llvm-project/llvm/lib/IR/FPEnv.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

132 lines
4.2 KiB
C++
Raw Normal View History

//===-- FPEnv.cpp ---- FP Environment -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// @file
/// This file contains the implementations of entities that describe floating
/// point environment.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/FPEnv.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include <optional>
namespace llvm {
std::optional<RoundingMode> convertStrToRoundingMode(StringRef RoundingArg) {
// For dynamic rounding mode, we use round to nearest but we will set the
// 'exact' SDNodeFlag so that the value will not be rounded.
return StringSwitch<std::optional<RoundingMode>>(RoundingArg)
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
.Case("round.dynamic", RoundingMode::Dynamic)
.Case("round.tonearest", RoundingMode::NearestTiesToEven)
.Case("round.tonearestaway", RoundingMode::NearestTiesToAway)
.Case("round.downward", RoundingMode::TowardNegative)
.Case("round.upward", RoundingMode::TowardPositive)
.Case("round.towardzero", RoundingMode::TowardZero)
.Default(std::nullopt);
}
std::optional<StringRef> convertRoundingModeToStr(RoundingMode UseRounding) {
std::optional<StringRef> RoundingStr;
switch (UseRounding) {
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
case RoundingMode::Dynamic:
RoundingStr = "round.dynamic";
break;
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
case RoundingMode::NearestTiesToEven:
RoundingStr = "round.tonearest";
break;
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
case RoundingMode::NearestTiesToAway:
RoundingStr = "round.tonearestaway";
break;
case RoundingMode::TowardNegative:
RoundingStr = "round.downward";
break;
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
case RoundingMode::TowardPositive:
RoundingStr = "round.upward";
break;
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
case RoundingMode::TowardZero:
RoundingStr = "round.towardzero";
break;
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
default:
break;
}
return RoundingStr;
}
std::optional<fp::ExceptionBehavior>
convertStrToExceptionBehavior(StringRef ExceptionArg) {
return StringSwitch<std::optional<fp::ExceptionBehavior>>(ExceptionArg)
.Case("fpexcept.ignore", fp::ebIgnore)
.Case("fpexcept.maytrap", fp::ebMayTrap)
.Case("fpexcept.strict", fp::ebStrict)
.Default(std::nullopt);
}
std::optional<StringRef>
convertExceptionBehaviorToStr(fp::ExceptionBehavior UseExcept) {
std::optional<StringRef> ExceptStr;
switch (UseExcept) {
case fp::ebStrict:
ExceptStr = "fpexcept.strict";
break;
case fp::ebIgnore:
ExceptStr = "fpexcept.ignore";
break;
case fp::ebMayTrap:
ExceptStr = "fpexcept.maytrap";
break;
}
return ExceptStr;
}
Intrinsic::ID getConstrainedIntrinsicID(const Instruction &Instr) {
Intrinsic::ID IID = Intrinsic::not_intrinsic;
switch (Instr.getOpcode()) {
case Instruction::FCmp:
// Unlike other instructions FCmp can be mapped to one of two intrinsic
// functions. We choose the non-signaling variant.
IID = Intrinsic::experimental_constrained_fcmp;
break;
// Instructions
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Instruction::NAME: \
IID = Intrinsic::INTRINSIC; \
break;
#define FUNCTION(NAME, NARG, ROUND_MODE, INTRINSIC)
#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)
#include "llvm/IR/ConstrainedOps.def"
// Intrinsic calls.
case Instruction::Call:
if (auto *IntrinCall = dyn_cast<IntrinsicInst>(&Instr)) {
switch (IntrinCall->getIntrinsicID()) {
#define FUNCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::NAME: \
IID = Intrinsic::INTRINSIC; \
break;
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)
#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)
#include "llvm/IR/ConstrainedOps.def"
default:
break;
}
}
break;
default:
break;
}
return IID;
}
} // namespace llvm