llvm-project/flang/lib/semantics/resolve-names.cc

3645 lines
123 KiB
C++
Raw Normal View History

// Copyright (c) 2018-2019, NVIDIA CORPORATION. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "resolve-names.h"
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
#include "attr.h"
#include "default-kinds.h"
#include "expression.h"
#include "mod-file.h"
#include "rewrite-parse-tree.h"
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
#include "scope.h"
#include "semantics.h"
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
#include "symbol.h"
#include "type.h"
#include "../common/fortran.h"
#include "../common/indirection.h"
#include "../evaluate/common.h"
#include "../evaluate/fold.h"
#include "../evaluate/tools.h"
#include "../parser/parse-tree-visitor.h"
#include "../parser/parse-tree.h"
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
#include <list>
#include <map>
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
#include <memory>
#include <ostream>
#include <set>
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
namespace Fortran::semantics {
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
using namespace parser::literals;
using Message = parser::Message;
using Messages = parser::Messages;
using MessageFixedText = parser::MessageFixedText;
using MessageFormattedText = parser::MessageFormattedText;
class ResolveNamesVisitor;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
static const parser::Name *GetGenericSpecName(const parser::GenericSpec &);
// ImplicitRules maps initial character of identifier to the DeclTypeSpec
// representing the implicit type; std::nullopt if none.
// It also records the presence of IMPLICIT NONE statements.
// When inheritFromParent is set, defaults come from the parent rules.
class ImplicitRules {
public:
ImplicitRules() : inheritFromParent_{false} {}
ImplicitRules(std::unique_ptr<ImplicitRules> &&parent)
: inheritFromParent_{parent.get() != nullptr} {
parent_.swap(parent);
}
void set_context(SemanticsContext &context) { context_ = &context; }
std::unique_ptr<ImplicitRules> &&parent() { return std::move(parent_); }
bool isImplicitNoneType() const;
bool isImplicitNoneExternal() const;
void set_isImplicitNoneType(bool x) { isImplicitNoneType_ = x; }
void set_isImplicitNoneExternal(bool x) { isImplicitNoneExternal_ = x; }
void set_inheritFromParent(bool x) { inheritFromParent_ = x; }
// Get the implicit type for identifiers starting with ch. May be null.
const DeclTypeSpec *GetType(char ch) const;
// Record the implicit type for this range of characters.
void SetType(const DeclTypeSpec &type, parser::Location lo, parser::Location,
bool isDefault = false);
private:
static char Incr(char ch);
std::unique_ptr<ImplicitRules> parent_;
std::optional<bool> isImplicitNoneType_;
std::optional<bool> isImplicitNoneExternal_;
bool inheritFromParent_; // look in parent if not specified here
SemanticsContext *context_{nullptr};
// map initial character of identifier to nullptr or its default type
std::map<char, const DeclTypeSpec *> map_;
friend std::ostream &operator<<(std::ostream &, const ImplicitRules &);
friend void ShowImplicitRule(std::ostream &, const ImplicitRules &, char);
};
// Track statement source locations and save messages.
class MessageHandler {
public:
void set_messages(Messages &messages) { messages_ = &messages; }
const SourceName *currStmtSource() { return currStmtSource_; }
void set_currStmtSource(const SourceName *);
// Emit a message
Message &Say(Message &&);
// Emit a message associated with the current statement source.
Message &Say(MessageFixedText &&);
// Emit a message about a SourceName
Message &Say(const SourceName &, MessageFixedText &&);
// Emit a formatted message associated with a source location.
Message &Say(const SourceName &, MessageFixedText &&, const SourceName &);
Message &Say(const SourceName &, MessageFixedText &&, const SourceName &,
const SourceName &);
private:
// Where messages are emitted:
Messages *messages_{nullptr};
// Source location of current statement; null if not in a statement
const SourceName *currStmtSource_{nullptr};
};
class BaseVisitor {
public:
template<typename T> void Walk(const T &);
void set_this(ResolveNamesVisitor *x) { this_ = x; }
MessageHandler &messageHandler() { return messageHandler_; }
const SourceName *currStmtSource();
SemanticsContext &context() const { return *context_; }
void set_context(SemanticsContext &);
// Make a placeholder symbol for a Name that otherwise wouldn't have one.
// It is not in any scope and always has MiscDetails.
void MakePlaceholder(const parser::Name &, MiscDetails::Kind);
template<typename T> MaybeExpr EvaluateExpr(const T &expr) {
if (auto maybeExpr{AnalyzeExpr(*context_, expr)}) {
return evaluate::Fold(context_->foldingContext(), std::move(*maybeExpr));
} else {
return std::nullopt;
}
}
template<typename T> MaybeIntExpr EvaluateIntExpr(const T &expr) {
if (MaybeExpr maybeExpr{EvaluateExpr(expr)}) {
if (auto *intExpr{evaluate::UnwrapExpr<SomeIntExpr>(*maybeExpr)}) {
return {std::move(*intExpr)};
}
}
return std::nullopt;
}
template<typename T>
MaybeSubscriptIntExpr EvaluateSubscriptIntExpr(const T &expr) {
if (MaybeIntExpr maybeIntExpr{EvaluateIntExpr(expr)}) {
return evaluate::Fold(context_->foldingContext(),
evaluate::ConvertToType<evaluate::SubscriptInteger>(
std::move(*maybeIntExpr)));
} else {
return std::nullopt;
}
}
template<typename... A> Message &Say(const parser::Name &name, A... args) {
return messageHandler_.Say(name.source, std::forward<A>(args)...);
}
template<typename... A> Message &Say(A... args) {
return messageHandler_.Say(std::forward<A>(args)...);
}
private:
ResolveNamesVisitor *this_{nullptr};
SemanticsContext *context_{nullptr};
MessageHandler messageHandler_;
};
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
// Provide Post methods to collect attributes into a member variable.
class AttrsVisitor : public virtual BaseVisitor {
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
public:
bool BeginAttrs(); // always returns true
Attrs GetAttrs();
Attrs EndAttrs();
bool SetPassNameOn(Symbol &);
bool SetBindNameOn(Symbol &);
void Post(const parser::LanguageBindingSpec &);
bool Pre(const parser::AccessSpec &);
bool Pre(const parser::IntentSpec &);
bool Pre(const parser::Pass &);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
// Simple case: encountering CLASSNAME causes ATTRNAME to be set.
#define HANDLE_ATTR_CLASS(CLASSNAME, ATTRNAME) \
bool Pre(const parser::CLASSNAME &) { \
attrs_->set(Attr::ATTRNAME); \
return false; \
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
}
HANDLE_ATTR_CLASS(PrefixSpec::Elemental, ELEMENTAL)
HANDLE_ATTR_CLASS(PrefixSpec::Impure, IMPURE)
HANDLE_ATTR_CLASS(PrefixSpec::Module, MODULE)
HANDLE_ATTR_CLASS(PrefixSpec::Non_Recursive, NON_RECURSIVE)
HANDLE_ATTR_CLASS(PrefixSpec::Pure, PURE)
HANDLE_ATTR_CLASS(PrefixSpec::Recursive, RECURSIVE)
HANDLE_ATTR_CLASS(TypeAttrSpec::BindC, BIND_C)
HANDLE_ATTR_CLASS(BindAttr::Deferred, DEFERRED)
HANDLE_ATTR_CLASS(BindAttr::Non_Overridable, NON_OVERRIDABLE)
HANDLE_ATTR_CLASS(Abstract, ABSTRACT)
HANDLE_ATTR_CLASS(Allocatable, ALLOCATABLE)
HANDLE_ATTR_CLASS(Asynchronous, ASYNCHRONOUS)
HANDLE_ATTR_CLASS(Contiguous, CONTIGUOUS)
HANDLE_ATTR_CLASS(External, EXTERNAL)
HANDLE_ATTR_CLASS(Intrinsic, INTRINSIC)
HANDLE_ATTR_CLASS(NoPass, NOPASS)
HANDLE_ATTR_CLASS(Optional, OPTIONAL)
HANDLE_ATTR_CLASS(Parameter, PARAMETER)
HANDLE_ATTR_CLASS(Pointer, POINTER)
HANDLE_ATTR_CLASS(Protected, PROTECTED)
HANDLE_ATTR_CLASS(Save, SAVE)
HANDLE_ATTR_CLASS(Target, TARGET)
HANDLE_ATTR_CLASS(Value, VALUE)
HANDLE_ATTR_CLASS(Volatile, VOLATILE)
#undef HANDLE_ATTR_CLASS
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
protected:
std::optional<Attrs> attrs_;
Attr AccessSpecToAttr(const parser::AccessSpec &x) {
switch (x.v) {
case parser::AccessSpec::Kind::Public: return Attr::PUBLIC;
case parser::AccessSpec::Kind::Private: return Attr::PRIVATE;
}
common::die("unreachable"); // suppress g++ warning
}
Attr IntentSpecToAttr(const parser::IntentSpec &x) {
switch (x.v) {
case parser::IntentSpec::Intent::In: return Attr::INTENT_IN;
case parser::IntentSpec::Intent::Out: return Attr::INTENT_OUT;
case parser::IntentSpec::Intent::InOut: return Attr::INTENT_INOUT;
}
common::die("unreachable"); // suppress g++ warning
}
private:
MaybeExpr bindName_; // from BIND(C, NAME="...")
std::optional<SourceName> passName_; // from PASS(...)
