llvm-project/lldb/source/Plugins/Process/gdb-remote/GDBRemoteCommunication.h

171 lines
5.3 KiB
C
Raw Normal View History

//===-- GDBRemoteCommunication.h --------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef liblldb_GDBRemoteCommunication_h_
#define liblldb_GDBRemoteCommunication_h_
// C Includes
// C++ Includes
#include <list>
#include <string>
// Other libraries and framework includes
// Project includes
#include "lldb/lldb-private.h"
#include "lldb/Core/Communication.h"
#include "lldb/Core/Listener.h"
#include "lldb/Host/Mutex.h"
#include "lldb/Host/Predicate.h"
#include "Utility/StringExtractorGDBRemote.h"
class ProcessGDBRemote;
class GDBRemoteCommunication : public lldb_private::Communication
{
public:
Fixed a race condition that could cause ProcessGDBRemote::DoResume() to return an error saying the resume timed out. Previously the thread that was trying to resume the process would eventually call ProcessGDBRemote::DoResume() which would broadcast an event over to the async GDB remote thread which would sent the continue packet to the remote gdb server. Right after this was sent, it would set a predicate boolean value (protected by a mutex and condition) and then the thread that issued the ProcessGDBRemote::DoResume() would then wait for that condition variable to be set. If the async gdb thread was too quick though, the predicate boolean value could have been set to true and back to false by the time the thread that issued the ProcessGDBRemote::DoResume() checks the boolean value. So we can't use the predicate value as a handshake. I have changed the code over to using a Event by having the GDB remote communication object post an event: GDBRemoteCommunication::eBroadcastBitRunPacketSent This allows reliable handshaking between the two threads and avoids the erroneous ProcessGDBRemote::DoResume() errors. Added a host backtrace service to allow in process backtraces when trying to track down tricky issues. I need to see if LLVM has any backtracing abilities abstracted in it already, and if so, use that, but I needed something ASAP for the current issue I was working on. The static function is: void Host::Backtrace (Stream &strm, uint32_t max_frames); And it will backtrace at most "max_frames" frames for the current thread and can be used with any of the Stream subclasses for logging. llvm-svn: 120793
2010-12-03 06:02:24 +00:00
enum
{
eBroadcastBitRunPacketSent = kLoUserBroadcastBit
};
//------------------------------------------------------------------
// Constructors and Destructors
//------------------------------------------------------------------
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 05:54:46 +00:00
GDBRemoteCommunication(const char *comm_name,
const char *listener_name,
bool is_platform);
virtual
~GDBRemoteCommunication();
size_t
SendPacket (const char *payload);
size_t
SendPacket (const char *payload,
size_t payload_length);
Many improvements to the Platform base class and subclasses. The base Platform class now implements the Host functionality for a lot of things that make sense by default so that subclasses can check: int PlatformSubclass::Foo () { if (IsHost()) return Platform::Foo (); // Let the platform base class do the host specific stuff // Platform subclass specific code... int result = ... return result; } Added new functions to the platform: virtual const char *Platform::GetUserName (uint32_t uid); virtual const char *Platform::GetGroupName (uint32_t gid); The user and group names are cached locally so that remote platforms can avoid sending packets multiple times to resolve this information. Added the parent process ID to the ProcessInfo class. Added a new ProcessInfoMatch class which helps us to match processes up and changed the Host layer over to using this new class. The new class allows us to search for processs: 1 - by name (equal to, starts with, ends with, contains, and regex) 2 - by pid 3 - And further check for parent pid == value, uid == value, gid == value, euid == value, egid == value, arch == value, parent == value. This is all hookup up to the "platform process list" command which required adding dumping routines to dump process information. If the Host class implements the process lookup routines, you can now lists processes on your local machine: machine1.foo.com % lldb (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari 94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode 92742 92710 username usergroup username usergroup i386-apple-darwin debugserver This of course also works remotely with