llvm-project/mlir/lib/IR/SymbolTable.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

787 lines
32 KiB
C++
Raw Normal View History

//===- SymbolTable.cpp - MLIR Symbol Table Class --------------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/SymbolTable.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
[mlir] Add support for attaching a visibility to symbols. Summary: The visibility defines the structural reachability of the symbol within the IR. Symbols can define one of three visibilities: * Public The symbol \may be accessed from outside of the visible IR. We cannot assume that we can observe all of the uses of this symbol. * Private The symbol may only be referenced from within the operations in the current symbol table, via SymbolRefAttr. * Nested The symbol may be referenced by operations in symbol tables above the current symbol table, as long as each symbol table parent also defines a non-private symbol. This allows or referencing the symbol from outside of the defining symbol table, while retaining the ability for the compiler to see all uses. These properties help to reason about the properties of a symbol, and will be used in a follow up to implement a dce pass on dead symbols. A few examples of what this would look like in the IR are shown below: module @public_module { // This function can be accessed by 'live.user' func @nested_function() attributes { sym_visibility = "nested" } // This function cannot be accessed outside of 'public_module' func @private_function() attributes { sym_visibility = "private" } } // This function can only be accessed from within this module. func @private_function() attributes { sym_visibility = "private" } // This function may be referenced externally. func @public_function() "live.user"() {uses = [@public_module::@nested_function, @private_function, @public_function]} : () -> () Depends On D72043 Reviewed By: mehdi_amini Differential Revision: https://reviews.llvm.org/D72044
2020-01-13 15:54:08 -08:00
#include "llvm/ADT/StringSwitch.h"
using namespace mlir;
/// Return true if the given operation is unknown and may potentially define a
/// symbol table.
static bool isPotentiallyUnknownSymbolTable(Operation *op) {
return !op->getDialect() && op->getNumRegions() == 1;
}
/// Returns the nearest symbol table from a given operation `from`. Returns
/// nullptr if no valid parent symbol table could be found.
static Operation *getNearestSymbolTable(Operation *from) {
assert(from && "expected valid operation");
if (isPotentiallyUnknownSymbolTable(from))
return nullptr;
while (!from->hasTrait<OpTrait::SymbolTable>()) {
from = from->getParentOp();
// Check that this is a valid op and isn't an unknown symbol table.
if (!from || isPotentiallyUnknownSymbolTable(from))
return nullptr;
}
return from;
}
/// Returns the string name of the given symbol, or None if this is not a
/// symbol.
static Optional<StringRef> getNameIfSymbol(Operation *symbol) {
auto nameAttr =
symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
return nameAttr ? nameAttr.getValue() : Optional<StringRef>();
}
/// Computes the nested symbol reference attribute for the symbol 'symbolName'
/// that are usable within the symbol table operations from 'symbol' as far up
/// to the given operation 'within', where 'within' is an ancestor of 'symbol'.
/// Returns success if all references up to 'within' could be computed.
static LogicalResult
collectValidReferencesFor(Operation *symbol, StringRef symbolName,
Operation *within,
SmallVectorImpl<SymbolRefAttr> &results) {
assert(within->isAncestor(symbol) && "expected 'within' to be an ancestor");
MLIRContext *ctx = symbol->getContext();
auto leafRef = FlatSymbolRefAttr::get(symbolName, ctx);
results.push_back(leafRef);
// Early exit for when 'within' is the parent of 'symbol'.
Operation *symbolTableOp = symbol->getParentOp();
if (within == symbolTableOp)
return success();
// Collect references until 'symbolTableOp' reaches 'within'.
SmallVector<FlatSymbolRefAttr, 1> nestedRefs(1, leafRef);
do {
// Each parent of 'symbol' should define a symbol table.
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return failure();
// Each parent of 'symbol' should also be a symbol.
Optional<StringRef> symbolTableName = getNameIfSymbol(symbolTableOp);
if (!symbolTableName)
return failure();
results.push_back(SymbolRefAttr::get(*symbolTableName, nestedRefs, ctx));
symbolTableOp = symbolTableOp->getParentOp();
if (symbolTableOp == within)
break;
nestedRefs.insert(nestedRefs.begin(),
FlatSymbolRefAttr::get(*symbolTableName, ctx));
} while (true);
return success();
}
//===----------------------------------------------------------------------===//
// SymbolTable
//===----------------------------------------------------------------------===//
/// Build a symbol table with the symbols within the given operation.
