llvm-project/clang/Analysis/ValueState.cpp

327 lines
9.4 KiB
C++
Raw Normal View History

//= ValueState.cpp - Path-Sens. "State" for tracking valuues -----*- C++ -*--=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This files defines SymbolID, ExprBindKey, and ValueState.
//
//===----------------------------------------------------------------------===//
#include "ValueState.h"
using namespace clang;
bool ValueState::isNotEqual(SymbolID sym, const llvm::APSInt& V) const {
// First, retrieve the NE-set associated with the given symbol.
ConstantNotEqTy::TreeTy* T = Data->ConstantNotEq.SlimFind(sym);
if (!T)
return false;
// Second, see if V is present in the NE-set.
return T->getValue().second.contains(&V);
}
const llvm::APSInt* ValueState::getSymVal(SymbolID sym) const {
ConstantEqTy::TreeTy* T = Data->ConstantEq.SlimFind(sym);
return T ? T->getValue().second : NULL;
}
ValueState
ValueStateManager::RemoveDeadBindings(ValueState St, Stmt* Loc,
const LiveVariables& Liveness) {
// This code essentially performs a "mark-and-sweep" of the VariableBindings.
// The roots are any Block-level exprs and Decls that our liveness algorithm
// tells us are live. We then see what Decls they may reference, and keep
// those around. This code more than likely can be made faster, and the
// frequency of which this method is called should be experimented with
// for optimum performance.
llvm::SmallVector<ValueDecl*, 10> WList;
for (StateTy::vb_iterator I = St.begin(), E = St.end(); I!=E ; ++I) {
// Remove old bindings for subexpressions.
if (I.getKey().isSubExpr()) {
St = Remove(St, I.getKey());
continue;
}
if (I.getKey().isBlkExpr()) {
if (Liveness.isLive(Loc, cast<Stmt>(I.getKey()))) {
if (isa<lval::DeclVal>(I.getData())) {
lval::DeclVal LV = cast<lval::DeclVal>(I.getData());
WList.push_back(LV.getDecl());
}
}
else
St = Remove(St, I.getKey());
continue;
}
assert (I.getKey().isDecl());
if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
if (Liveness.isLive(Loc, V))
WList.push_back(V);
}
llvm::SmallPtrSet<ValueDecl*, 10> Marked;
while (!WList.empty()) {
ValueDecl* V = WList.back();
WList.pop_back();
if (Marked.count(V))
continue;
Marked.insert(V);
if (V->getType()->isPointerType()) {
const LValue& LV = cast<LValue>(GetValue(St, lval::DeclVal(V)));
if (!isa<lval::DeclVal>(LV))
continue;
const lval::DeclVal& LVD = cast<lval::DeclVal>(LV);
WList.push_back(LVD.getDecl());
}
}
for (StateTy::vb_iterator I = St.begin(), E = St.end(); I!=E ; ++I)
if (I.getKey().isDecl())
if (VarDecl* V = dyn_cast<VarDecl>(cast<ValueDecl>(I.getKey())))
if (!Marked.count(V))
St = Remove(St, V);
return St;
}
RValue ValueStateManager::GetValue(const StateTy& St, const LValue& LV,
QualType* T) {
if (isa<UnknownVal>(LV))
return UnknownVal();
switch (LV.getSubKind()) {
case lval::DeclValKind: {
StateTy::VarBindingsTy::TreeTy* T =
St.getImpl()->VarBindings.SlimFind(cast<lval::DeclVal>(LV).getDecl());
return T ? T->getValue().second : UnknownVal();
}
// FIXME: We should bind how far a "ContentsOf" will go...
case lval::SymbolValKind: {
const lval::SymbolVal& SV = cast<lval::SymbolVal>(LV);
assert (T);
if (T->getTypePtr()->isPointerType())
return lval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol()));
else
return nonlval::SymbolVal(SymMgr.getContentsOfSymbol(SV.getSymbol()));
}
default:
assert (false && "Invalid LValue.");
break;
}
return UnknownVal();
}
ValueStateManager::StateTy
ValueStateManager::AddNE(StateTy St, SymbolID sym, const llvm::APSInt& V) {
// First, retrieve the NE-set associated with the given symbol.
ValueState::ConstantNotEqTy::TreeTy* T =
St.getImpl()->ConstantNotEq.SlimFind(sym);
ValueState::IntSetTy S = T ? T->getValue().second : ISetFactory.GetEmptySet();
// Now add V to the NE set.
S = ISetFactory.Add(S, &V);
// Create a new state with the old binding replaced.
ValueStateImpl NewStateImpl = *St.getImpl();
NewStateImpl.ConstantNotEq = CNEFactory.Add(NewStateImpl.ConstantNotEq,
sym, S);
// Get the persistent copy.
return getPersistentState(NewStateImpl);
}
ValueStateManager::StateTy
ValueStateManager::AddEQ(StateTy St, SymbolID sym, const llvm::APSInt& V) {
// Create a new state with the old binding replaced.