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
};
// Find and create types from declaration-type-spec nodes.
class DeclTypeSpecVisitor : public AttrsVisitor {
public:
explicit DeclTypeSpecVisitor() {}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
using AttrsVisitor::Post;
using AttrsVisitor::Pre;
void Post(const parser::IntegerTypeSpec &);
void Post(const parser::IntrinsicTypeSpec::Logical &);
void Post(const parser::IntrinsicTypeSpec::Real &);
void Post(const parser::IntrinsicTypeSpec::Complex &);
void Post(const parser::IntrinsicTypeSpec::DoublePrecision &);
void Post(const parser::IntrinsicTypeSpec::DoubleComplex &);
void Post(const parser::DeclarationTypeSpec::ClassStar &);
void Post(const parser::DeclarationTypeSpec::TypeStar &);
void Post(const parser::TypeParamSpec &);
bool Pre(const parser::TypeGuardStmt &);
void Post(const parser::TypeGuardStmt &);
bool Pre(const parser::AcSpec &);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
protected:
struct State {
bool expectDeclTypeSpec{false}; // should only see decl-type-spec when true
DeclTypeSpec *declTypeSpec{nullptr};
const parser::Name *derivedTypeName{nullptr};
};
DeclTypeSpec *GetDeclTypeSpec();
void BeginDeclTypeSpec();
void EndDeclTypeSpec();
State SetDeclTypeSpecState(State);
const parser::Name *derivedTypeName() const { return state_.derivedTypeName; }
void SetDeclTypeSpec(const parser::Name &, DeclTypeSpec &);
void SetDeclTypeSpec(DeclTypeSpec &);
ParamValue GetParamValue(const parser::TypeParamValue &);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
private:
State state_;
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
void MakeNumericType(
TypeCategory, const std::optional<parser::KindSelector> &);
void MakeNumericType(TypeCategory, int kind);
int GetKindParamValue(
TypeCategory, const std::optional<parser::KindSelector> &);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
};
// Visit ImplicitStmt and related parse tree nodes and updates implicit rules.
class ImplicitRulesVisitor : public DeclTypeSpecVisitor {
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
public:
using DeclTypeSpecVisitor::Post;
using DeclTypeSpecVisitor::Pre;
using ImplicitNoneNameSpec = parser::ImplicitStmt::ImplicitNoneNameSpec;
void Post(const parser::ParameterStmt &);
bool Pre(const parser::ImplicitStmt &);
bool Pre(const parser::LetterSpec &);
bool Pre(const parser::ImplicitSpec &);
void Post(const parser::ImplicitSpec &);
ImplicitRules &implicitRules() { return *implicitRules_; }
const ImplicitRules &implicitRules() const { return *implicitRules_; }
bool isImplicitNoneType() const {
return implicitRules().isImplicitNoneType();
}
bool isImplicitNoneExternal() const {
return implicitRules().isImplicitNoneExternal();
}
protected:
void PushScope();
void PopScope();
void ClearScopes() { implicitRules_.reset(); }
private:
// implicit rules in effect for current scope
std::unique_ptr<ImplicitRules> implicitRules_;
const SourceName *prevImplicit_{nullptr};
const SourceName *prevImplicitNone_{nullptr};
const SourceName *prevImplicitNoneType_{nullptr};
const SourceName *prevParameterStmt_{nullptr};
bool HandleImplicitNone(const std::list<ImplicitNoneNameSpec> &nameSpecs);
};
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
// Track array specifications. They can occur in AttrSpec, EntityDecl,
// ObjectDecl, DimensionStmt, CommonBlockObject, or BasedPointerStmt.
// 1. INTEGER, DIMENSION(10) :: x
// 2. INTEGER :: x(10)
// 3. ALLOCATABLE :: x(:)
// 4. DIMENSION :: x(10)
// 5. TODO: COMMON x(10)
// 6. TODO: BasedPointerStmt
class ArraySpecVisitor : public virtual BaseVisitor {
public:
bool Pre(const parser::ArraySpec &);
void Post(const parser::AttrSpec &) { PostAttrSpec(); }
void Post(const parser::ComponentAttrSpec &) { PostAttrSpec(); }
void Post(const parser::DeferredShapeSpecList &);
void Post(const parser::AssumedShapeSpec &);
void Post(const parser::ExplicitShapeSpec &);
void Post(const parser::AssumedImpliedSpec &);
void Post(const parser::AssumedRankSpec &);
protected:
const ArraySpec &arraySpec();
void BeginArraySpec();
void EndArraySpec();
void ClearArraySpec() { arraySpec_.clear(); }
private:
// arraySpec_ is populated by any ArraySpec
ArraySpec arraySpec_;
// When an ArraySpec is under an AttrSpec or ComponentAttrSpec, it is moved
// into attrArraySpec_
ArraySpec attrArraySpec_;
void PostAttrSpec();
Bound GetBound(const parser::SpecificationExpr &);
};
// Manage a stack of Scopes
class ScopeHandler : public ImplicitRulesVisitor {
public:
Scope &currScope() { return *currScope_; }
// The enclosing scope, skipping blocks and derived types.
Scope &InclusiveScope();
// The global scope, containing program units.
Scope &GlobalScope();
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// Create a new scope and push it on the scope stack.
void PushScope(Scope::Kind kind, Symbol *symbol);
void PushScope(Scope &scope);
void PopScope();
void ClearScopes() {
PopScope(); // trigger ConvertToObjectEntity calls
currScope_ = &context().globalScope();
ImplicitRulesVisitor::ClearScopes();
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
template<typename T> bool Pre(const parser::Statement<T> &x) {
messageHandler().set_currStmtSource(&x.source);
currScope_->AddSourceRange(x.source);
return true;
}
template<typename T> void Post(const parser::Statement<T> &) {
messageHandler().set_currStmtSource(nullptr);
}
// Special messages: already declared; about a type; two names & locations
void SayAlreadyDeclared(const parser::Name &, const Symbol &);
void SayDerivedType(const SourceName &, MessageFixedText &&, const Scope &);
void Say2(const parser::Name &, MessageFixedText &&, const Symbol &,
MessageFixedText &&);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
// Search for symbol by name in current and containing scopes
Symbol *FindSymbol(const parser::Name &);
Symbol *FindSymbol(const Scope &, const parser::Name &);
// Search for name only in scope, not in enclosing scopes.
Symbol *FindInScope(const Scope &, const parser::Name &);
Symbol *FindInScope(const Scope &, const SourceName &);
void EraseSymbol(const parser::Name &);
// Record that name resolved to symbol
Symbol *Resolve(const parser::Name &, Symbol *);
Symbol &Resolve(const parser::Name &, Symbol &);
// Make a new symbol with the name and attrs of an existing one
Symbol &CopySymbol(const Symbol &);
// Make symbols in the current or named scope
Symbol &MakeSymbol(Scope &, const SourceName &, Attrs);
Symbol &MakeSymbol(const parser::Name &, Attrs = Attrs{});
template<typename D>
Symbol &MakeSymbol(const parser::Name &name, D &&details) {
return MakeSymbol(name, Attrs{}, std::move(details));
}
template<typename D>
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol &MakeSymbol(
const parser::Name &name, const Attrs &attrs, D &&details) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// Note: don't use FindSymbol here. If this is a derived type scope,
// we want to detect if the name is already declared as a component.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *symbol{FindInScope(currScope(), name)};
if (!symbol) {
symbol = &MakeSymbol(name, attrs);
symbol->set_details(std::move(details));
return *symbol;
}
if constexpr (std::is_same_v<DerivedTypeDetails, D>) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *d{symbol->detailsIf<GenericDetails>()}) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// derived type with same name as a generic
auto *derivedType{d->derivedType()};
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
if (!derivedType) {
derivedType =
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
&currScope().MakeSymbol(name.source, attrs, std::move(details));
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
d->set_derivedType(*derivedType);
} else {
SayAlreadyDeclared(name, *derivedType);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
return *derivedType;
}
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (symbol->CanReplaceDetails(details)) {
// update the existing symbol
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
symbol->attrs() |= attrs;
symbol->set_details(std::move(details));
return *symbol;
} else if constexpr (std::is_same_v<UnknownDetails, D>) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
symbol->attrs() |= attrs;
return *symbol;
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
SayAlreadyDeclared(name, *symbol);
// replace the old symbols with a new one with correct details
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
EraseSymbol(name);
return MakeSymbol(name, attrs, details);
}
}
protected:
// When subpNamesOnly_ is set we are only collecting procedure names.