SymbolTable::SymbolTable(Operation *symbolTableOp)
: symbolTableOp(symbolTableOp) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>() &&
"expected operation to have SymbolTable trait");
assert(symbolTableOp->getNumRegions() == 1 &&
"expected operation to have a single region");
assert(has_single_element(symbolTableOp->getRegion(0)) &&
"expected operation to have a single block");
for (auto &op : symbolTableOp->getRegion(0).front()) {
Optional<StringRef> name = getNameIfSymbol(&op);
if (!name)
continue;
auto inserted = symbolTable.insert({*name, &op});
(void)inserted;
assert(inserted.second &&
"expected region to contain uniquely named symbol operations");
}
}
/// Look up a symbol with the specified name, returning null if no such name
/// exists. Names never include the @ on them.
Operation *SymbolTable::lookup(StringRef name) const {
return symbolTable.lookup(name);
}
/// Erase the given symbol from the table.
void SymbolTable::erase(Operation *symbol) {
Optional<StringRef> name = getNameIfSymbol(symbol);
assert(name && "expected valid 'name' attribute");
assert(symbol->getParentOp() == symbolTableOp &&
"expected this operation to be inside of the operation with this "
"SymbolTable");
auto it = symbolTable.find(*name);
if (it != symbolTable.end() && it->second == symbol) {
symbolTable.erase(it);
symbol->erase();
}
}
/// Insert a new symbol into the table and associated operation, and rename it
/// as necessary to avoid collisions.
void SymbolTable::insert(Operation *symbol, Block::iterator insertPt) {
auto &body = symbolTableOp->getRegion(0).front();
if (insertPt == Block::iterator() || insertPt == body.end())
insertPt = Block::iterator(body.getTerminator());
assert(insertPt->getParentOp() == symbolTableOp &&
"expected insertPt to be in the associated module operation");
body.getOperations().insert(insertPt, symbol);
// Add this symbol to the symbol table, uniquing the name if a conflict is
// detected.
StringRef name = getSymbolName(symbol);
if (symbolTable.insert({name, symbol}).second)
return;
// If a conflict was detected, then the symbol will not have been added to
// the symbol table. Try suffixes until we get to a unique name that works.
SmallString<128> nameBuffer(name);
unsigned originalLength = nameBuffer.size();
// Iteratively try suffixes until we find one that isn't used.
do {
nameBuffer.resize(originalLength);
nameBuffer += '_';
nameBuffer += std::to_string(uniquingCounter++);
} while (!symbolTable.insert({nameBuffer, symbol}).second);
setSymbolName(symbol, nameBuffer);
}
/// Returns true if the given operation defines a symbol.
bool SymbolTable::isSymbol(Operation *op) {
return op->hasTrait<OpTrait::Symbol>() || getNameIfSymbol(op).hasValue();
}
/// Returns the name of the given symbol operation.
StringRef SymbolTable::getSymbolName(Operation *symbol) {
Optional<StringRef> name = getNameIfSymbol(symbol);
assert(name && "expected valid symbol name");
return *name;
}
/// Sets the name of the given symbol operation.
void SymbolTable::setSymbolName(Operation *symbol, StringRef name) {
symbol->setAttr(getSymbolAttrName(),
StringAttr::get(name, symbol->getContext()));
}
[mlir] Add support for attaching a visibility to symbols. Summary: The visibility defines the structural reachability of the symbol within the IR. Symbols can define one of three visibilities: * Public The symbol \may be accessed from outside of the visible IR. We cannot assume that we can observe all of the uses of this symbol. * Private The symbol may only be referenced from within the operations in the current symbol table, via SymbolRefAttr. * Nested The symbol may be referenced by operations in symbol tables above the current symbol table, as long as each symbol table parent also defines a non-private symbol. This allows or referencing the symbol from outside of the defining symbol table, while retaining the ability for the compiler to see all uses. These properties help to reason about the properties of a symbol, and will be used in a follow up to implement a dce pass on dead symbols. A few examples of what this would look like in the IR are shown below: module @public_module { // This function can be accessed by 'live.user' func @nested_function() attributes { sym_visibility = "nested" } // This function cannot be accessed outside of 'public_module' func @private_function() attributes { sym_visibility = "private" } } // This function can only be accessed from within this module. func @private_function() attributes { sym_visibility = "private" } // This function may be referenced externally. func @public_function() "live.user"() {uses = [@public_module::@nested_function, @private_function, @public_function]} : () -> () Depends On D72043 Reviewed By: mehdi_amini Differential Revision: https://reviews.llvm.org/D72044
2020-01-13 15:54:08 -08:00
/// Returns the visibility of the given symbol operation.
