOptions &LangOpts;
const SourceManager &SM;
std::vector<TextualPPDirective> &TextualDirectives;
};
struct ScannedPreamble {
std::vector<Inclusion> Includes;
std::vector<TextualPPDirective> TextualDirectives;
// Literal lines of the preamble contents.
std::vector<llvm::StringRef> Lines;
PreambleBounds Bounds = {0, false};
std::vector<PragmaMark> Marks;
MainFileMacros Macros;
};
/// Scans the preprocessor directives in the preamble section of the file by
/// running preprocessor over \p Contents. Returned includes do not contain
/// resolved paths. \p Cmd is used to build the compiler invocation, which might
/// stat/read files.
llvm::Expected<ScannedPreamble>
scanPreamble(llvm::StringRef Contents, const tooling::CompileCommand &Cmd) {
class EmptyFS : public ThreadsafeFS {
private:
llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> viewImpl() const override {
return new llvm::vfs::InMemoryFileSystem;
}
};
EmptyFS FS;
// Build and run Preprocessor over the preamble.
ParseInputs PI;
// Memory buffers below expect null-terminated && non-null strings. So make
// sure to always use PI.Contents!
PI.Contents = Contents.str();
PI.TFS = &FS;
PI.CompileCommand = Cmd;
IgnoringDiagConsumer IgnoreDiags;
auto CI = buildCompilerInvocation(PI, IgnoreDiags);
if (!CI)
return error("failed to create compiler invocation");
CI->getDiagnosticOpts().IgnoreWarnings = true;
auto ContentsBuffer = llvm::MemoryBuffer::getMemBuffer(PI.Contents);
// This means we're scanning (though not preprocessing) the preamble section
// twice. However, it's important to precisely follow the preamble bounds used
// elsewhere.
auto Bounds = ComputePreambleBounds(*CI->getLangOpts(), *ContentsBuffer, 0);
auto PreambleContents = llvm::MemoryBuffer::getMemBufferCopy(
llvm::StringRef(PI.Contents).take_front(Bounds.Size));
auto Clang = prepareCompilerInstance(
std::move(CI), nullptr, std::move(PreambleContents),
// Provide an empty FS to prevent preprocessor from performing IO. This
// also implies missing resolved paths for includes.
FS.view(std::nullopt), IgnoreDiags);
if (Clang->getFrontendOpts().Inputs.empty())
return error("compiler instance had no inputs");
// We are only interested in main file includes.
Clang->getPreprocessorOpts().SingleFileParseMode = true;
Clang->getPreprocessorOpts().UsePredefines = false;
PreprocessOnlyAction Action;
if (!Action.BeginSourceFile(*Clang, Clang->getFrontendOpts().Inputs[0]))
return error("failed BeginSourceFile");
Preprocessor &PP = Clang->getPreprocessor();
const auto &SM = PP.getSourceManager();
IncludeStructure Includes;
Includes.collect(*Clang);
ScannedPreamble SP;
SP.Bounds = Bounds;
PP.addPPCallbacks(
std::make_unique<DirectiveCollector>(PP, SP.TextualDirectives));
PP.addPPCallbacks(collectPragmaMarksCallback(SM, SP.Marks));
PP.addPPCallbacks(std::make_unique<CollectMainFileMacros>(PP, SP.Macros));
if (llvm::Error Err = Action.Execute())
return std::move(Err);
Action.EndSourceFile();
SP.Includes = std::move(Includes.MainFileIncludes);
llvm::append_range(SP.Lines, llvm::split(Contents, "\n"));
return SP;
}
const char *spellingForIncDirective(tok::PPKeywordKind IncludeDirective) {
switch (IncludeDirective) {
case tok::pp_include:
return "include";
case tok::pp_import:
return "import";
case tok::pp_include_next:
return "include_next";
default:
break;
}
llvm_unreachable("not an include directive");
}
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
// Accumulating wall time timer. Similar to llvm::Timer, but much cheaper,
// it only tracks wall time.