// Create symbols with SubprogramNameDetails of the given kind.
std::optional<SubprogramKind> subpNamesOnly_;
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// Apply the implicit type rules to this symbol.
void ApplyImplicitRules(Symbol &);
const DeclTypeSpec *GetImplicitType(Symbol &);
bool ConvertToObjectEntity(Symbol &);
bool ConvertToProcEntity(Symbol &);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// Walk the ModuleSubprogramPart or InternalSubprogramPart collecting names.
template<typename T>
void WalkSubprogramPart(const std::optional<T> &subpPart) {
if (subpPart) {
if (std::is_same_v<T, parser::ModuleSubprogramPart>) {
subpNamesOnly_ = SubprogramKind::Module;
} else if (std::is_same_v<T, parser::InternalSubprogramPart>) {
subpNamesOnly_ = SubprogramKind::Internal;
} else {
static_assert("unexpected type");
}
Walk(*subpPart);
subpNamesOnly_ = std::nullopt;
}
}
private:
Scope *currScope_{nullptr};
};
class ModuleVisitor : public virtual ScopeHandler {
public:
bool Pre(const parser::Module &);
void Post(const parser::Module &);
bool Pre(const parser::Submodule &);
void Post(const parser::Submodule &);
bool Pre(const parser::AccessStmt &);
bool Pre(const parser::Only &);
bool Pre(const parser::Rename::Names &);
bool Pre(const parser::UseStmt &);
void Post(const parser::UseStmt &);
private:
// The default access spec for this module.
Attr defaultAccess_{Attr::PUBLIC};
// The location of the last AccessStmt without access-ids, if any.
const SourceName *prevAccessStmt_{nullptr};
// The scope of the module during a UseStmt
const Scope *useModuleScope_{nullptr};
void SetAccess(const parser::Name &, Attr);
void ApplyDefaultAccess();
void AddUse(const parser::Rename::Names &);
void AddUse(const parser::Name &);
// Record a use from useModuleScope_ of useName as localName. location is
// where it occurred (either the module or the rename) for error reporting.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
void AddUse(const SourceName &, const parser::Name &, const parser::Name &);
void AddUse(const SourceName &, const Symbol &, Symbol &);
Symbol &BeginModule(const parser::Name &, bool isSubmodule,
const std::optional<parser::ModuleSubprogramPart> &);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Scope *FindModule(const parser::Name &, Scope *ancestor = nullptr);
};
class InterfaceVisitor : public virtual ScopeHandler {
public:
bool Pre(const parser::InterfaceStmt &);
void Post(const parser::InterfaceStmt &);
void Post(const parser::EndInterfaceStmt &);
bool Pre(const parser::GenericSpec &);
bool Pre(const parser::ProcedureStmt &);
void Post(const parser::GenericStmt &);
bool inInterfaceBlock() const { return inInterfaceBlock_; }
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
bool isGeneric() const { return genericName_ != nullptr; }
bool isAbstract() const { return isAbstract_; }
protected:
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
GenericDetails &GetGenericDetails();
// Add to generic the symbol for the subprogram with the same name
void CheckGenericProcedures(Symbol &);
private:
bool inInterfaceBlock_{false}; // set when in interface block
bool isAbstract_{false}; // set when in abstract interface block
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *genericName_{nullptr}; // set in generic interface block
using ProcedureKind = parser::ProcedureStmt::Kind;
// mapping of generic to its specific proc names and kinds
std::multimap<Symbol *, std::pair<const parser::Name *, ProcedureKind>>
specificProcs_;
void AddSpecificProcs(const std::list<parser::Name> &, ProcedureKind);
void ResolveSpecificsInGeneric(Symbol &generic);
};
class SubprogramVisitor : public virtual ScopeHandler, public InterfaceVisitor {
public:
bool HandleStmtFunction(const parser::StmtFunctionStmt &);
void Post(const parser::StmtFunctionStmt &);
bool Pre(const parser::SubroutineStmt &);
void Post(const parser::SubroutineStmt &);
bool Pre(const parser::FunctionStmt &);
void Post(const parser::FunctionStmt &);
bool Pre(const parser::SubroutineSubprogram &);
void Post(const parser::SubroutineSubprogram &);
bool Pre(const parser::FunctionSubprogram &);
void Post(const parser::FunctionSubprogram &);
bool Pre(const parser::InterfaceBody::Subroutine &);
void Post(const parser::InterfaceBody::Subroutine &);
bool Pre(const parser::InterfaceBody::Function &);
void Post(const parser::InterfaceBody::Function &);
bool Pre(const parser::SeparateModuleSubprogram &);
void Post(const parser::SeparateModuleSubprogram &);
bool Pre(const parser::Suffix &);
protected:
// Set when we see a stmt function that is really an array element assignment
bool badStmtFuncFound_{false};
private:
// Function result name from parser::Suffix, if any.
const parser::Name *funcResultName_{nullptr};
bool BeginSubprogram(const parser::Name &, Symbol::Flag, bool hasModulePrefix,
const std::optional<parser::InternalSubprogramPart> &);
void EndSubprogram();
// Create a subprogram symbol in the current scope and push a new scope.
Symbol &PushSubprogramScope(const parser::Name &, Symbol::Flag);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *GetSpecificFromGeneric(const parser::Name &);
SubprogramDetails &PostSubprogramStmt(const parser::Name &);
};
class DeclarationVisitor : public ArraySpecVisitor,
public virtual ScopeHandler {
public:
using ArraySpecVisitor::Post;
using ArraySpecVisitor::Pre;
void Post(const parser::EntityDecl &);
void Post(const parser::ObjectDecl &);
void Post(const parser::PointerDecl &);
bool Pre(const parser::BindStmt &) { return BeginAttrs(); }
void Post(const parser::BindStmt &) { EndAttrs(); }
bool Pre(const parser::BindEntity &);
void Post(const parser::NamedConstantDef &);
bool Pre(const parser::AsynchronousStmt &);
bool Pre(const parser::ContiguousStmt &);
bool Pre(const parser::ExternalStmt &);
bool Pre(const parser::IntentStmt &);
bool Pre(const parser::IntrinsicStmt &);
bool Pre(const parser::OptionalStmt &);
bool Pre(const parser::ProtectedStmt &);
bool Pre(const parser::ValueStmt &);
bool Pre(const parser::VolatileStmt &);
bool Pre(const parser::AllocatableStmt &) {
objectDeclAttr_ = Attr::ALLOCATABLE;
return true;
}
void Post(const parser::AllocatableStmt &) { objectDeclAttr_ = std::nullopt; }
bool Pre(const parser::TargetStmt &x) {
objectDeclAttr_ = Attr::TARGET;
return true;
}
void Post(const parser::TargetStmt &) { objectDeclAttr_ = std::nullopt; }
void Post(const parser::DimensionStmt::Declaration &);
bool Pre(const parser::TypeDeclarationStmt &) { return BeginDecl(); }
void Post(const parser::TypeDeclarationStmt &) { EndDecl(); }
void Post(const parser::IntrinsicTypeSpec::Character &);
void Post(const parser::CharSelector::LengthAndKind &);
void Post(const parser::CharLength &);
void Post(const parser::LengthSelector &);
void Post(const parser::DeclarationTypeSpec::Class &);
bool Pre(const parser::DeclarationTypeSpec::Record &);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
bool Pre(const parser::DerivedTypeSpec &);
void Post(const parser::DerivedTypeDef &x);
bool Pre(const parser::DerivedTypeStmt &x);
void Post(const parser::DerivedTypeStmt &x);
bool Pre(const parser::TypeParamDefStmt &x) { return BeginDecl(); }
void Post(const parser::TypeParamDefStmt &);
bool Pre(const parser::TypeAttrSpec::Extends &x);
bool Pre(const parser::PrivateStmt &x);
bool Pre(const parser::SequenceStmt &x);
bool Pre(const parser::ComponentDefStmt &) { return BeginDecl(); }
void Post(const parser::ComponentDefStmt &) { EndDecl(); }
void Post(const parser::ComponentDecl &x);
bool Pre(const parser::ProcedureDeclarationStmt &);
void Post(const parser::ProcedureDeclarationStmt &);
bool Pre(const parser::ProcComponentDefStmt &);
void Post(const parser::ProcComponentDefStmt &);
void Post(const parser::ProcInterface &x);
void Post(const parser::ProcDecl &x);
bool Pre(const parser::TypeBoundProcedurePart &);
bool Pre(const parser::TypeBoundProcBinding &) { return BeginAttrs(); }
void Post(const parser::TypeBoundProcBinding &) { EndAttrs(); }
void Post(const parser::TypeBoundProcedureStmt::WithoutInterface &);
void Post(const parser::TypeBoundProcedureStmt::WithInterface &);
void Post(const parser::FinalProcedureStmt &);
bool Pre(const parser::TypeBoundGenericStmt &);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
bool Pre(const parser::AllocateStmt &);
void Post(const parser::AllocateStmt &);
bool Pre(const parser::StructureConstructor &);
protected:
bool BeginDecl();
void EndDecl();
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
// Declare a construct or statement entity. If there isn't a type specified
// it comes from the entity in the containing scope, or implicit rules.