SymbolTable::Visibility SymbolTable::getSymbolVisibility(Operation *symbol) {
// If the attribute doesn't exist, assume public.
StringAttr vis = symbol->getAttrOfType<StringAttr>(getVisibilityAttrName());
if (!vis)
return Visibility::Public;
// Otherwise, switch on the string value.
return llvm::StringSwitch<Visibility>(vis.getValue())
.Case("private", Visibility::Private)
.Case("nested", Visibility::Nested)
.Case("public", Visibility::Public);
}
/// Sets the visibility of the given symbol operation.
void SymbolTable::setSymbolVisibility(Operation *symbol, Visibility vis) {
MLIRContext *ctx = symbol->getContext();
// If the visibility is public, just drop the attribute as this is the
// default.
if (vis == Visibility::Public) {
symbol->removeAttr(Identifier::get(getVisibilityAttrName(), ctx));
return;
}
// Otherwise, update the attribute.
assert((vis == Visibility::Private || vis == Visibility::Nested) &&
"unknown symbol visibility kind");
StringRef visName = vis == Visibility::Private ? "private" : "nested";
symbol->setAttr(getVisibilityAttrName(), StringAttr::get(visName, ctx));
}
/// Returns the operation registered with the given symbol name with the
/// regions of 'symbolTableOp'. 'symbolTableOp' is required to be an operation
/// with the 'OpTrait::SymbolTable' trait. Returns nullptr if no valid symbol
/// was found.
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
StringRef symbol) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Look for a symbol with the given name.
for (auto &block : symbolTableOp->getRegion(0)) {
for (auto &op : block)
if (getNameIfSymbol(&op) == symbol)
return &op;
}
return nullptr;
}
Operation *SymbolTable::lookupSymbolIn(Operation *symbolTableOp,
SymbolRefAttr symbol) {
assert(symbolTableOp->hasTrait<OpTrait::SymbolTable>());
// Lookup the root reference for this symbol.
symbolTableOp = lookupSymbolIn(symbolTableOp, symbol.getRootReference());
if (!symbolTableOp)
return nullptr;
// If there are no nested references, just return the root symbol directly.
ArrayRef<FlatSymbolRefAttr> nestedRefs = symbol.getNestedReferences();
if (nestedRefs.empty())
return symbolTableOp;
// Verify that the root is also a symbol table.
if (!symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return nullptr;
// Otherwise, lookup each of the nested non-leaf references and ensure that
// each corresponds to a valid symbol table.
for (FlatSymbolRefAttr ref : nestedRefs.drop_back()) {
symbolTableOp = lookupSymbolIn(symbolTableOp, ref.getValue());
if (!symbolTableOp || !symbolTableOp->hasTrait<OpTrait::SymbolTable>())
return nullptr;
}
return lookupSymbolIn(symbolTableOp, symbol.getLeafReference());
}
/// Returns the operation registered with the given symbol name within the
/// closes parent operation with the 'OpTrait::SymbolTable' trait. Returns
/// nullptr if no valid symbol was found.
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
StringRef symbol) {
Operation *symbolTableOp = getNearestSymbolTable(from);
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
}
Operation *SymbolTable::lookupNearestSymbolFrom(Operation *from,
SymbolRefAttr symbol) {
Operation *symbolTableOp = getNearestSymbolTable(from);
return symbolTableOp ? lookupSymbolIn(symbolTableOp, symbol) : nullptr;
}
//===----------------------------------------------------------------------===//
// SymbolTable Trait Types
//===----------------------------------------------------------------------===//
LogicalResult OpTrait::impl::verifySymbolTable(Operation *op) {
if (op->getNumRegions() != 1)
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one region";
if (!has_single_element(op->getRegion(0)))
return op->emitOpError()
<< "Operations with a 'SymbolTable' must have exactly one block";
// Check that all symbols are uniquely named within child regions.