// Since this is a generic timer, We may want to move this to support/ if we
// find a use case outside of FS time tracking.
class WallTimer {
public:
WallTimer() : TotalTime(std::chrono::steady_clock::duration::zero()) {}
// [Re-]Start the timer.
void startTimer() { StartTime = std::chrono::steady_clock::now(); }
// Stop the timer and update total time.
void stopTimer() {
TotalTime += std::chrono::steady_clock::now() - StartTime;
}
// Return total time, in seconds.
double getTime() { return std::chrono::duration<double>(TotalTime).count(); }
private:
std::chrono::steady_clock::duration TotalTime;
std::chrono::steady_clock::time_point StartTime;
};
class WallTimerRegion {
public:
WallTimerRegion(WallTimer &T) : T(T) { T.startTimer(); }
~WallTimerRegion() { T.stopTimer(); }
private:
WallTimer &T;
};
// Used by TimerFS, tracks time spent in status() and getBuffer() calls while
// proxying to underlying File implementation.
class TimerFile : public llvm::vfs::File {
public:
TimerFile(WallTimer &Timer, std::unique_ptr<File> InnerFile)
: Timer(Timer), InnerFile(std::move(InnerFile)) {}
llvm::ErrorOr<llvm::vfs::Status> status() override {
WallTimerRegion T(Timer);
return InnerFile->status();
}
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>>
getBuffer(const Twine &Name, int64_t FileSize, bool RequiresNullTerminator,
bool IsVolatile) override {
WallTimerRegion T(Timer);
return InnerFile->getBuffer(Name, FileSize, RequiresNullTerminator,
IsVolatile);
}
std::error_code close() override {
WallTimerRegion T(Timer);
return InnerFile->close();
}
private:
WallTimer &Timer;
std::unique_ptr<llvm::vfs::File> InnerFile;
};
// A wrapper for FileSystems that tracks the amount of time spent in status()
// and openFileForRead() calls.
class TimerFS : public llvm::vfs::ProxyFileSystem {
public:
TimerFS(llvm::IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS)
: ProxyFileSystem(std::move(FS)) {}
llvm::ErrorOr<std::unique_ptr<llvm::vfs::File>>
openFileForRead(const llvm::Twine &Path) override {
WallTimerRegion T(Timer);
auto FileOr = getUnderlyingFS().openFileForRead(Path);
if (!FileOr)
return FileOr;
return std::make_unique<TimerFile>(Timer, std::move(FileOr.get()));
}
llvm::ErrorOr<llvm::vfs::Status> status(const llvm::Twine &Path) override {
WallTimerRegion T(Timer);
return getUnderlyingFS().status(Path);
}
double getTime() { return Timer.getTime(); }
private:
WallTimer Timer;
};
// Helpers for patching diagnostics between two versions of file contents.
class DiagPatcher {
llvm::ArrayRef<llvm::StringRef> OldLines;
llvm::ArrayRef<llvm::StringRef> CurrentLines;
llvm::StringMap<llvm::SmallVector<int>> CurrentContentsToLine;
// Translates a range from old lines to current lines.
// Finds the consecutive set of lines that corresponds to the same contents in
// old and current, and applies the same translation to the range.
// Returns true if translation succeeded.
bool translateRange(Range &R) {
int OldStart = R.start.line;
int OldEnd = R.end.line;
assert(OldStart <= OldEnd);
size_t RangeLen = OldEnd - OldStart + 1;
auto RangeContents = OldLines.slice(OldStart).take_front(RangeLen);
// Make sure the whole range is covered in old contents.
if (RangeContents.size() < RangeLen)
return false;
std::optional<int> Closest;
for (int AlternateLine : CurrentContentsToLine.lookup(RangeContents[0])) {
// Check if AlternateLine matches all lines in the range.
if (RangeContents !=
CurrentLines.slice(AlternateLine).take_front(RangeLen))
continue;
int Delta = AlternateLine - OldStart;
if (!Closest.has_value() || abs(Delta) < abs(*Closest))
Closest = Delta;
}
// Couldn't find any viable matches in the current contents.