// Return pointer to the new symbol, or nullptr on error.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *DeclareConstructEntity(const parser::Name &);
bool CheckUseError(const parser::Name &);
void CheckAccessibility(const parser::Name &, bool, const Symbol &);
private:
// The attribute corresponding to the statement containing an ObjectDecl
std::optional<Attr> objectDeclAttr_;
// Info about current character type while walking DeclTypeSpec
struct {
std::optional<ParamValue> length;
int kind{0};
} charInfo_;
// Info about current derived type while walking DerivedTypeStmt
struct {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *extends{nullptr}; // EXTENDS(name)
bool privateComps{false}; // components are private by default
bool privateBindings{false}; // bindings are private by default
bool sawContains{false}; // currently processing bindings
bool sequence{false}; // is a sequence type
} derivedTypeInfo_;
// In a ProcedureDeclarationStmt or ProcComponentDefStmt, this is
// the interface name, if any.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *interfaceName_{nullptr};
bool HandleAttributeStmt(Attr, const std::list<parser::Name> &);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol &HandleAttributeStmt(Attr, const parser::Name &);
Symbol &DeclareUnknownEntity(const parser::Name &, Attrs);
Symbol &DeclareObjectEntity(const parser::Name &, Attrs);
Symbol &DeclareProcEntity(const parser::Name &, Attrs, const ProcInterface &);
void SetType(const parser::Name &, const DeclTypeSpec &);
const Symbol *ResolveDerivedType(const parser::Name * = nullptr);
bool CanBeTypeBoundProc(const Symbol &);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *FindExplicitInterface(const parser::Name &);
const Symbol *FindTypeSymbol(const parser::Name &);
Symbol *MakeTypeSymbol(const parser::Name &, Details &&);
bool OkToAddComponent(const parser::Name &, const Symbol * = nullptr);
// Declare an object or procedure entity.
// T is one of: EntityDetails, ObjectEntityDetails, ProcEntityDetails
template<typename T>
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol &DeclareEntity(const parser::Name &name, Attrs attrs) {
Symbol &symbol{MakeSymbol(name, attrs)};
if (symbol.has<T>()) {
// OK
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(T{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
symbol.set_details(T{details});
} else if (std::is_same_v<EntityDetails, T> &&
(symbol.has<ObjectEntityDetails>() ||
symbol.has<ProcEntityDetails>())) {
// OK
} else if (auto *details{symbol.detailsIf<UseDetails>()}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say(name.source,
"'%s' is use-associated from module '%s' and cannot be re-declared"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
name.source, details->module().name());
} else if (auto *details{symbol.detailsIf<SubprogramNameDetails>()}) {
if (details->kind() == SubprogramKind::Module) {
Say2(name,
"Declaration of '%s' conflicts with its use as module procedure"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
symbol, "Module procedure definition"_en_US);
} else if (details->kind() == SubprogramKind::Internal) {
Say2(name,
"Declaration of '%s' conflicts with its use as internal procedure"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
symbol, "Internal procedure definition"_en_US);
} else {
CHECK(!"unexpected kind");
}
} else {
SayAlreadyDeclared(name, symbol);
}
return symbol;
}
};
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
// Resolve construct entities and statement entities.
// Check that construct names don't conflict with other names.
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
class ConstructVisitor : public DeclarationVisitor {
public:
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
bool Pre(const parser::ConcurrentHeader &);
void Post(const parser::ConcurrentHeader &);
bool Pre(const parser::LocalitySpec::Local &);
bool Pre(const parser::LocalitySpec::LocalInit &);
bool Pre(const parser::LocalitySpec::Shared &);
bool Pre(const parser::DataImpliedDo &);
bool Pre(const parser::DataStmt &);
void Post(const parser::DataStmt &);
bool Pre(const parser::DoConstruct &);
void Post(const parser::DoConstruct &);
void Post(const parser::ConcurrentControl &);
bool Pre(const parser::ForallConstruct &);
void Post(const parser::ForallConstruct &);
bool Pre(const parser::ForallStmt &);
void Post(const parser::ForallStmt &);
bool Pre(const parser::BlockStmt &);
bool Pre(const parser::EndBlockStmt &);
// Definitions of construct names
bool Pre(const parser::WhereConstructStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::ForallConstructStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::AssociateStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::ChangeTeamStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::CriticalStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::LabelDoStmt &x) {
CHECK(false);
return false;
}
bool Pre(const parser::NonLabelDoStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::IfThenStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::SelectCaseStmt &x) { return CheckDef(x.t); }
bool Pre(const parser::SelectRankStmt &x) {
return CheckDef(std::get<0>(x.t));
}
bool Pre(const parser::SelectTypeStmt &x) {
return CheckDef(std::get<0>(x.t));
}
// References to construct names
void Post(const parser::MaskedElsewhereStmt &x) { CheckRef(x.t); }
void Post(const parser::ElsewhereStmt &x) { CheckRef(x.v); }
void Post(const parser::EndWhereStmt &x) { CheckRef(x.v); }
void Post(const parser::EndForallStmt &x) { CheckRef(x.v); }
void Post(const parser::EndAssociateStmt &x) { CheckRef(x.v); }
void Post(const parser::EndChangeTeamStmt &x) { CheckRef(x.t); }
void Post(const parser::EndCriticalStmt &x) { CheckRef(x.v); }
void Post(const parser::EndDoStmt &x) { CheckRef(x.v); }
void Post(const parser::ElseIfStmt &x) { CheckRef(x.t); }
void Post(const parser::ElseStmt &x) { CheckRef(x.v); }
void Post(const parser::EndIfStmt &x) { CheckRef(x.v); }
void Post(const parser::CaseStmt &x) { CheckRef(x.t); }
void Post(const parser::EndSelectStmt &x) { CheckRef(x.v); }
void Post(const parser::SelectRankCaseStmt &x) { CheckRef(x.t); }
void Post(const parser::TypeGuardStmt &x) { CheckRef(x.t); }
void Post(const parser::CycleStmt &x) { CheckRef(x.v); }
void Post(const parser::ExitStmt &x) { CheckRef(x.v); }
private:
template<typename T> bool CheckDef(const T &t) {
return CheckDef(std::get<std::optional<parser::Name>>(t));
}
template<typename T> void CheckRef(const T &t) {
CheckRef(std::get<std::optional<parser::Name>>(t));
}
bool CheckDef(const std::optional<parser::Name> &);
void CheckRef(const std::optional<parser::Name> &);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
void CheckIntegerType(const Symbol &);
};
// Walk the parse tree and resolve names to symbols.
class ResolveNamesVisitor : public virtual ScopeHandler,
public ModuleVisitor,
public SubprogramVisitor,
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
public ConstructVisitor {
public:
using ArraySpecVisitor::Post;
using ArraySpecVisitor::Pre;
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
using ConstructVisitor::Post;
using ConstructVisitor::Pre;
using DeclarationVisitor::Post;
using DeclarationVisitor::Pre;
using ImplicitRulesVisitor::Post;
using ImplicitRulesVisitor::Pre;
using InterfaceVisitor::Post;
using InterfaceVisitor::Pre;
using ModuleVisitor::Post;
using ModuleVisitor::Pre;
using ScopeHandler::Post;
using ScopeHandler::Pre;
using SubprogramVisitor::Post;
using SubprogramVisitor::Pre;
ResolveNamesVisitor(SemanticsContext &context) {
set_context(context);
set_this(this);
PushScope(context.globalScope());
}
// Default action for a parse tree node is to visit children.