DenseMap<Attribute, Location> nameToOrigLoc;
for (auto &block : op->getRegion(0)) {
for (auto &op : block) {
// Check for a symbol name attribute.
auto nameAttr =
op.getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName());
if (!nameAttr)
continue;
// Try to insert this symbol into the table.
auto it = nameToOrigLoc.try_emplace(nameAttr, op.getLoc());
if (!it.second)
return op.emitError()
.append("redefinition of symbol named '", nameAttr.getValue(), "'")
.attachNote(it.first->second)
.append("see existing symbol definition here");
}
}
return success();
}
LogicalResult OpTrait::impl::verifySymbol(Operation *op) {
[mlir] Add support for attaching a visibility to symbols. Summary: The visibility defines the structural reachability of the symbol within the IR. Symbols can define one of three visibilities: * Public The symbol \may be accessed from outside of the visible IR. We cannot assume that we can observe all of the uses of this symbol. * Private The symbol may only be referenced from within the operations in the current symbol table, via SymbolRefAttr. * Nested The symbol may be referenced by operations in symbol tables above the current symbol table, as long as each symbol table parent also defines a non-private symbol. This allows or referencing the symbol from outside of the defining symbol table, while retaining the ability for the compiler to see all uses. These properties help to reason about the properties of a symbol, and will be used in a follow up to implement a dce pass on dead symbols. A few examples of what this would look like in the IR are shown below: module @public_module { // This function can be accessed by 'live.user' func @nested_function() attributes { sym_visibility = "nested" } // This function cannot be accessed outside of 'public_module' func @private_function() attributes { sym_visibility = "private" } } // This function can only be accessed from within this module. func @private_function() attributes { sym_visibility = "private" } // This function may be referenced externally. func @public_function() "live.user"() {uses = [@public_module::@nested_function, @private_function, @public_function]} : () -> () Depends On D72043 Reviewed By: mehdi_amini Differential Revision: https://reviews.llvm.org/D72044
2020-01-13 15:54:08 -08:00
// Verify the name attribute.
if (!op->getAttrOfType<StringAttr>(mlir::SymbolTable::getSymbolAttrName()))
return op->emitOpError() << "requires string attribute '"
<< mlir::SymbolTable::getSymbolAttrName() << "'";
[mlir] Add support for attaching a visibility to symbols. Summary: The visibility defines the structural reachability of the symbol within the IR. Symbols can define one of three visibilities: * Public The symbol \may be accessed from outside of the visible IR. We cannot assume that we can observe all of the uses of this symbol. * Private The symbol may only be referenced from within the operations in the current symbol table, via SymbolRefAttr. * Nested The symbol may be referenced by operations in symbol tables above the current symbol table, as long as each symbol table parent also defines a non-private symbol. This allows or referencing the symbol from outside of the defining symbol table, while retaining the ability for the compiler to see all uses. These properties help to reason about the properties of a symbol, and will be used in a follow up to implement a dce pass on dead symbols. A few examples of what this would look like in the IR are shown below: module @public_module { // This function can be accessed by 'live.user' func @nested_function() attributes { sym_visibility = "nested" } // This function cannot be accessed outside of 'public_module' func @private_function() attributes { sym_visibility = "private" } } // This function can only be accessed from within this module. func @private_function() attributes { sym_visibility = "private" } // This function may be referenced externally. func @public_function() "live.user"() {uses = [@public_module::@nested_function, @private_function, @public_function]} : () -> () Depends On D72043 Reviewed By: mehdi_amini Differential Revision: https://reviews.llvm.org/D72044
2020-01-13 15:54:08 -08:00
// Verify the visibility attribute.
if (Attribute vis = op->getAttr(mlir::SymbolTable::getVisibilityAttrName())) {
StringAttr visStrAttr = vis.dyn_cast<StringAttr>();
if (!visStrAttr)
return op->emitOpError() << "requires visibility attribute '"
<< mlir::SymbolTable::getVisibilityAttrName()
<< "' to be a string attribute, but got " << vis;
if (!llvm::is_contained(ArrayRef<StringRef>{"public", "private", "nested"},
visStrAttr.getValue()))
return op->emitOpError()
<< "visibility expected to be one of [\"public\", \"private\", "
"\"nested\"], but got "
<< visStrAttr;
}
return success();
}
//===----------------------------------------------------------------------===//
// Symbol Use Lists
//===----------------------------------------------------------------------===//
/// Walk all of the symbol references within the given operation, invoking the
/// provided callback for each found use. The callbacks takes as arguments: the
/// use of the symbol, and the nested access chain to the attribute within the
/// operation dictionary. An access chain is a set of indices into nested
/// container attributes. For example, a symbol use in an attribute dictionary
/// that looks like the following:
///
/// {use = [{other_attr, @symbol}]}
///
/// May have the following access chain:
///
/// [0, 0, 1]
///
static WalkResult walkSymbolRefs(
Operation *op,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
// Check to see if the operation has any attributes.