if (!Closest.has_value())
return false;
R.start.line += *Closest;
R.end.line += *Closest;
return true;
}
// Translates a Note by patching its range when inside main file. Returns true
// on success.
bool translateNote(Note &N) {
if (!N.InsideMainFile)
return true;
if (translateRange(N.Range))
return true;
return false;
}
// Tries to translate all the edit ranges inside the fix. Returns true on
// success. On failure fixes might be in an invalid state.
bool translateFix(Fix &F) {
return llvm::all_of(
F.Edits, [this](TextEdit &E) { return translateRange(E.range); });
}
public:
DiagPatcher(llvm::ArrayRef<llvm::StringRef> OldLines,
llvm::ArrayRef<llvm::StringRef> CurrentLines) {
this->OldLines = OldLines;
this->CurrentLines = CurrentLines;
for (int Line = 0, E = CurrentLines.size(); Line != E; ++Line) {
llvm::StringRef Contents = CurrentLines[Line];
CurrentContentsToLine[Contents].push_back(Line);
}
}
// Translate diagnostic by moving its main range to new location (if inside
// the main file). Preserve all the notes and fixes that can be translated to
// new contents.
// Drops the whole diagnostic if main range can't be patched.
std::optional<Diag> translateDiag(const Diag &D) {
Range NewRange = D.Range;
// Patch range if it's inside main file.
if (D.InsideMainFile && !translateRange(NewRange)) {
// Drop the diagnostic if we couldn't patch the range.
return std::nullopt;
}
Diag NewD = D;
NewD.Range = NewRange;
// Translate ranges inside notes and fixes too, dropping the ones that are
// no longer relevant.
llvm::erase_if(NewD.Notes, [this](Note &N) { return !translateNote(N); });
llvm::erase_if(NewD.Fixes, [this](Fix &F) { return !translateFix(F); });
return NewD;
}
};
} // namespace
std::shared_ptr<const PreambleData>
buildPreamble(PathRef FileName, CompilerInvocation CI,
const ParseInputs &Inputs, bool StoreInMemory,
PreambleParsedCallback PreambleCallback,
PreambleBuildStats *Stats) {
// Note that we don't need to copy the input contents, preamble can live
// without those.
auto ContentsBuffer =
llvm::MemoryBuffer::getMemBuffer(Inputs.Contents, FileName);
auto Bounds = ComputePreambleBounds(*CI.getLangOpts(), *ContentsBuffer, 0);
trace::Span Tracer("BuildPreamble");
SPAN_ATTACH(Tracer, "File", FileName);
std::vector<std::unique_ptr<FeatureModule::ASTListener>> ASTListeners;
if (Inputs.FeatureModules) {
for (auto &M : *Inputs.FeatureModules) {
if (auto Listener = M.astListeners())
ASTListeners.emplace_back(std::move(Listener));
}
}
StoreDiags PreambleDiagnostics;
PreambleDiagnostics.setDiagCallback(
[&ASTListeners](const clang::Diagnostic &D, clangd::Diag &Diag) {
llvm::for_each(ASTListeners,
[&](const auto &L) { L->sawDiagnostic(D, Diag); });
});
llvm::IntrusiveRefCntPtr<DiagnosticsEngine> PreambleDiagsEngine =
CompilerInstance::createDiagnostics(&CI.getDiagnosticOpts(),
&PreambleDiagnostics, false);
const Config &Cfg = Config::current();
PreambleDiagnostics.setLevelAdjuster([&](DiagnosticsEngine::Level DiagLevel,
const clang::Diagnostic &Info) {
if (Cfg.Diagnostics.SuppressAll ||
isBuiltinDiagnosticSuppressed(Info.getID(), Cfg.Diagnostics.Suppress,
*CI.getLangOpts()))
return DiagnosticsEngine::Ignored;
switch (Info.getID()) {
case diag::warn_no_newline_eof:
case diag::warn_cxx98_compat_no_newline_eof:
case diag::ext_no_newline_eof:
// If the preamble doesn't span the whole file, drop the no newline at
// eof warnings.
return Bounds.Size != ContentsBuffer->getBufferSize()
? DiagnosticsEngine::Level::Ignored
: DiagLevel;
}
return DiagLevel;
});
// Skip function bodies when building the preamble to speed up building
// the preamble and make it smaller.
assert(!CI.getFrontendOpts().SkipFunctionBodies);
CI.getFrontendOpts().SkipFunctionBodies = true;
// We don't want to write comment locations into PCH. They are racy and slow
// to read back. We rely on dynamic index for the comments instead.