template<typename T> bool Pre(const T &) { return true; }
template<typename T> void Post(const T &) {}
bool Pre(const parser::CommonBlockObject &);
void Post(const parser::CommonBlockObject &);
bool Pre(const parser::PrefixSpec &);
void Post(const parser::SpecificationPart &);
bool Pre(const parser::MainProgram &);
void Post(const parser::EndProgramStmt &);
void Post(const parser::Program &);
bool Pre(const parser::ImplicitStmt &);
void Post(const parser::PointerObject &);
void Post(const parser::AllocateObject &);
void Post(const parser::PointerAssignmentStmt &);
void Post(const parser::Designator &);
template<typename T> void Post(const parser::LoopBounds<T> &);
void Post(const parser::ProcComponentRef &);
void Post(const parser::ProcedureDesignator &);
bool Pre(const parser::FunctionReference &);
void Post(const parser::FunctionReference &);
bool Pre(const parser::CallStmt &);
void Post(const parser::CallStmt &);
bool Pre(const parser::ImportStmt &);
void Post(const parser::TypeGuardStmt &);
bool Pre(const parser::StmtFunctionStmt &);
private:
// Kind of procedure we are expecting to see in a ProcedureDesignator
std::optional<Symbol::Flag> expectedProcFlag_;
const SourceName *prevImportStmt_{nullptr};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
// Each of these returns a pointer to a resolved Name (i.e. with symbol)
// or nullptr in case of error.
const parser::Name *ResolveStructureComponent(
const parser::StructureComponent &);
const parser::Name *ResolveArrayElement(const parser::ArrayElement &);
const parser::Name *ResolveCoindexedNamedObject(
const parser::CoindexedNamedObject &);
const parser::Name *ResolveDataRef(const parser::DataRef &);
const parser::Name *ResolveName(const parser::Name &);
const parser::Name *FindComponent(const parser::Name *, const parser::Name &);
Symbol *FindComponent(const Scope &, const parser::Name &);
bool CheckAccessibleComponent(const parser::Name &);
void CheckImports();
void CheckImport(const SourceName &, const SourceName &);
bool SetProcFlag(const parser::Name &, Symbol &);
};
// ImplicitRules implementation
bool ImplicitRules::isImplicitNoneType() const {
if (isImplicitNoneType_.has_value()) {
return isImplicitNoneType_.value();
} else if (inheritFromParent_) {
return parent_->isImplicitNoneType();
} else {
return false; // default if not specified
}
}
bool ImplicitRules::isImplicitNoneExternal() const {
if (isImplicitNoneExternal_.has_value()) {
return isImplicitNoneExternal_.value();
} else if (inheritFromParent_) {
return parent_->isImplicitNoneExternal();
} else {
return false; // default if not specified
}
}
const DeclTypeSpec *ImplicitRules::GetType(char ch) const {
if (auto it{map_.find(ch)}; it != map_.end()) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
return it->second;
} else if (inheritFromParent_ && parent_->context_) {
return parent_->GetType(ch);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
} else if (ch >= 'i' && ch <= 'n') {
return &context_->MakeNumericType(TypeCategory::Integer);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
} else if (ch >= 'a' && ch <= 'z') {
return &context_->MakeNumericType(TypeCategory::Real);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
} else {
return nullptr;
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
}
// isDefault is set when we are applying the default rules, so it is not
// an error if the type is already set.
void ImplicitRules::SetType(const DeclTypeSpec &type, parser::Location lo,
parser::Location hi, bool isDefault) {
for (char ch = *lo; ch; ch = ImplicitRules::Incr(ch)) {
auto res{map_.emplace(ch, &type)};
if (!res.second && !isDefault) {
context_->Say(lo,
"More than one implicit type specified for '%s'"_err_en_US,
std::string(1, ch).c_str());
}
if (ch == *hi) {
break;
}
}
}
// Return the next char after ch in a way that works for ASCII or EBCDIC.
// Return '\0' for the char after 'z'.
char ImplicitRules::Incr(char ch) {
switch (ch) {
case 'i': return 'j';
case 'r': return 's';
case 'z': return '\0';
default: return ch + 1;
}
}
std::ostream &operator<<(std::ostream &o, const ImplicitRules &implicitRules) {
o << "ImplicitRules:\n";
for (char ch = 'a'; ch; ch = ImplicitRules::Incr(ch)) {
ShowImplicitRule(o, implicitRules, ch);
}
ShowImplicitRule(o, implicitRules, '_');
ShowImplicitRule(o, implicitRules, '$');
ShowImplicitRule(o, implicitRules, '@');
return o;
}
void ShowImplicitRule(
std::ostream &o, const ImplicitRules &implicitRules, char ch) {
auto it{implicitRules.map_.find(ch)};
if (it != implicitRules.map_.end()) {
o << " " << ch << ": " << *it->second << '\n';
}
}
template<typename T> void BaseVisitor::Walk(const T &x) {
parser::Walk(x, *this_);
}
const SourceName *BaseVisitor::currStmtSource() {
return messageHandler_.currStmtSource();
}
void BaseVisitor::set_context(SemanticsContext &context) {
context_ = &context;
messageHandler_.set_messages(context.messages());
}
void BaseVisitor::MakePlaceholder(
const parser::Name &name, MiscDetails::Kind kind) {
if (!name.symbol) {
name.symbol = &context_->globalScope().MakeSymbol(
name.source, Attrs{}, MiscDetails{kind});
}
}
// AttrsVisitor implementation
bool AttrsVisitor::BeginAttrs() {
CHECK(!attrs_);
attrs_ = std::make_optional<Attrs>();
return true;
}
Attrs AttrsVisitor::GetAttrs() {
CHECK(attrs_);
return *attrs_;
}
Attrs AttrsVisitor::EndAttrs() {
CHECK(attrs_);
Attrs result{*attrs_};
attrs_.reset();
passName_.reset();
bindName_.reset();
return result;
}
bool AttrsVisitor::SetPassNameOn(Symbol &symbol) {
if (!passName_) {
return false;
}
std::visit(
common::visitors{
[&](ProcEntityDetails &x) { x.set_passName(*passName_); },
[&](ProcBindingDetails &x) { x.set_passName(*passName_); },
[](auto &) { common::die("unexpected pass name"); },
},
symbol.details());
return true;
}
bool AttrsVisitor::SetBindNameOn(Symbol &symbol) {
if (!bindName_) {
return false;
}
std::visit(
common::visitors{
[&](EntityDetails &x) { x.set_bindName(std::move(bindName_)); },
[&](ObjectEntityDetails &x) { x.set_bindName(std::move(bindName_)); },
[&](ProcEntityDetails &x) { x.set_bindName(std::move(bindName_)); },
[&](SubprogramDetails &x) { x.set_bindName(std::move(bindName_)); },
[](auto &) { common::die("unexpected bind name"); },
},
symbol.details());
return true;
}
void AttrsVisitor::Post(const parser::LanguageBindingSpec &x) {
CHECK(attrs_);
if (x.v) {
bindName_ = EvaluateExpr(*x.v);
} else {
attrs_->set(Attr::BIND_C);
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
}
}
bool AttrsVisitor::Pre(const parser::AccessSpec &x) {
attrs_->set(AccessSpecToAttr(x));
return false;
}
bool AttrsVisitor::Pre(const parser::IntentSpec &x) {
CHECK(attrs_);
attrs_->set(IntentSpecToAttr(x));
return false;
}
bool AttrsVisitor::Pre(const parser::Pass &x) {
if (x.v) {
passName_ = x.v->source;
MakePlaceholder(*x.v, MiscDetails::Kind::PassName);
} else {
attrs_->set(Attr::PASS);
}
return false;
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
// DeclTypeSpecVisitor implementation
DeclTypeSpec *DeclTypeSpecVisitor::GetDeclTypeSpec() {
return state_.declTypeSpec;
}
void DeclTypeSpecVisitor::BeginDeclTypeSpec() {
CHECK(!state_.expectDeclTypeSpec);
CHECK(!state_.declTypeSpec);
state_.expectDeclTypeSpec = true;
}
void DeclTypeSpecVisitor::EndDeclTypeSpec() {
CHECK(state_.expectDeclTypeSpec);
state_ = {};
}
DeclTypeSpecVisitor::State DeclTypeSpecVisitor::SetDeclTypeSpecState(State x) {
auto result{state_};
state_ = x;
return result;
}
void DeclTypeSpecVisitor::Post(const parser::TypeParamSpec &x) {