DictionaryAttr attrDict = op->getAttrList().getDictionary();
if (!attrDict)
return WalkResult::advance();
// A worklist of a container attribute and the current index into the held
// attribute list.
SmallVector<Attribute, 1> attrWorklist(1, attrDict);
SmallVector<int, 1> curAccessChain(1, /*Value=*/-1);
// Process the symbol references within the given nested attribute range.
auto processAttrs = [&](int &index, auto attrRange) -> WalkResult {
for (Attribute attr : llvm::drop_begin(attrRange, index)) {
/// Check for a nested container attribute, these will also need to be
/// walked.
if (attr.isa<ArrayAttr>() || attr.isa<DictionaryAttr>()) {
attrWorklist.push_back(attr);
curAccessChain.push_back(-1);
return WalkResult::advance();
}
// Invoke the provided callback if we find a symbol use and check for a
// requested interrupt.
if (auto symbolRef = attr.dyn_cast<SymbolRefAttr>())
if (callback({op, symbolRef}, curAccessChain).wasInterrupted())
return WalkResult::interrupt();
// Make sure to keep the index counter in sync.
++index;
}
// Pop this container attribute from the worklist.
attrWorklist.pop_back();
curAccessChain.pop_back();
return WalkResult::advance();
};
WalkResult result = WalkResult::advance();
do {
Attribute attr = attrWorklist.back();
int &index = curAccessChain.back();
++index;
// Process the given attribute, which is guaranteed to be a container.
if (auto dict = attr.dyn_cast<DictionaryAttr>())
result = processAttrs(index, make_second_range(dict.getValue()));
else
result = processAttrs(index, attr.cast<ArrayAttr>().getValue());
} while (!attrWorklist.empty() && !result.wasInterrupted());
return result;
}
/// Walk all of the uses, for any symbol, that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables, and will also only return uses on
/// 'from' if it does not also define a symbol table.
static Optional<WalkResult> walkSymbolUses(
Operation *from,
function_ref<WalkResult(SymbolTable::SymbolUse, ArrayRef<int>)> callback) {
// If from is not a symbol table, check for uses. A symbol table defines a new
// scope, so we can't walk the attributes from the symbol table op.
if (!from->hasTrait<OpTrait::SymbolTable>()) {
if (walkSymbolRefs(from, callback).wasInterrupted())
return WalkResult::interrupt();
}
SmallVector<Region *, 1> worklist;
worklist.reserve(from->getNumRegions());
for (Region &region : from->getRegions())
worklist.push_back(&region);
while (!worklist.empty()) {
Region *region = worklist.pop_back_val();
for (Block &block : *region) {
for (Operation &op : block) {
if (walkSymbolRefs(&op, callback).wasInterrupted())
return WalkResult::interrupt();
// If this operation has regions, and it as well as its dialect aren't
// registered then conservatively fail. The operation may define a
// symbol table, so we can't opaquely know if we should traverse to find
// nested uses.
if (isPotentiallyUnknownSymbolTable(&op))
return llvm::None;
// If this op defines a new symbol table scope, we can't traverse. Any
// symbol references nested within 'op' are different semantically.
if (!op.hasTrait<OpTrait::SymbolTable>()) {
for (Region &region : op.getRegions())
worklist.push_back(&region);
}
}
}
}
return WalkResult::advance();
}
/// Walks all of the symbol scopes from 'symbol' to (inclusive) 'limit' invoking
/// the provided callback at each one with a properly scoped reference to
/// 'symbol'. The callback takes as parameters the symbol reference at the
/// current scope as well as the top-level operation representing the top of
/// that scope.
static Optional<WalkResult> walkSymbolScopes(
Operation *symbol, Operation *limit,
function_ref<Optional<WalkResult>(SymbolRefAttr, Operation *)> callback) {
StringRef symbolName = SymbolTable::getSymbolName(symbol);
assert(!symbol->hasTrait<OpTrait::SymbolTable>() || symbol != limit);
// Compute the ancestors of 'limit'.
llvm::SetVector<Operation *, SmallVector<Operation *, 4>,
SmallPtrSet<Operation *, 4>>
limitAncestors;
Operation *limitAncestor = limit;
do {
// Check to see if 'symbol' is an ancestor of 'limit'.
if (limitAncestor == symbol) {
// Check that the nearest symbol table is 'symbol's parent. SymbolRefAttr
// doesn't support parent references.
if (getNearestSymbolTable(limit) != symbol->getParentOp())
return WalkResult::advance();
return callback(SymbolRefAttr::get(symbolName, symbol->getContext()),
limit);
}
limitAncestors.insert(limitAncestor);
} while ((limitAncestor = limitAncestor->getParentOp()));
// Try to find the first ancestor of 'symbol' that is an ancestor of 'limit'.