CI.getPreprocessorOpts().WriteCommentListToPCH = false;
CppFilePreambleCallbacks CapturedInfo(
FileName, Stats, Inputs.Opts.PreambleParseForwardingFunctions,
[&ASTListeners](CompilerInstance &CI) {
for (const auto &L : ASTListeners)
L->beforeExecute(CI);
});
auto VFS = Inputs.TFS->view(Inputs.CompileCommand.Directory);
llvm::SmallString<32> AbsFileName(FileName);
VFS->makeAbsolute(AbsFileName);
auto StatCache = std::make_shared<PreambleFileStatusCache>(AbsFileName);
auto StatCacheFS = StatCache->getProducingFS(VFS);
llvm::IntrusiveRefCntPtr<TimerFS> TimedFS(new TimerFS(StatCacheFS));
WallTimer PreambleTimer;
PreambleTimer.startTimer();
auto BuiltPreamble = PrecompiledPreamble::Build(
CI, ContentsBuffer.get(), Bounds, *PreambleDiagsEngine,
Stats ? TimedFS : StatCacheFS, std::make_shared<PCHContainerOperations>(),
[libclang] Add API to override preamble storage path TempPCHFile::create() calls llvm::sys::fs::createTemporaryFile() to create a file named preamble-*.pch in a system temporary directory. This commit allows overriding the directory where these often many and large preamble-*.pch files are stored. The referenced bug report requests the ability to override the temporary directory path used by libclang. However, overriding the return value of llvm::sys::path::system_temp_directory() was rejected during code review as improper and because it would negatively affect multithreading performance. Finding all places where libclang uses the temporary directory is very difficult. Therefore this commit is limited to override libclang's single known use of the temporary directory. This commit allows to override the preamble storage path only during CXIndex construction to avoid multithreading issues and ensure that all preambles are stored in the same directory. For the same multithreading and consistency reasons, this commit deprecates clang_CXIndex_setGlobalOptions() and clang_CXIndex_setInvocationEmissionPathOption() in favor of specifying these options during CXIndex construction. Adding a new CXIndex constructor function each time a new initialization argument is needed leads to either a large number of function parameters unneeded by most libclang users or to an exponential number of overloads that support different usage requirements. Therefore this commit introduces a new extensible struct CXIndexOptions and a general function clang_createIndexWithOptions(). A libclang user passes a desired preamble storage path to clang_createIndexWithOptions(), which stores it in CIndexer::PreambleStoragePath. Whenever clang_parseTranslationUnit_Impl() is called, it passes CIndexer::PreambleStoragePath to ASTUnit::LoadFromCommandLine(), which stores this argument in ASTUnit::PreambleStoragePath. Whenever ASTUnit::getMainBufferWithPrecompiledPreamble() is called, it passes ASTUnit::PreambleStoragePath to PrecompiledPreamble::Build(). PrecompiledPreamble::Build() forwards the corresponding StoragePath argument to TempPCHFile::create(). If StoragePath is not empty, TempPCHFile::create() stores the preamble-*.pch file in the directory at the specified path rather than in the system temporary directory. The analysis below proves that this passing around of the PreambleStoragePath string is sufficient to guarantee that the libclang user override is used in TempPCHFile::create(). The analysis ignores API uses in test code. TempPCHFile::create() is called only in PrecompiledPreamble::Build(). PrecompiledPreamble::Build() is called only in two places: one in clangd, which is not used by libclang, and one in ASTUnit::getMainBufferWithPrecompiledPreamble(). ASTUnit::getMainBufferWithPrecompiledPreamble() is called in 3 places: ASTUnit::LoadFromCompilerInvocation() [analyzed below]. ASTUnit::Reparse(), which in turn is called only from clang_reparseTranslationUnit_Impl(), which