DerivedTypeSpec &derivedTypeSpec{state_.declTypeSpec->derivedTypeSpec()};
const auto &value{std::get<parser::TypeParamValue>(x.t)};
if (const auto &keyword{std::get<std::optional<parser::Keyword>>(x.t)}) {
derivedTypeSpec.AddParamValue(keyword->v.source, GetParamValue(value));
} else {
derivedTypeSpec.AddParamValue(GetParamValue(value));
}
}
ParamValue DeclTypeSpecVisitor::GetParamValue(const parser::TypeParamValue &x) {
return std::visit(
common::visitors{
[=](const parser::ScalarIntExpr &x) {
return ParamValue{EvaluateIntExpr(x)};
},
[](const parser::Star &) { return ParamValue::Assumed(); },
[](const parser::TypeParamValue::Deferred &) {
return ParamValue::Deferred();
},
},
x.u);
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
bool DeclTypeSpecVisitor::Pre(const parser::TypeGuardStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclTypeSpecVisitor::Post(const parser::TypeGuardStmt &) {
// TODO: TypeGuardStmt
EndDeclTypeSpec();
}
bool DeclTypeSpecVisitor::Pre(const parser::AcSpec &x) {
// AcSpec can occur within a TypeDeclarationStmt: save and restore state
auto savedState{SetDeclTypeSpecState({})};
BeginDeclTypeSpec();
Walk(x.type);
Walk(x.values);
EndDeclTypeSpec();
SetDeclTypeSpecState(savedState);
return false;
}
void DeclTypeSpecVisitor::Post(const parser::IntrinsicTypeSpec::Logical &x) {
SetDeclTypeSpec(context().MakeLogicalType(
GetKindParamValue(TypeCategory::Logical, x.kind)));
}
void DeclTypeSpecVisitor::Post(const parser::IntegerTypeSpec &x) {
MakeNumericType(TypeCategory::Integer, x.v);
}
void DeclTypeSpecVisitor::Post(const parser::IntrinsicTypeSpec::Real &x) {
MakeNumericType(TypeCategory::Real, x.kind);
}
void DeclTypeSpecVisitor::Post(const parser::IntrinsicTypeSpec::Complex &x) {
MakeNumericType(TypeCategory::Complex, x.kind);
}
void DeclTypeSpecVisitor::Post(
const parser::IntrinsicTypeSpec::DoublePrecision &) {
MakeNumericType(
TypeCategory::Real, context().defaultKinds().doublePrecisionKind());
}
void DeclTypeSpecVisitor::Post(
const parser::IntrinsicTypeSpec::DoubleComplex &) {
MakeNumericType(
TypeCategory::Complex, context().defaultKinds().doublePrecisionKind());
}
void DeclTypeSpecVisitor::MakeNumericType(
TypeCategory category, const std::optional<parser::KindSelector> &kind) {
MakeNumericType(category, GetKindParamValue(category, kind));
}
void DeclTypeSpecVisitor::MakeNumericType(TypeCategory category, int kind) {
SetDeclTypeSpec(context().MakeNumericType(category, kind));
}
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::ClassStar &) {
SetDeclTypeSpec(context().globalScope().MakeClassStarType());
}
void DeclTypeSpecVisitor::Post(const parser::DeclarationTypeSpec::TypeStar &) {
SetDeclTypeSpec(context().globalScope().MakeTypeStarType());
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
// Check that we're expecting to see a DeclTypeSpec (and haven't seen one yet)
// and save it in state_.declTypeSpec.
void DeclTypeSpecVisitor::SetDeclTypeSpec(DeclTypeSpec &declTypeSpec) {
CHECK(state_.expectDeclTypeSpec);
CHECK(!state_.declTypeSpec);
state_.declTypeSpec = &declTypeSpec;
}
// Set both the derived type name and corresponding DeclTypeSpec.
void DeclTypeSpecVisitor::SetDeclTypeSpec(
const parser::Name &name, DeclTypeSpec &declTypeSpec) {
state_.derivedTypeName = &name;
SetDeclTypeSpec(declTypeSpec);
}
int DeclTypeSpecVisitor::GetKindParamValue(
TypeCategory category, const std::optional<parser::KindSelector> &kind) {
if (!kind) {
return 0;
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
}
// TODO: check that we get a valid kind
return std::visit(
common::visitors{
[&](const parser::ScalarIntConstantExpr &x) -> int {
if (auto maybeExpr{EvaluateExpr(x)}) {
if (auto intConst{evaluate::ToInt64(*maybeExpr)}) {
return *intConst;
}
}
return 0;
},
[&](const parser::KindSelector::StarSize &x) -> int {
std::uint64_t size{x.v};
if (category == TypeCategory::Complex) {
size /= 2;
}
return size;
},
},
kind->u);
}
// MessageHandler implementation
void MessageHandler::set_currStmtSource(const SourceName *source) {
currStmtSource_ = source;
}
Message &MessageHandler::Say(MessageFixedText &&msg) {
CHECK(currStmtSource_);
return messages_->Say(*currStmtSource_, std::move(msg));
}
Message &MessageHandler::Say(const SourceName &name, MessageFixedText &&msg) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
return Say(name, std::move(msg), name);
}
Message &MessageHandler::Say(const SourceName &location, MessageFixedText &&msg,
const SourceName &arg1) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
return messages_->Say(location, std::move(msg), arg1.ToString().c_str());
}
Message &MessageHandler::Say(const SourceName &location, MessageFixedText &&msg,
const SourceName &arg1, const SourceName &arg2) {
return messages_->Say(location, std::move(msg), arg1.ToString().c_str(),
arg2.ToString().c_str());
}
// ImplicitRulesVisitor implementation
void ImplicitRulesVisitor::Post(const parser::ParameterStmt &x) {
prevParameterStmt_ = currStmtSource();
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitStmt &x) {
bool res = std::visit(
common::visitors{
[&](const std::list<ImplicitNoneNameSpec> &x) {
return HandleImplicitNone(x);
},
[&](const std::list<parser::ImplicitSpec> &x) {
if (prevImplicitNoneType_) {
Say("IMPLICIT statement after IMPLICIT NONE or "
"IMPLICIT NONE(TYPE) statement"_err_en_US);
return false;
}
return true;
},
},
x.u);
prevImplicit_ = currStmtSource();
return res;
}
bool ImplicitRulesVisitor::Pre(const parser::LetterSpec &x) {
auto loLoc{std::get<parser::Location>(x.t)};
auto hiLoc{loLoc};
if (auto hiLocOpt{std::get<std::optional<parser::Location>>(x.t)}) {
hiLoc = *hiLocOpt;
if (*hiLoc < *loLoc) {
Say(hiLoc, "'%s' does not follow '%s' alphabetically"_err_en_US,
std::string(hiLoc, 1), std::string(loLoc, 1));
return false;
}
}
implicitRules().SetType(*GetDeclTypeSpec(), loLoc, hiLoc);
return false;
}
bool ImplicitRulesVisitor::Pre(const parser::ImplicitSpec &) {
BeginDeclTypeSpec();
return true;
}
void ImplicitRulesVisitor::Post(const parser::ImplicitSpec &) {
EndDeclTypeSpec();
}
void ImplicitRulesVisitor::PushScope() {
implicitRules_ = std::make_unique<ImplicitRules>(std::move(implicitRules_));
implicitRules_->set_context(context());
prevImplicit_ = nullptr;
prevImplicitNone_ = nullptr;
prevImplicitNoneType_ = nullptr;
prevParameterStmt_ = nullptr;
}
void ImplicitRulesVisitor::PopScope() {
implicitRules_ = std::move(implicitRules_->parent());
}
// TODO: for all of these errors, reference previous statement too
bool ImplicitRulesVisitor::HandleImplicitNone(
const std::list<ImplicitNoneNameSpec> &nameSpecs) {
if (prevImplicitNone_ != nullptr) {
Say("More than one IMPLICIT NONE statement"_err_en_US);
Say(*prevImplicitNone_, "Previous IMPLICIT NONE statement"_en_US);
return false;
}
if (prevParameterStmt_ != nullptr) {
Say("IMPLICIT NONE statement after PARAMETER statement"_err_en_US);
return false;
}
prevImplicitNone_ = currStmtSource();
if (nameSpecs.empty()) {
prevImplicitNoneType_ = currStmtSource();
implicitRules().set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE statement after IMPLICIT statement"_err_en_US);
return false;
}
} else {
int sawType{0};
int sawExternal{0};
for (const auto noneSpec : nameSpecs) {
switch (noneSpec) {
case ImplicitNoneNameSpec::External:
implicitRules().set_isImplicitNoneExternal(true);
++sawExternal;
break;
case ImplicitNoneNameSpec::Type:
prevImplicitNoneType_ = currStmtSource();
implicitRules().set_isImplicitNoneType(true);