ValueStateImpl NewStateImpl = *St.getImpl();
NewStateImpl.ConstantEq = CEFactory.Add(NewStateImpl.ConstantEq, sym, &V);
// Get the persistent copy.
return getPersistentState(NewStateImpl);
}
RValue ValueStateManager::GetValue(const StateTy& St, Expr* S, bool* hasVal) {
for (;;) {
switch (S->getStmtClass()) {
// ParenExprs are no-ops.
case Stmt::ParenExprClass:
S = cast<ParenExpr>(S)->getSubExpr();
continue;
// DeclRefExprs can either evaluate to an LValue or a Non-LValue
// (assuming an implicit "load") depending on the context. In this
// context we assume that we are retrieving the value contained
// within the referenced variables.
case Stmt::DeclRefExprClass:
return GetValue(St, lval::DeclVal(cast<DeclRefExpr>(S)->getDecl()));
// Integer literals evaluate to an RValue. Simply retrieve the
// RValue for the literal.
case Stmt::IntegerLiteralClass:
return NonLValue::GetValue(ValMgr, cast<IntegerLiteral>(S));
// Casts where the source and target type are the same
// are no-ops. We blast through these to get the descendant
// subexpression that has a value.
case Stmt::ImplicitCastExprClass: {
ImplicitCastExpr* C = cast<ImplicitCastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
case Stmt::CastExprClass: {
CastExpr* C = cast<CastExpr>(S);
if (C->getType() == C->getSubExpr()->getType()) {
S = C->getSubExpr();
continue;
}
break;
}
// Handle all other Stmt* using a lookup.
default:
break;
};
break;
}
StateTy::VarBindingsTy::TreeTy* T =
St.getImpl()->VarBindings.SlimFind(S);
if (T) {
if (hasVal) *hasVal = true;
return T->getValue().second;
}
else {
if (hasVal) *hasVal = false;
return UnknownVal();
}
}
LValue ValueStateManager::GetLValue(const StateTy& St, Expr* S) {
while (ParenExpr* P = dyn_cast<ParenExpr>(S))
S = P->getSubExpr();
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(S))
return lval::DeclVal(DR->getDecl());
if (UnaryOperator* U = dyn_cast<UnaryOperator>(S))
if (U->getOpcode() == UnaryOperator::Deref)
return cast<LValue>(GetValue(St, U->getSubExpr()));
return cast<LValue>(GetValue(St, S));
}
ValueStateManager::StateTy
ValueStateManager::SetValue(StateTy St, Expr* S, bool isBlkExpr,
const RValue& V) {
assert (S);
return V.isKnown() ? Add(St, ExprBindKey(S, isBlkExpr), V) : St;
}
ValueStateManager::StateTy
ValueStateManager::SetValue(StateTy St, const LValue& LV, const RValue& V) {
switch (LV.getSubKind()) {
case lval::DeclValKind:
return V.isKnown() ? Add(St, cast<lval::DeclVal>(LV).getDecl(), V)
: Remove(St, cast<lval::DeclVal>(LV).getDecl());
default:
assert ("SetValue for given LValue type not yet implemented.");
return St;
}
}
ValueStateManager::StateTy
ValueStateManager::Remove(StateTy St, ExprBindKey K) {
// Create a new state with the old binding removed.
ValueStateImpl NewStateImpl = *St.getImpl();
NewStateImpl.VarBindings =
VBFactory.Remove(NewStateImpl.VarBindings, K);
// Get the persistent copy.
return getPersistentState(NewStateImpl);
}
ValueStateManager::StateTy
ValueStateManager::Add(StateTy St, ExprBindKey K, const RValue& V) {
// Create a new state with the old binding removed.
ValueStateImpl NewStateImpl = *St.getImpl();
NewStateImpl.VarBindings =
VBFactory.Add(NewStateImpl.VarBindings, K, V);
// Get the persistent copy.
return getPersistentState(NewStateImpl);
}
ValueStateManager::StateTy
ValueStateManager::getInitialState() {
// Create a state with empty variable bindings.
ValueStateImpl StateImpl(VBFactory.GetEmptyMap(),
CNEFactory.GetEmptyMap(),
CEFactory.GetEmptyMap());
return getPersistentState(StateImpl);
}
ValueStateManager::StateTy
ValueStateManager::getPersistentState(const ValueStateImpl &State) {
llvm::FoldingSetNodeID ID;
State.Profile(ID);
void* InsertPos;
if (ValueStateImpl* I = StateSet.FindNodeOrInsertPos(ID, InsertPos))
return I;
ValueStateImpl* I = (ValueStateImpl*) Alloc.Allocate<ValueStateImpl>();
new (I) ValueStateImpl(State);
StateSet.InsertNode(I, InsertPos);
return I;
}