Operation *commonAncestor = symbol->getParentOp();
do {
if (limitAncestors.count(commonAncestor))
break;
} while ((commonAncestor = commonAncestor->getParentOp()));
assert(commonAncestor && "'limit' and 'symbol' have no common ancestor");
// Compute the set of valid nested references for 'symbol' as far up to the
// common ancestor as possible.
SmallVector<SymbolRefAttr, 2> references;
bool collectedAllReferences = succeeded(collectValidReferencesFor(
symbol, symbolName, commonAncestor, references));
// Handle the case where the common ancestor is 'limit'.
if (commonAncestor == limit) {
// Walk each of the ancestors of 'symbol', calling the compute function for
// each one.
Operation *limitIt = symbol->getParentOp();
for (size_t i = 0, e = references.size(); i != e;
++i, limitIt = limitIt->getParentOp()) {
Optional<WalkResult> callbackResult = callback(references[i], limitIt);
if (callbackResult != WalkResult::advance())
return callbackResult;
}
return WalkResult::advance();
}
// Otherwise, we just need the symbol reference for 'symbol' that will be
// used within 'limit'. This is the last reference in the list we computed
// above if we were able to collect all references.
if (!collectedAllReferences)
return WalkResult::advance();
return callback(references.back(), limit);
}
/// Walk the symbol scopes defined by 'limit' invoking the provided callback.
static Optional<WalkResult> walkSymbolScopes(
StringRef symbol, Operation *limit,
function_ref<Optional<WalkResult>(SymbolRefAttr, Operation *)> callback) {
return callback(SymbolRefAttr::get(symbol, limit->getContext()), limit);
}
/// Returns true if the given reference 'SubRef' is a sub reference of the
/// reference 'ref', i.e. 'ref' is a further qualified reference.
static bool isReferencePrefixOf(SymbolRefAttr subRef, SymbolRefAttr ref) {
if (ref == subRef)
return true;
// If the references are not pointer equal, check to see if `subRef` is a
// prefix of `ref`.
if (ref.isa<FlatSymbolRefAttr>() ||
ref.getRootReference() != subRef.getRootReference())
return false;
auto refLeafs = ref.getNestedReferences();
auto subRefLeafs = subRef.getNestedReferences();
return subRefLeafs.size() < refLeafs.size() &&
subRefLeafs == refLeafs.take_front(subRefLeafs.size());
}
//===----------------------------------------------------------------------===//
// SymbolTable::getSymbolUses
/// Get an iterator range for all of the uses, for any symbol, that are nested
/// within the given operation 'from'. This does not traverse into any nested
/// symbol tables, and will also only return uses on 'from' if it does not
/// also define a symbol table. This is because we treat the region as the
/// boundary of the symbol table, and not the op itself. This function returns
/// None if there are any unknown operations that may potentially be symbol
/// tables.
auto SymbolTable::getSymbolUses(Operation *from) -> Optional<UseRange> {
std::vector<SymbolUse> uses;
auto walkFn = [&](SymbolUse symbolUse, ArrayRef<int>) {
uses.push_back(symbolUse);
return WalkResult::advance();
};
auto result = walkSymbolUses(from, walkFn);
return result ? Optional<UseRange>(std::move(uses)) : Optional<UseRange>();
}
//===----------------------------------------------------------------------===//
// SymbolTable::getSymbolUses
/// The implementation of SymbolTable::getSymbolUses below.