if (prevImplicit_) {
Say("IMPLICIT NONE(TYPE) after IMPLICIT statement"_err_en_US);
return false;
}
++sawType;
break;
}
}
if (sawType > 1) {
Say("TYPE specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
if (sawExternal > 1) {
Say("EXTERNAL specified more than once in IMPLICIT NONE statement"_err_en_US);
return false;
}
}
return true;
}
// ArraySpecVisitor implementation
bool ArraySpecVisitor::Pre(const parser::ArraySpec &x) {
CHECK(arraySpec_.empty());
return true;
}
void ArraySpecVisitor::Post(const parser::DeferredShapeSpecList &x) {
for (int i = 0; i < x.v; ++i) {
arraySpec_.push_back(ShapeSpec::MakeDeferred());
}
}
void ArraySpecVisitor::Post(const parser::AssumedShapeSpec &x) {
const auto &lb{x.v};
arraySpec_.push_back(
lb ? ShapeSpec::MakeAssumed(GetBound(*lb)) : ShapeSpec::MakeAssumed());
}
void ArraySpecVisitor::Post(const parser::ExplicitShapeSpec &x) {
auto &&ub{GetBound(std::get<parser::SpecificationExpr>(x.t))};
if (const auto &lb{std::get<std::optional<parser::SpecificationExpr>>(x.t)}) {
arraySpec_.push_back(ShapeSpec::MakeExplicit(GetBound(*lb), std::move(ub)));
} else {
arraySpec_.push_back(ShapeSpec::MakeExplicit(Bound{1}, std::move(ub)));
}
}
void ArraySpecVisitor::Post(const parser::AssumedImpliedSpec &x) {
const auto &lb{x.v};
arraySpec_.push_back(
lb ? ShapeSpec::MakeImplied(GetBound(*lb)) : ShapeSpec::MakeImplied());
}
void ArraySpecVisitor::Post(const parser::AssumedRankSpec &) {
arraySpec_.push_back(ShapeSpec::MakeAssumedRank());
}
const ArraySpec &ArraySpecVisitor::arraySpec() {
return !arraySpec_.empty() ? arraySpec_ : attrArraySpec_;
}
void ArraySpecVisitor::BeginArraySpec() {
CHECK(arraySpec_.empty());
CHECK(attrArraySpec_.empty());
}
void ArraySpecVisitor::EndArraySpec() {
CHECK(arraySpec_.empty());
attrArraySpec_.clear();
}
void ArraySpecVisitor::PostAttrSpec() {
if (!arraySpec_.empty()) {
// Example: integer, dimension(<1>) :: x(<2>)
// This saves <1> in attrArraySpec_ so we can process <2> into arraySpec_
CHECK(attrArraySpec_.empty());
attrArraySpec_.splice(attrArraySpec_.cbegin(), arraySpec_);
CHECK(arraySpec_.empty());
}
}
Bound ArraySpecVisitor::GetBound(const parser::SpecificationExpr &x) {
return Bound{EvaluateSubscriptIntExpr(x.v)};
}
// ScopeHandler implementation
void ScopeHandler::SayAlreadyDeclared(
const parser::Name &name, const Symbol &prev) {
Say2(name, "'%s' is already declared in this scoping unit"_err_en_US, prev,
"Previous declaration of '%s'"_en_US);
}
void ScopeHandler::SayDerivedType(
const SourceName &name, MessageFixedText &&msg, const Scope &type) {
Say(name, std::move(msg), name, type.name())
.Attach(type.name(), "Declaration of derived type '%s'"_en_US,
type.name().ToString().c_str());
}
void ScopeHandler::Say2(const parser::Name &name, MessageFixedText &&msg1,
const Symbol &symbol, MessageFixedText &&msg2) {
Say(name.source, std::move(msg1))
.Attach(symbol.name(), msg2, symbol.name().ToString().c_str());
}
Scope &ScopeHandler::InclusiveScope() {
for (auto *scope{&currScope()};; scope = &scope->parent()) {
if (scope->kind() != Scope::Kind::Block &&
scope->kind() != Scope::Kind::DerivedType) {
return *scope;
}
}
common::die("inclusive scope not found");
}
Scope &ScopeHandler::GlobalScope() {
for (auto *scope = currScope_; scope; scope = &scope->parent()) {
if (scope->kind() == Scope::Kind::Global) {
return *scope;
}
}
common::die("global scope not found");
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
void ScopeHandler::PushScope(Scope::Kind kind, Symbol *symbol) {
PushScope(currScope().MakeScope(kind, symbol));
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
void ScopeHandler::PushScope(Scope &scope) {
currScope_ = &scope;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto kind{currScope_->kind()};
if (kind != Scope::Kind::Block) {
ImplicitRulesVisitor::PushScope();
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (kind != Scope::Kind::DerivedType) {
if (auto *symbol{scope.symbol()}) {
// Create a dummy symbol so we can't create another one with the same name
// It might already be there if we previously pushed the scope.
if (!FindInScope(scope, symbol->name())) {
auto &newSymbol{CopySymbol(*symbol)};
if (kind == Scope::Kind::Subprogram) {
newSymbol.set_details(symbol->get<SubprogramDetails>());
} else {
newSymbol.set_details(MiscDetails{MiscDetails::Kind::ScopeName});
}
}
}
}
}
void ScopeHandler::PopScope() {
for (auto &pair : currScope()) {
auto &symbol{*pair.second};
ConvertToObjectEntity(symbol); // if not a proc by now, it is an object
}
if (currScope_->kind() != Scope::Kind::Block) {
ImplicitRulesVisitor::PopScope();
}
currScope_ = &currScope_->parent();
}
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *ScopeHandler::FindSymbol(const parser::Name &name) {
return FindSymbol(currScope(), name);
}
Symbol *ScopeHandler::FindSymbol(const Scope &scope, const parser::Name &name) {
return Resolve(name, scope.FindSymbol(name.source));
}
Symbol &ScopeHandler::Resolve(const parser::Name &name, Symbol &symbol) {
return *Resolve(name, &symbol);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *ScopeHandler::Resolve(const parser::Name &name, Symbol *symbol) {
if (symbol && !name.symbol) {
name.symbol = symbol;
}
return symbol;
}
Symbol &ScopeHandler::MakeSymbol(
Scope &scope, const SourceName &name, Attrs attrs) {
auto *symbol{FindInScope(scope, name)};
if (symbol) {
symbol->attrs() |= attrs;
} else {
const auto pair{scope.try_emplace(name, attrs, UnknownDetails{})};
CHECK(pair.second); // name was not found, so must be able to add
symbol = pair.first->second;
}
return *symbol;
}
Symbol &ScopeHandler::MakeSymbol(const parser::Name &name, Attrs attrs) {
return Resolve(name, MakeSymbol(currScope(), name.source, attrs));
}
Symbol &ScopeHandler::CopySymbol(const Symbol &symbol) {
CHECK(!FindInScope(currScope(), symbol.name()));
return MakeSymbol(currScope(), symbol.name(), symbol.attrs());
}
// Look for name only in scope, not in enclosing scopes.
Symbol *ScopeHandler::FindInScope(
const Scope &scope, const parser::Name &name) {
return Resolve(name, FindInScope(scope, name.source));
}
Symbol *ScopeHandler::FindInScope(const Scope &scope, const SourceName &name) {
if (auto it{scope.find(name)}; it != scope.end()) {
return it->second;
} else {
return nullptr;
}
}
void ScopeHandler::EraseSymbol(const parser::Name &name) {
currScope().erase(name.source);
name.symbol = nullptr;
}
static bool NeedsType(const Symbol &symbol) {
if (symbol.GetType()) {
return false;
}
if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
if (details->interface().symbol()) {
return false; // the interface determines the type
}
if (!symbol.test(Symbol::Flag::Function)) {
return false; // not known to be a function
}
}
return true;
}
void ScopeHandler::ApplyImplicitRules(Symbol &symbol) {
ConvertToObjectEntity(symbol);
if (NeedsType(symbol)) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
if (isImplicitNoneType()) {
Say(symbol.name(), "No explicit type declared for '%s'"_err_en_US);
} else if (const auto *type{GetImplicitType(symbol)}) {
symbol.SetType(*type);
}
}
}
const DeclTypeSpec *ScopeHandler::GetImplicitType(Symbol &symbol) {
auto &name{symbol.name()};
const auto *type{implicitRules().GetType(name.begin()[0])};
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
if (type) {
symbol.set(Symbol::Flag::Implicit);
} else {
Say(name, "No explicit type declared for '%s'"_err_en_US);
}
return type;
}
// Convert symbol to be a ObjectEntity or return false if it can't be.