in turn is called only from clang_reparseTranslationUnit(). clang_reparseTranslationUnit() is never called in LLVM code, but is part of public libclang API. This function's documentation requires its translation unit argument to have been built with clang_createTranslationUnitFromSourceFile(). clang_createTranslationUnitFromSourceFile() delegates its work to clang_parseTranslationUnit(), which delegates to clang_parseTranslationUnit2(), which delegates to clang_parseTranslationUnit2FullArgv(), which delegates to clang_parseTranslationUnit_Impl(), which passes CIndexer::PreambleStoragePath to the ASTUnit it creates. ASTUnit::CodeComplete() passes AllowRebuild = false to ASTUnit::getMainBufferWithPrecompiledPreamble(), which makes it return nullptr before calling PrecompiledPreamble::Build(). Both ASTUnit::LoadFromCompilerInvocation() overloads (one of which delegates its work to another) call ASTUnit::getMainBufferWithPrecompiledPreamble() only if their argument PrecompilePreambleAfterNParses > 0. LoadFromCompilerInvocation() is called in: ASTBuilderAction::runInvocation() keeps the default parameter value of PrecompilePreambleAfterNParses = 0, meaning that the preamble file is never created from here. ASTUnit::LoadFromCommandLine(). ASTUnit::LoadFromCommandLine() is called in two places: CrossTranslationUnitContext::ASTLoader::loadFromSource() keeps the default parameter value of PrecompilePreambleAfterNParses = 0, meaning that the preamble file is never created from here. clang_parseTranslationUnit_Impl(), which passes CIndexer::PreambleStoragePath to the ASTUnit it creates. Therefore, the overridden preamble storage path is always used in TempPCHFile::create(). TempPCHFile::create() uses PreambleStoragePath in the same way as LibclangInvocationReporter() uses InvocationEmissionPath. The existing documentation for clang_CXIndex_setInvocationEmissionPathOption() does not specify ownership, encoding, separator or relative vs absolute path requirements. So the documentation for CXIndexOptions::PreambleStoragePath doesn't either. The assumptions are: no ownership transfer; UTF-8 encoding; native separators. Both relative and absolute paths are supported. The added API works as expected in KDevelop: https://invent.kde.org/kdevelop/kdevelop/-/merge_requests/283 Fixes: https://github.com/llvm/llvm-project/issues/51847 Differential Revision: https://reviews.llvm.org/D143418
2023-03-07 08:24:23 -05:00
StoreInMemory, /*StoragePath=*/StringRef(), CapturedInfo);
PreambleTimer.stopTimer();
// When building the AST for the main file, we do want the function
// bodies.
CI.getFrontendOpts().SkipFunctionBodies = false;
if (Stats != nullptr) {
Stats->TotalBuildTime = PreambleTimer.getTime();
Stats->FileSystemTime = TimedFS->getTime();
Stats->SerializedSize = BuiltPreamble ? BuiltPreamble->getSize() : 0;
}
if (BuiltPreamble) {
log("Built preamble of size {0} for file {1} version {2} in {3} seconds",
BuiltPreamble->getSize(), FileName, Inputs.Version,
PreambleTimer.getTime());
std::vector<Diag> Diags = PreambleDiagnostics.take();
auto Result = std::make_shared<PreambleData>(std::move(*BuiltPreamble));
Result->Version = Inputs.Version;
Result->CompileCommand = Inputs.CompileCommand;
Result->Diags = std::move(Diags);
Result->Includes = CapturedInfo.takeIncludes();
Result->Pragmas = std::make_shared<const include_cleaner::PragmaIncludes>(
CapturedInfo.takePragmaIncludes());
Result->Macros = CapturedInfo.takeMacros();
Result->Marks = CapturedInfo.takeMarks();
Result->StatCache = StatCache;
Result->MainIsIncludeGuarded = CapturedInfo.isMainFileIncludeGuarded();
if (PreambleCallback) {
trace::Span Tracer("Running PreambleCallback");
auto Ctx = CapturedInfo.takeLife();
// Stat cache is thread safe only when there are no producers. Hence
// change the VFS underneath to a consuming fs.