the lldb-platform: machine1.foo.com % lldb-platform --listen 1234 machine2.foo.com % lldb (lldb) platform create remote-macosx Platform: remote-macosx Connected: no (lldb) platform connect connect://localhost:1444 Platform: remote-macosx Triple: x86_64-apple-darwin OS Version: 10.6.7 (10J869) Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386 Hostname: machine1.foo.com Connected: yes (lldb) platform process list PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME ====== ====== ========== ========== ========== ========== ======================== ============================ 99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation 99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb 99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge 94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker 94852 244 username usergroup username usergroup x86_64-apple-darwin Safari The lldb-platform implements everything with the Host:: layer, so this should "just work" for linux. I will probably be adding more stuff to the Host layer for launching processes and attaching to processes so that this support should eventually just work as well. Modified the target to be able to be created with an architecture that differs from the main executable. This is needed for iOS debugging since we can have an "armv6" binary which can run on an "armv7" machine, so we want to be able to do: % lldb (lldb) platform create remote-ios (lldb) file --arch armv7 a.out Where "a.out" is an armv6 executable. The platform then can correctly decide to open all "armv7" images for all dependent shared libraries. Modified the disassembly to show the current PC value. Example output: (lldb) disassemble --frame a.out`main: 0x1eb7: pushl %ebp 0x1eb8: movl %esp, %ebp 0x1eba: pushl %ebx 0x1ebb: subl $20, %esp 0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18 0x1ec3: popl %ebx -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf 0x1edb: leal 213(%ebx), %eax 0x1ee1: movl %eax, (%esp) 0x1ee4: calll 0x1f1e ; puts 0x1ee9: calll 0x1f0c ; getchar 0x1eee: movl $20, (%esp) 0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6 0x1efa: movl $12, %eax 0x1eff: addl $20, %esp 0x1f02: popl %ebx 0x1f03: leave 0x1f04: ret This can be handy when dealing with the new --line options that was recently added: (lldb) disassemble --line a.out`main + 13 at test.c:19 18 { -> 19 printf("Process: %i\n\n", getpid()); 20 puts("Press any key to continue..."); getchar(); -> 0x1ec4: calll 0x1f12 ; getpid 0x1ec9: movl %eax, 4(%esp) 0x1ecd: leal 199(%ebx), %eax 0x1ed3: movl %eax, (%esp) 0x1ed6: calll 0x1f18 ; printf Modified the ModuleList to have a lookup based solely on a UUID. Since the UUID is typically the MD5 checksum of a binary image, there is no need to give the path and architecture when searching for a pre-existing image in an image list. Now that we support remote debugging a bit better, our lldb_private::Module needs to be able to track what the original path for file was as the platform knows it, as well as where the file is locally. The module has the two following functions to retrieve both paths: const FileSpec &Module::GetFileSpec () const; const FileSpec &Module::GetPlatformFileSpec () const; llvm-svn: 128563
2011-03-30 18:16:51 +00:00
size_t
SendPacket (lldb_private::StreamString &response);
// Wait for a packet within 'nsec' seconds
size_t
WaitForPacket (StringExtractorGDBRemote &response,
uint32_t sec);
// Wait for a packet with an absolute timeout time. If 'timeout' is NULL
// wait indefinitely.
size_t
WaitForPacket (StringExtractorGDBRemote &response,
const lldb_private::TimeValue* timeout);
char
GetAck ();
size_t
SendAck ();
size_t
SendNack ();
char
CalculcateChecksum (const char *payload,
size_t payload_length);
bool
GetSequenceMutex(lldb_private::Mutex::Locker& locker);
//------------------------------------------------------------------
// Communication overrides
//------------------------------------------------------------------
virtual void
AppendBytesToCache (const uint8_t *src, size_t src_len, bool broadcast, lldb::ConnectionStatus status);
bool
IsRunning() const
{
return m_public_is_running.GetValue();
}
bool
GetSendAcks ()
{
return m_send_acks;
}
//------------------------------------------------------------------
// Client and server must implement these pure virtual functions
//------------------------------------------------------------------
virtual bool
GetThreadSuffixSupported () = 0;
//------------------------------------------------------------------
// Set the global packet timeout.
