llvm-project/mlir/lib/IR/StandardOps.cpp

473 lines
17 KiB
C++
Raw Normal View History

//===- StandardOps.cpp - Standard MLIR Operations -------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/StandardOps.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/OperationSet.h"
#include "mlir/IR/SSAValue.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/Support/raw_ostream.h"
using namespace mlir;
static void printDimAndSymbolList(Operation::const_operand_iterator begin,
Operation::const_operand_iterator end,
unsigned numDims, OpAsmPrinter *p) {
*p << '(';
p->printOperands(begin, begin + numDims);
*p << ')';
if (begin + numDims != end) {
*p << '[';
p->printOperands(begin + numDims, end);
*p << ']';
}
}
// Parses dimension and symbol list, and sets 'numDims' to the number of
// dimension operands parsed.
// Returns 'false' on success and 'true' on error.
static bool
parseDimAndSymbolList(OpAsmParser *parser,
SmallVector<SSAValue *, 4> &operands, unsigned &numDims) {
SmallVector<OpAsmParser::OperandType, 8> opInfos;
if (parser->parseOperandList(opInfos, -1, OpAsmParser::Delimiter::Paren))
return true;
// Store number of dimensions for validation by caller.
numDims = opInfos.size();
// Parse the optional symbol operands.
auto *affineIntTy = parser->getBuilder().getAffineIntType();
if (parser->parseOperandList(opInfos, -1,
OpAsmParser::Delimiter::OptionalSquare) ||
parser->resolveOperands(opInfos, affineIntTy, operands))
return true;
return false;
}
//===----------------------------------------------------------------------===//
// AddFOp
//===----------------------------------------------------------------------===//
bool AddFOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 2> ops;
Type *type;
return parser->parseOperandList(ops, 2) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperands(ops, type, result->operands) ||
parser->addTypeToList(type, result->types);
}
void AddFOp::print(OpAsmPrinter *p) const {
*p << "addf " << *getOperand(0) << ", " << *getOperand(1);
p->printOptionalAttrDict(getAttrs());
*p << " : " << *getType();
}
// TODO: Have verify functions return std::string to enable more descriptive
// error messages.
// Return an error message on failure.
const char *AddFOp::verify() const {
// TODO: Check that the types of the LHS and RHS match.
// TODO: This should be a refinement of TwoOperands.
// TODO: There should also be a OneResultWhoseTypeMatchesFirstOperand.
return nullptr;
}
//===----------------------------------------------------------------------===//
// AffineApplyOp
//===----------------------------------------------------------------------===//
bool AffineApplyOp::parse(OpAsmParser *parser, OperationState *result) {
auto &builder = parser->getBuilder();
auto *affineIntTy = builder.getAffineIntType();
AffineMapAttr *mapAttr;
unsigned numDims;
if (parser->parseAttribute(mapAttr, "map", result->attributes) ||
parseDimAndSymbolList(parser, result->operands, numDims) ||
parser->parseOptionalAttributeDict(result->attributes))
return true;
auto *map = mapAttr->getValue();
if (map->getNumDims() != numDims ||
numDims + map->getNumSymbols() != result->operands.size()) {
return parser->emitError(parser->getNameLoc(),
"dimension or symbol index mismatch");
}
result->types.append(map->getNumResults(), affineIntTy);
return false;
}
void AffineApplyOp::print(OpAsmPrinter *p) const {
auto *map = getAffineMap();
*p << "affine_apply " << *map;
printDimAndSymbolList(operand_begin(), operand_end(), map->getNumDims(), p);
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/"map");
}
const char *AffineApplyOp::verify() const {
// Check that affine map attribute was specified.
auto *affineMapAttr = getAttrOfType<AffineMapAttr>("map");
if (!affineMapAttr)
return "requires an affine map.";
// Check input and output dimensions match.
auto *map = affineMapAttr->getValue();
// Verify that operand count matches affine map dimension and symbol count.
if (getNumOperands() != map->getNumDims() + map->getNumSymbols())
return "operand count and affine map dimension and symbol count must match";
// Verify that result count matches affine map result count.
if (getNumResults() != map->getNumResults())
return "result count and affine map result count must match";
return nullptr;
}
//===----------------------------------------------------------------------===//
// AllocOp
//===----------------------------------------------------------------------===//
void AllocOp::print(OpAsmPrinter *p) const {
MemRefType *type = cast<MemRefType>(getMemRef()->getType());
*p << "alloc";
// Print dynamic dimension operands.
printDimAndSymbolList(operand_begin(), operand_end(),
type->getNumDynamicDims(), p);
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/"map");
*p << " : " << *type;
}
bool AllocOp::parse(OpAsmParser *parser, OperationState *result) {
MemRefType *type;
// Parse the dimension operands and optional symbol operands, followed by a
// memref type.
unsigned numDimOperands;
if (parseDimAndSymbolList(parser, result->operands, numDimOperands) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type))
return true;
// Check numDynamicDims against number of question marks in memref type.
if (numDimOperands != type->getNumDynamicDims()) {
return parser->emitError(parser->getNameLoc(),
"dimension operand count does not equal memref "
"dynamic dimension count");
}
// Check that the number of symbol operands matches the number of symbols in
// the first affinemap of the memref's affine map composition.