Ctx->getFileManager().setVirtualFileSystem(
Result->StatCache->getConsumingFS(VFS));
// While extending the life of FileMgr and VFS, StatCache should also be
// extended.
Ctx->setStatCache(Result->StatCache);
PreambleCallback(std::move(*Ctx), Result->Pragmas);
}
return Result;
}
elog("Could not build a preamble for file {0} version {1}: {2}", FileName,
Inputs.Version, BuiltPreamble.getError().message());
for (const Diag &D : PreambleDiagnostics.take()) {
if (D.Severity < DiagnosticsEngine::Error)
continue;
// Not an ideal way to show errors, but better than nothing!
elog(" error: {0}", D.Message);
}
return nullptr;
}
bool isPreambleCompatible(const PreambleData &Preamble,
const ParseInputs &Inputs, PathRef FileName,
const CompilerInvocation &CI) {
auto ContentsBuffer =
llvm::MemoryBuffer::getMemBuffer(Inputs.Contents, FileName);
auto Bounds = ComputePreambleBounds(*CI.getLangOpts(), *ContentsBuffer, 0);
auto VFS = Inputs.TFS->view(Inputs.CompileCommand.Directory);
return compileCommandsAreEqual(Inputs.CompileCommand,
Preamble.CompileCommand) &&
Preamble.Preamble.CanReuse(CI, *ContentsBuffer, Bounds, *VFS);
}
void escapeBackslashAndQuotes(llvm::StringRef Text, llvm::raw_ostream &OS) {
for (char C : Text) {
switch (C) {
case '\\':
case '"':
OS << '\\';
break;
default:
break;
}
OS << C;
}
}
// Translate diagnostics from baseline into modified for the lines that have the
// same spelling.
static std::vector<Diag> patchDiags(llvm::ArrayRef<Diag> BaselineDiags,
const ScannedPreamble &BaselineScan,
const ScannedPreamble &ModifiedScan) {
std::vector<Diag> PatchedDiags;
if (BaselineDiags.empty())
return PatchedDiags;
DiagPatcher Patcher(BaselineScan.Lines, ModifiedScan.Lines);
for (auto &D : BaselineDiags) {
if (auto NewD = Patcher.translateDiag(D))
PatchedDiags.emplace_back(std::move(*NewD));
}
return PatchedDiags;
}
static std::string getPatchName(llvm::StringRef FileName) {
// This shouldn't coincide with any real file name.
llvm::SmallString<128> PatchName;
llvm::sys::path::append(PatchName, llvm::sys::path::parent_path(FileName),
PreamblePatch::HeaderName);
return PatchName.str().str();
}
PreamblePatch PreamblePatch::create(llvm::StringRef FileName,
const ParseInputs &Modified,
const PreambleData &Baseline,
PatchType PatchType) {
trace::Span Tracer("CreatePreamblePatch");
SPAN_ATTACH(Tracer, "File", FileName);
assert(llvm::sys::path::is_absolute(FileName) && "relative FileName!");
// First scan preprocessor directives in Baseline and Modified. These will be
// used to figure out newly added directives in Modified. Scanning can fail,
// the code just bails out and creates an empty patch in such cases, as:
// - If scanning for Baseline fails, no knowledge of existing includes hence
// patch will contain all the includes in Modified. Leading to rebuild of
// whole preamble, which is terribly slow.