//
// For clients, this is the timeout that gets used when sending
// packets and waiting for responses. For servers, this might not
// get used, and if it doesn't this should be moved to the
// GDBRemoteCommunicationClient.
//------------------------------------------------------------------
uint32_t
SetPacketTimeout (uint32_t packet_timeout)
{
const uint32_t old_packet_timeout = m_packet_timeout;
m_packet_timeout = packet_timeout;
return old_packet_timeout;
}
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 05:54:46 +00:00
//------------------------------------------------------------------
// Start a debugserver instance on the current host using the
// supplied connection URL.
//------------------------------------------------------------------
lldb_private::Error
StartDebugserverProcess (const char *connect_url,
const char *unix_socket_name,
lldb_private::ProcessLaunchInfo &launch_info);
protected:
typedef std::list<std::string> packet_collection;
size_t
SendPacketNoLock (const char *payload,
size_t payload_length);
size_t
WaitForPacketNoLock (StringExtractorGDBRemote &response,
const lldb_private::TimeValue* timeout_ptr);
bool
WaitForNotRunningPrivate (const lldb_private::TimeValue *timeout_ptr);
//------------------------------------------------------------------
// Classes that inherit from GDBRemoteCommunication can see and modify these
//------------------------------------------------------------------
uint32_t m_packet_timeout;
lldb_private::Listener m_rx_packet_listener;
lldb_private::Mutex m_sequence_mutex; // Restrict access to sending/receiving packets to a single thread at a time
lldb_private::Predicate<bool> m_public_is_running;
lldb_private::Predicate<bool> m_private_is_running;
bool m_send_acks;
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 05:54:46 +00:00
bool m_is_platform; // Set to true if this class represents a platform,
// false if this class represents a debug session for
// a single process
Moved the execution context that was in the Debugger into the CommandInterpreter where it was always being used. Make sure that Modules can track their object file offsets correctly to allow opening of sub object files (like the "__commpage" on darwin). Modified the Platforms to be able to launch processes. The first part of this move is the platform soon will become the entity that launches your program and when it does, it uses a new ProcessLaunchInfo class which encapsulates all process launching settings. This simplifies the internal APIs needed for launching. I want to slowly phase out process launching from the process classes, so for now we can still launch just as we used to, but eventually the platform is the object that should do the launching. Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able to launch processes with all of the new eLaunchFlag settings. Modified any code that was manually launching processes to use the Host::LaunchProcess functions. Fixed an issue where lldb_private::Args had implicitly defined copy constructors that could do the wrong thing. This has now been fixed by adding an appropriate copy constructor and assignment operator. Make sure we don't add empty ModuleSP entries to a module list. Fixed the commpage module creation on MacOSX, but we still need to train the MacOSX dynamic loader to not get rid of it when it doesn't have an entry in the all image infos. Abstracted many more calls from in ProcessGDBRemote down into the GDBRemoteCommunicationClient subclass to make the classes cleaner and more efficient. Fixed the default iOS ARM register context to be correct and also added support for targets that don't support the qThreadStopInfo packet by selecting the current thread (only if needed) and then sending a stop reply packet. Debugserver can now start up with a --unix-socket (-u for short) and can then bind to port zero and send the port it bound to to a listening process on the other end. This allows the GDB remote platform to spawn new GDB server instances (debugserver) to allow platform debugging. llvm-svn: 129351
2011-04-12 05:54:46 +00:00
private:
//------------------------------------------------------------------
// For GDBRemoteCommunication only
//------------------------------------------------------------------
DISALLOW_COPY_AND_ASSIGN (GDBRemoteCommunication);
};
#endif // liblldb_GDBRemoteCommunication_h_