// Note that a memref must specify at least one affine map in the composition.
if (result->operands.size() - numDimOperands !=
type->getAffineMaps()[0]->getNumSymbols()) {
return parser->emitError(
parser->getNameLoc(),
"affine map symbol operand count does not equal memref affine map "
"symbol count");
}
result->types.push_back(type);
return false;
}
const char *AllocOp::verify() const {
// TODO(andydavis): Verify alloc.
return nullptr;
}
//===----------------------------------------------------------------------===//
// ConstantOp
//===----------------------------------------------------------------------===//
void ConstantOp::print(OpAsmPrinter *p) const {
*p << "constant " << *getValue();
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/"value");
*p << " : " << *getType();
}
bool ConstantOp::parse(OpAsmParser *parser, OperationState *result) {
Attribute *valueAttr;
Type *type;
return parser->parseAttribute(valueAttr, "value", result->attributes) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->addTypeToList(type, result->types);
}
/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
const char *ConstantOp::verify() const {
auto *value = getValue();
if (!value)
return "requires a 'value' attribute";
auto *type = this->getType();
if (isa<IntegerType>(type) || type->isAffineInt()) {
if (!isa<IntegerAttr>(value))
return "requires 'value' to be an integer for an integer result type";
return nullptr;
}
if (isa<FunctionType>(type)) {
// TODO: Verify a function attr.
}
return "requires a result type that aligns with the 'value' attribute";
}
/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::isClassFor(const Operation *op) {
return ConstantOp::isClassFor(op) &&
isa<IntegerType>(op->getResult(0)->getType());
}
OperationState ConstantIntOp::build(Builder *builder, int64_t value,
unsigned width) {
OperationState result(builder->getIdentifier("constant"));
result.attributes.push_back(
{builder->getIdentifier("value"), builder->getIntegerAttr(value)});
result.types.push_back(builder->getIntegerType(width));
return result;
}
/// ConstantAffineIntOp only matches values whose result type is AffineInt.
bool ConstantAffineIntOp::isClassFor(const Operation *op) {
return ConstantOp::isClassFor(op) &&
op->getResult(0)->getType()->isAffineInt();
}
OperationState ConstantAffineIntOp::build(Builder *builder, int64_t value) {
OperationState result(builder->getIdentifier("constant"));
result.attributes.push_back(
{builder->getIdentifier("value"), builder->getIntegerAttr(value)});
result.types.push_back(builder->getAffineIntType());
return result;
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
void DimOp::print(OpAsmPrinter *p) const {
*p << "dim " << *getOperand() << ", " << getIndex();
p->printOptionalAttrDict(getAttrs(), /*elidedAttrs=*/"index");
*p << " : " << *getOperand()->getType();
}
bool DimOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType operandInfo;
IntegerAttr *indexAttr;
Type *type;
return parser->parseOperand(operandInfo) || parser->parseComma() ||
parser->parseAttribute(indexAttr, "index", result->attributes) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperand(operandInfo, type, result->operands) ||
parser->addTypeToList(parser->getBuilder().getAffineIntType(),
result->types);
}
const char *DimOp::verify() const {
// Check that we have an integer index operand.
auto indexAttr = getAttrOfType<IntegerAttr>("index");
if (!indexAttr)
return "requires an integer attribute named 'index'";
uint64_t index = (uint64_t)indexAttr->getValue();
auto *type = getOperand()->getType();
if (auto *tensorType = dyn_cast<RankedTensorType>(type)) {
if (index >= tensorType->getRank())
return "index is out of range";
} else if (auto *memrefType = dyn_cast<MemRefType>(type)) {
if (index >= memrefType->getRank())
return "index is out of range";
} else if (isa<UnrankedTensorType>(type)) {
// ok, assumed to be in-range.