// - If scanning for Modified fails, cannot figure out newly added ones so
// there's nothing to do but generate an empty patch.
auto BaselineScan =
scanPreamble(Baseline.Preamble.getContents(), Modified.CompileCommand);
if (!BaselineScan) {
elog("Failed to scan baseline of {0}: {1}", FileName,
BaselineScan.takeError());
return PreamblePatch::unmodified(Baseline);
}
auto ModifiedScan = scanPreamble(Modified.Contents, Modified.CompileCommand);
if (!ModifiedScan) {
elog("Failed to scan modified contents of {0}: {1}", FileName,
ModifiedScan.takeError());
return PreamblePatch::unmodified(Baseline);
}
bool IncludesChanged = BaselineScan->Includes != ModifiedScan->Includes;
bool DirectivesChanged =
BaselineScan->TextualDirectives != ModifiedScan->TextualDirectives;
if ((PatchType == PatchType::MacroDirectives || !IncludesChanged) &&
!DirectivesChanged)
return PreamblePatch::unmodified(Baseline);
PreamblePatch PP;
PP.Baseline = &Baseline;
PP.PatchFileName = getPatchName(FileName);
PP.ModifiedBounds = ModifiedScan->Bounds;
llvm::raw_string_ostream Patch(PP.PatchContents);
// Set default filename for subsequent #line directives
Patch << "#line 0 \"";
// FileName part of a line directive is subject to backslash escaping, which
// might lead to problems on windows especially.
escapeBackslashAndQuotes(FileName, Patch);
Patch << "\"\n";
if (IncludesChanged && PatchType == PatchType::All) {
// We are only interested in newly added includes, record the ones in
// Baseline for exclusion.
llvm::DenseMap<std::pair<tok::PPKeywordKind, llvm::StringRef>,
const Inclusion *>
ExistingIncludes;
for (const auto &Inc : Baseline.Includes.MainFileIncludes)
ExistingIncludes[{Inc.Directive, Inc.Written}] = &Inc;
// There might be includes coming from disabled regions, record these for
// exclusion too. note that we don't have resolved paths for those.
for (const auto &Inc : BaselineScan->Includes)
ExistingIncludes.try_emplace({Inc.Directive, Inc.Written});
// Calculate extra includes that needs to be inserted.
for (auto &Inc : ModifiedScan->Includes) {
auto It = ExistingIncludes.find({Inc.Directive, Inc.Written});
// Include already present in the baseline preamble. Set resolved path and
// put into preamble includes.
if (It != ExistingIncludes.end()) {
if (It->second) {
// If this header is included in an active region of the baseline
// preamble, preserve it.
auto &PatchedInc = PP.PreambleIncludes.emplace_back();
// Copy everything from existing include, apart from the location,
// when it's coming from baseline preamble.
PatchedInc = *It->second;
PatchedInc.HashLine = Inc.HashLine;
PatchedInc.HashOffset = Inc.HashOffset;
}
continue;
}
// Include is new in the modified preamble. Inject it into the patch and
// use #line to set the presumed location to where it is spelled.
auto LineCol = offsetToClangLineColumn(Modified.Contents, Inc.HashOffset);
Patch << llvm::formatv("#line {0}\n", LineCol.first);
Patch << llvm::formatv(
"#{0} {1}\n", spellingForIncDirective(Inc.Directive), Inc.Written);
}
} else {
// Make sure we have the full set of includes available even when we're not
// patching. As these are used by features we provide afterwards like hover,
// go-to-def or include-cleaner when preamble is stale.
PP.PreambleIncludes = Baseline.Includes.MainFileIncludes;
}
if (DirectivesChanged) {
// We need to patch all the directives, since they are order dependent. e.g:
// #define BAR(X) NEW(X) // Newly introduced in Modified
// #define BAR(X) OLD(X) // Exists in the Baseline
//
// If we've patched only the first directive, the macro definition would've
// been wrong for the rest of the file, since patch is applied after the
// baseline preamble.
//
// Note that we deliberately ignore conditional directives and undefs to
// reduce complexity. The former might cause problems because scanning is
// imprecise and might pick directives from disabled regions.