template <typename SymbolT>
static Optional<SymbolTable::UseRange> getSymbolUsesImpl(SymbolT symbol,
Operation *limit) {
std::vector<SymbolTable::SymbolUse> uses;
auto walkFn = [&](SymbolRefAttr symbolRefAttr, Operation *from) {
return walkSymbolUses(
from, [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
if (isReferencePrefixOf(symbolRefAttr, symbolUse.getSymbolRef()))
uses.push_back(symbolUse);
return WalkResult::advance();
});
};
if (walkSymbolScopes(symbol, limit, walkFn))
return SymbolTable::UseRange(std::move(uses));
return llvm::None;
}
/// Get all of the uses of the given symbol that are nested within the given
/// operation 'from', invoking the provided callback for each. This does not
/// traverse into any nested symbol tables, and will also only return uses on
/// 'from' if it does not also define a symbol table. This is because we treat
/// the region as the boundary of the symbol table, and not the op itself. This
/// function returns None if there are any unknown operations that may
/// potentially be symbol tables.
auto SymbolTable::getSymbolUses(StringRef symbol, Operation *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
auto SymbolTable::getSymbolUses(Operation *symbol, Operation *from)
-> Optional<UseRange> {
return getSymbolUsesImpl(symbol, from);
}
//===----------------------------------------------------------------------===//
// SymbolTable::symbolKnownUseEmpty
/// The implementation of SymbolTable::symbolKnownUseEmpty below.
template <typename SymbolT>
static bool symbolKnownUseEmptyImpl(SymbolT symbol, Operation *limit) {
// Walk all of the symbol uses looking for a reference to 'symbol'.
auto walkFn = [&](SymbolRefAttr symbolRefAttr, Operation *from) {
return walkSymbolUses(
from, [&](SymbolTable::SymbolUse symbolUse, ArrayRef<int>) {
return isReferencePrefixOf(symbolRefAttr, symbolUse.getSymbolRef())
? WalkResult::interrupt()
: WalkResult::advance();
});
};
return walkSymbolScopes(symbol, limit, walkFn) == WalkResult::advance();
}
/// Return if the given symbol is known to have no uses that are nested within
/// the given operation 'from'. This does not traverse into any nested symbol
/// tables, and will also only count uses on 'from' if it does not also define
/// a symbol table. This is because we treat the region as the boundary of the
/// symbol table, and not the op itself. This function will also return false if
/// there are any unknown operations that may potentially be symbol tables.
bool SymbolTable::symbolKnownUseEmpty(StringRef symbol, Operation *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
bool SymbolTable::symbolKnownUseEmpty(Operation *symbol, Operation *from) {
return symbolKnownUseEmptyImpl(symbol, from);
}
//===----------------------------------------------------------------------===//
// SymbolTable::replaceAllSymbolUses
/// Rebuild the given attribute container after replacing all references to a
/// symbol with the updated attribute in 'accesses'.
static Attribute rebuildAttrAfterRAUW(
Attribute container,
ArrayRef<std::pair<SmallVector<int, 1>, SymbolRefAttr>> accesses,
unsigned depth) {
// Given a range of Attributes, update the ones referred to by the given
// access chains to point to the new symbol attribute.
auto updateAttrs = [&](auto &&attrRange) {
auto attrBegin = std::begin(attrRange);
for (unsigned i = 0, e = accesses.size(); i != e;) {
ArrayRef<int> access = accesses[i].first;
Attribute &attr = *std::next(attrBegin, access[depth]);
// Check to see if this is a leaf access, i.e. a SymbolRef.
if (access.size() == depth + 1) {
attr = accesses[i].second;
++i;
continue;
}
// Otherwise, this is a container. Collect all of the accesses for this
// index and recurse. The recursion here is bounded by the size of the
// largest access array.
auto nestedAccesses = accesses.drop_front(i).take_while([&](auto &it) {
ArrayRef<int> nextAccess = it.first;
return nextAccess.size() > depth + 1 &&
nextAccess[depth] == access[depth];
});
attr = rebuildAttrAfterRAUW(attr, nestedAccesses, depth + 1);
// Skip over all of the accesses that refer to the nested container.
i += nestedAccesses.size();
}
};
if (auto dictAttr = container.dyn_cast<DictionaryAttr>()) {
auto newAttrs = llvm::to_vector<4>(dictAttr.getValue());
updateAttrs(make_second_range(newAttrs));
return DictionaryAttr::get(newAttrs, dictAttr.getContext());
}
auto newAttrs = llvm::to_vector<4>(container.cast<ArrayAttr>().getValue());
updateAttrs(newAttrs);
return ArrayAttr::get(newAttrs, container.getContext());
}
/// Generates a new symbol reference attribute with a new leaf reference.