} else {
return "requires an operand with tensor or memref type";
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
void LoadOp::print(OpAsmPrinter *p) const {
*p << "load " << *getMemRef() << '[';
p->printOperands(getIndices());
*p << ']';
p->printOptionalAttrDict(getAttrs());
*p << " : " << *getMemRef()->getType();
}
bool LoadOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
MemRefType *type;
auto affineIntTy = parser->getBuilder().getAffineIntType();
return parser->parseOperand(memrefInfo) ||
parser->parseOperandList(indexInfo, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(type) ||
parser->resolveOperand(memrefInfo, type, result->operands) ||
parser->resolveOperands(indexInfo, affineIntTy, result->operands) ||
parser->addTypeToList(type->getElementType(), result->types);
}
const char *LoadOp::verify() const {
if (getNumOperands() == 0)
return "expected a memref to load from";
auto *memRefType = dyn_cast<MemRefType>(getMemRef()->getType());
if (!memRefType)
return "first operand must be a memref";
for (auto *idx : getIndices())
if (!idx->getType()->isAffineInt())
return "index to load must have 'affineint' type";
// TODO: Verify we have the right number of indices.
// TODO: in MLFunction verify that the indices are parameters, IV's, or the
// result of an affine_apply.
return nullptr;
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
bool ReturnOp::parse(OpAsmParser *parser, OperationState *result) {
SmallVector<OpAsmParser::OperandType, 2> opInfo;
SmallVector<Type *, 2> types;
return parser->parseOperandList(opInfo, -1, OpAsmParser::Delimiter::None) ||
(!opInfo.empty() && parser->parseColonTypeList(types)) ||
parser->resolveOperands(opInfo, types, result->operands);
}
void ReturnOp::print(OpAsmPrinter *p) const {
*p << "return";
if (getNumOperands() > 0) {
*p << " ";
p->printOperands(operand_begin(), operand_end());
*p << " : ";
interleave(operand_begin(), operand_end(),
[&](auto *e) { p->printType(e->getType()); },
[&]() { *p << ", "; });
}
}
const char *ReturnOp::verify() const {
// ReturnOp must be part of an ML function.
if (auto *stmt = dyn_cast<OperationStmt>(getOperation())) {
MLFunction *func = dyn_cast_or_null<MLFunction>(stmt->getBlock());
if (!func || &func->back() != stmt)
return "must be the last statement in the ML function";
// Return success. Checking that operand types match those in the function
// signature is performed in the ML function verifier.
return nullptr;
}
return "cannot occur in a CFG function";
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
void StoreOp::print(OpAsmPrinter *p) const {
*p << "store " << *getValueToStore();
*p << ", " << *getMemRef() << '[';
p->printOperands(getIndices());
*p << ']';
p->printOptionalAttrDict(getAttrs());
*p << " : " << *getMemRef()->getType();
}
bool StoreOp::parse(OpAsmParser *parser, OperationState *result) {
OpAsmParser::OperandType storeValueInfo;
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
MemRefType *memrefType;
auto affineIntTy = parser->getBuilder().getAffineIntType();
return parser->parseOperand(storeValueInfo) || parser->parseComma() ||
parser->parseOperand(memrefInfo) ||
parser->parseOperandList(indexInfo, -1,
OpAsmParser::Delimiter::Square) ||
parser->parseOptionalAttributeDict(result->attributes) ||
parser->parseColonType(memrefType) ||
parser->resolveOperand(storeValueInfo, memrefType->getElementType(),
result->operands) ||
parser->resolveOperand(memrefInfo, memrefType, result->operands) ||
parser->resolveOperands(indexInfo, affineIntTy, result->operands);
}
const char *StoreOp::verify() const {
if (getNumOperands() < 2)
return "expected a value to store and a memref";
// Second operand is a memref type.
auto *memRefType = dyn_cast<MemRefType>(getMemRef()->getType());
if (!memRefType)
return "second operand must be a memref";
// First operand must have same type as memref element type.
if (getValueToStore()->getType() != memRefType->getElementType())
return "first operand must have same type memref element type ";
if (getNumOperands() != 2 + memRefType->getRank())
return "store index operand count not equal to memref rank";
for (auto *idx : getIndices())
if (!idx->getType()->isAffineInt())
return "index to load must have 'affineint' type";
// TODO: Verify we have the right number of indices.
// TODO: in MLFunction verify that the indices are parameters, IV's, or the
// result of an affine_apply.
return nullptr;
}
//===----------------------------------------------------------------------===//
// Register operations.
//===----------------------------------------------------------------------===//
/// Install the standard operations in the specified operation set.
void mlir::registerStandardOperations(OperationSet &opSet) {
opSet.addOperations<AddFOp, AffineApplyOp, AllocOp, ConstantOp, DimOp, LoadOp,
ReturnOp, StoreOp>(
/*prefix=*/"");
}