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
for (const auto &TD : ModifiedScan->TextualDirectives) {
// Introduce an #undef directive before #defines to suppress any
// re-definition warnings.
if (TD.Directive == tok::pp_define)
Patch << "#undef " << TD.MacroName << '\n';
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
Patch << "#line " << TD.DirectiveLine << '\n';
Patch << TD.Text << '\n';
[clangd] locateMacroAt handles patched macros Summary: Depends on D79992. This patch changes locateMacroAt to perform #line directive substitution for macro identifier locations. We first check whether a location is inside a file included through built-in header. If so we check whether line directive maps it back to the main file, and afterwards use TokenBuffers to find exact location of the identifier on the line. Instead of performing the mapping in locateMacroAt, we could also store a mapping inside the ParsedAST whenever we use a patched preamble. But that would imply adding more responsibility to ParsedAST and paying for the mapping even when it is not going to be used. ==== Go-To-Definition: Later on these locations are used for serving go-to-definition requests, this enables jumping to definition inside the preamble section in presence of patched macros. ===== Go-To-Refs: Macro references in main file are collected separetely and stored as a map from macro's symbol id to reference ranges. Those ranges are computed inside PPCallbacks, hence we don't have access to TokenBuffer. In presence of preamble patch, any reference to a macro inside the preamble section will unfortunately have the wrong range. They'll point into the patch rather than the main file. Hence during findReferences, we won't get any ranges reported for those. Fixing those requires: - Lexing the preamble section to figure out "real range" of a patched macro definition - Postponing range/location calculations until a later step in which we have access to tokenbuffers. This patch trades some accuracy in favor of code complexity. We don't do any patching for references inside the preamble patch but get any reference inside the main file for free. Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, usaxena95, cfe-commits Tags: #clang Differential Revision: https://reviews.llvm.org/D80198
2020-05-14 12:26:47 +02:00
}
}
PP.PatchedDiags = patchDiags(Baseline.Diags, *BaselineScan, *ModifiedScan);
PP.PatchedMarks = std::move(ModifiedScan->Marks);
PP.PatchedMacros = std::move(ModifiedScan->Macros);
dlog("Created preamble patch: {0}", Patch.str());
Patch.flush();
return PP;
}
PreamblePatch PreamblePatch::createFullPatch(llvm::StringRef FileName,
const ParseInputs &Modified,
const PreambleData &Baseline) {
return create(FileName, Modified, Baseline, PatchType::All);
}
PreamblePatch PreamblePatch::createMacroPatch(llvm::StringRef FileName,
const ParseInputs &Modified,
const PreambleData &Baseline) {
return create(FileName, Modified, Baseline, PatchType::MacroDirectives);
}
void PreamblePatch::apply(CompilerInvocation &CI) const {
// No need to map an empty file.
if (PatchContents.empty())
return;
auto &PPOpts = CI.getPreprocessorOpts();
auto PatchBuffer =
// we copy here to ensure contents are still valid if CI outlives the
// PreamblePatch.
llvm::MemoryBuffer::getMemBufferCopy(PatchContents, PatchFileName);
// CI will take care of the lifetime of the buffer.
PPOpts.addRemappedFile(PatchFileName, PatchBuffer.release());
// The patch will be parsed after loading the preamble ast and before parsing
// the main file.
PPOpts.Includes.push_back(PatchFileName);
}
std::vector<Inclusion> PreamblePatch::preambleIncludes() const {
return PreambleIncludes;
}
PreamblePatch PreamblePatch::unmodified(const PreambleData &Preamble) {
PreamblePatch PP;
PP.Baseline = &Preamble;
PP.PreambleIncludes = Preamble.Includes.MainFileIncludes;
PP.ModifiedBounds = Preamble.Preamble.getBounds();
PP.PatchedDiags = Preamble.Diags;
return PP;
}
llvm::ArrayRef<PragmaMark> PreamblePatch::marks() const {
if (PatchContents.empty())
return Baseline->Marks;
return PatchedMarks;
}
const MainFileMacros &PreamblePatch::mainFileMacros() const {
if (PatchContents.empty())
return Baseline->Macros;
return PatchedMacros;
}
const FileEntry *PreamblePatch::getPatchEntry(llvm::StringRef MainFilePath,
const SourceManager &SM) {
auto PatchFilePath = getPatchName(MainFilePath);
if (auto File = SM.getFileManager().getFile(PatchFilePath))
return *File;
return nullptr;
}
} // namespace clangd
} // namespace clang