static SymbolRefAttr generateNewRefAttr(SymbolRefAttr oldAttr,
FlatSymbolRefAttr newLeafAttr) {
if (oldAttr.isa<FlatSymbolRefAttr>())
return newLeafAttr;
auto nestedRefs = llvm::to_vector<2>(oldAttr.getNestedReferences());
nestedRefs.back() = newLeafAttr;
return SymbolRefAttr::get(oldAttr.getRootReference(), nestedRefs,
oldAttr.getContext());
}
/// The implementation of SymbolTable::replaceAllSymbolUses below.
template <typename SymbolT>
static LogicalResult replaceAllSymbolUsesImpl(SymbolT symbol,
StringRef newSymbol,
Operation *limit) {
// A collection of operations along with their new attribute dictionary.
std::vector<std::pair<Operation *, DictionaryAttr>> updatedAttrDicts;
// The current operation being processed.
Operation *curOp = nullptr;
// The set of access chains into the attribute dictionary of the current
// operation, as well as the replacement attribute to use.
SmallVector<std::pair<SmallVector<int, 1>, SymbolRefAttr>, 1> accessChains;
// Generate a new attribute dictionary for the current operation by replacing
// references to the old symbol.
auto generateNewAttrDict = [&] {
auto oldDict = curOp->getAttrList().getDictionary();
auto newDict = rebuildAttrAfterRAUW(oldDict, accessChains, /*depth=*/0);
return newDict.cast<DictionaryAttr>();
};
// Generate a new attribute to replace the given attribute.
MLIRContext *ctx = limit->getContext();
FlatSymbolRefAttr newLeafAttr = FlatSymbolRefAttr::get(newSymbol, ctx);
auto scopeWalkFn = [&](SymbolRefAttr oldAttr,
Operation *from) -> Optional<WalkResult> {
SymbolRefAttr newAttr = generateNewRefAttr(oldAttr, newLeafAttr);
auto walkFn = [&](SymbolTable::SymbolUse symbolUse,
ArrayRef<int> accessChain) {
SymbolRefAttr useRef = symbolUse.getSymbolRef();
if (!isReferencePrefixOf(oldAttr, useRef))
return WalkResult::advance();
// If we have a valid match, check to see if this is a proper
// subreference. If it is, then we will need to generate a different new
// attribute specifically for this use.
SymbolRefAttr replacementRef = newAttr;
if (useRef != oldAttr) {
if (oldAttr.isa<FlatSymbolRefAttr>()) {
replacementRef =
SymbolRefAttr::get(newSymbol, useRef.getNestedReferences(), ctx);
} else {
auto nestedRefs = llvm::to_vector<4>(useRef.getNestedReferences());
nestedRefs[oldAttr.getNestedReferences().size() - 1] = newLeafAttr;
replacementRef =
SymbolRefAttr::get(useRef.getRootReference(), nestedRefs, ctx);
}
}
// If there was a previous operation, generate a new attribute dict
// for it. This means that we've finished processing the current
// operation, so generate a new dictionary for it.
if (curOp && symbolUse.getUser() != curOp) {
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
accessChains.clear();
}
// Record this access.
curOp = symbolUse.getUser();
accessChains.push_back({llvm::to_vector<1>(accessChain), replacementRef});
return WalkResult::advance();
};
if (!walkSymbolUses(from, walkFn))
return llvm::None;
// Check to see if we have a dangling op that needs to be processed.
if (curOp) {
updatedAttrDicts.push_back({curOp, generateNewAttrDict()});
curOp = nullptr;
}
return WalkResult::advance();
};
if (!walkSymbolScopes(symbol, limit, scopeWalkFn))
return failure();
// Update the attribute dictionaries as necessary.
for (auto &it : updatedAttrDicts)
it.first->setAttrs(it.second);
return success();
}
/// Attempt to replace all uses of the given symbol 'oldSymbol' with the
/// provided symbol 'newSymbol' that are nested within the given operation
/// 'from'. This does not traverse into any nested symbol tables, and will
/// also only replace uses on 'from' if it does not also define a symbol
/// table. This is because we treat the region as the boundary of the symbol
/// table, and not the op itself. If there are any unknown operations that may
/// potentially be symbol tables, no uses are replaced and failure is returned.
LogicalResult SymbolTable::replaceAllSymbolUses(StringRef oldSymbol,
StringRef newSymbol,
Operation *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}
LogicalResult SymbolTable::replaceAllSymbolUses(Operation *oldSymbol,
StringRef newSymbol,
Operation *from) {
return replaceAllSymbolUsesImpl(oldSymbol, newSymbol, from);
}