bool ScopeHandler::ConvertToObjectEntity(Symbol &symbol) {
if (symbol.has<ObjectEntityDetails>()) {
// nothing to do
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(ObjectEntityDetails{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
symbol.set_details(ObjectEntityDetails{std::move(*details)});
} else {
return false;
}
return true;
}
// Convert symbol to be a ProcEntity or return false if it can't be.
bool ScopeHandler::ConvertToProcEntity(Symbol &symbol) {
if (symbol.has<ProcEntityDetails>()) {
// nothing to do
} else if (symbol.has<UnknownDetails>()) {
symbol.set_details(ProcEntityDetails{});
} else if (auto *details{symbol.detailsIf<EntityDetails>()}) {
symbol.set_details(ProcEntityDetails{std::move(*details)});
} else {
return false;
}
if (symbol.GetType()) {
symbol.set(Symbol::Flag::Function);
}
return true;
}
// ModuleVisitor implementation
bool ModuleVisitor::Pre(const parser::Only &x) {
std::visit(
common::visitors{
[&](const common::Indirection<parser::GenericSpec> &generic) {
std::visit(
common::visitors{
[&](const parser::Name &name) { AddUse(name); },
[](const auto &) { common::die("TODO: GenericSpec"); },
},
generic->u);
},
[&](const parser::Name &name) { AddUse(name); },
[&](const parser::Rename &rename) {
std::visit(
common::visitors{
[&](const parser::Rename::Names &names) { AddUse(names); },
[&](const parser::Rename::Operators &ops) {
common::die("TODO: Rename::Operators");
},
},
rename.u);
},
},
x.u);
return false;
}
bool ModuleVisitor::Pre(const parser::Rename::Names &x) {
AddUse(x);
return false;
}
// Set useModuleScope_ to the Scope of the module being used.
bool ModuleVisitor::Pre(const parser::UseStmt &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
useModuleScope_ = FindModule(x.moduleName);
return useModuleScope_ != nullptr;
}
void ModuleVisitor::Post(const parser::UseStmt &x) {
if (const auto *list{std::get_if<std::list<parser::Rename>>(&x.u)}) {
// Not a use-only: collect the names that were used in renames,
// then add a use for each public name that was not renamed.
std::set<SourceName> useNames;
for (const auto &rename : *list) {
std::visit(
common::visitors{
[&](const parser::Rename::Names &names) {
useNames.insert(std::get<1>(names.t).source);
},
[&](const parser::Rename::Operators &ops) {
CHECK(!"TODO: Rename::Operators");
},
},
rename.u);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
for (const auto &[name, symbol] : *useModuleScope_) {
if (symbol->attrs().test(Attr::PUBLIC) &&
!symbol->detailsIf<MiscDetails>()) {
if (useNames.count(name) == 0) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *localSymbol{FindInScope(currScope(), name)};
if (!localSymbol) {
localSymbol = &CopySymbol(*symbol);
}
AddUse(x.moduleName.source, *symbol, *localSymbol);
}
}
}
}
useModuleScope_ = nullptr;
}
void ModuleVisitor::AddUse(const parser::Rename::Names &names) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const auto &useName{std::get<0>(names.t)};
const auto &localName{std::get<1>(names.t)};
AddUse(useName.source, useName, localName);
}
void ModuleVisitor::AddUse(const parser::Name &useName) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
AddUse(useName.source, useName, useName);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
void ModuleVisitor::AddUse(const SourceName &location,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name &localName, const parser::Name &useName) {
if (!useModuleScope_) {
return; // error occurred finding module
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *useSymbol{FindInScope(*useModuleScope_, useName)};
if (!useSymbol) {
Say(useName, "'%s' not found in module '%s'"_err_en_US, useName.source,
useModuleScope_->name());
return;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (useSymbol->attrs().test(Attr::PRIVATE)) {
Say(useName, "'%s' is PRIVATE in '%s'"_err_en_US, useName.source,
useModuleScope_->name());
return;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
AddUse(location, *useSymbol, MakeSymbol(localName));
}
void ModuleVisitor::AddUse(
const SourceName &location, const Symbol &useSymbol, Symbol &localSymbol) {
localSymbol.attrs() = useSymbol.attrs();
localSymbol.attrs() &= ~Attrs{Attr::PUBLIC, Attr::PRIVATE};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
localSymbol.flags() = useSymbol.flags();
if (auto *details{localSymbol.detailsIf<UseDetails>()}) {
// check for use-associating the same symbol again:
if (localSymbol.GetUltimate() != useSymbol.GetUltimate()) {
localSymbol.set_details(
UseErrorDetails{*details}.add_occurrence(location, *useModuleScope_));
}
} else if (auto *details{localSymbol.detailsIf<UseErrorDetails>()}) {
details->add_occurrence(location, *useModuleScope_);
} else if (!localSymbol.has<UnknownDetails>()) {
Say(location,
"Cannot use-associate '%s'; it is already declared in this scope"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
localSymbol.name())
.Attach(localSymbol.name(), "Previous declaration of '%s'"_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
localSymbol.name().ToString().c_str());
} else {
localSymbol.set_details(UseDetails{location, useSymbol});
}
}
bool ModuleVisitor::Pre(const parser::Submodule &x) {
auto &stmt{std::get<parser::Statement<parser::SubmoduleStmt>>(x.t)};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &name{std::get<parser::Name>(stmt.statement.t)};
auto &subpPart{std::get<std::optional<parser::ModuleSubprogramPart>>(x.t)};
auto &parentId{std::get<parser::ParentIdentifier>(stmt.statement.t)};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &ancestorName{std::get<parser::Name>(parentId.t)};
auto &parentName{std::get<std::optional<parser::Name>>(parentId.t)};
Scope *ancestor{FindModule(ancestorName)};
if (!ancestor) {
return false;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Scope *parentScope{parentName ? FindModule(*parentName, ancestor) : ancestor};
if (!parentScope) {
return false;
}
PushScope(*parentScope); // submodule is hosted in parent
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
BeginModule(name, true, subpPart);
if (!ancestor->AddSubmodule(name.source, currScope())) {
Say(name, "Module '%s' already has a submodule named '%s'"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
ancestorName.source, name.source);
}
return true;
}
void ModuleVisitor::Post(const parser::Submodule &) { ClearScopes(); }
bool ModuleVisitor::Pre(const parser::Module &x) {
// Make a symbol and push a scope for this module
const auto &name{
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
std::get<parser::Statement<parser::ModuleStmt>>(x.t).statement.v};
auto &subpPart{std::get<std::optional<parser::ModuleSubprogramPart>>(x.t)};
BeginModule(name, false, subpPart);
return true;
}
void ModuleVisitor::Post(const parser::Module &) {
ApplyDefaultAccess();
PopScope();
prevAccessStmt_ = nullptr;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol &ModuleVisitor::BeginModule(const parser::Name &name, bool isSubmodule,
const std::optional<parser::ModuleSubprogramPart> &subpPart) {
auto &symbol{MakeSymbol(name, ModuleDetails{isSubmodule})};
auto &details{symbol.get<ModuleDetails>()};
PushScope(Scope::Kind::Module, &symbol);
details.set_scope(&currScope());
WalkSubprogramPart(subpPart);
return symbol;
}
// Find a module or submodule by name and return its scope.
// If ancestor is present, look for a submodule of that ancestor module.
// May have to read a .mod file to find it.
// If an error occurs, report it and return nullptr.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Scope *ModuleVisitor::FindModule(const parser::Name &name, Scope *ancestor) {
ModFileReader reader{context()};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *scope{reader.Read(name.source, ancestor)};
if (!scope) {
return nullptr;
}
if (scope->kind() != Scope::Kind::Module) {
Say(name, "'%s' is not a module"_err_en_US);
return nullptr;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Resolve(name, scope->symbol());
return scope;
}
void ModuleVisitor::ApplyDefaultAccess() {
for (auto &pair : currScope()) {
[flang] Change how memory for Symbol instances is managed. With this change, all instances Symbol are stored in class Symbols. Scope.symbols_, which used to own the symbol memory, now maps names to Symbol* instead. This causes a bunch of reference-to-pointer changes because of the change in type of key-value pairs. It also requires a default constructor for Symbol, which means owner_ can't be a reference. Symbols manages Symbol instances by allocating a block of them at a time and returning the next one when needed. They are never freed. The reason for the change is that there are a few cases where we need to have a two symbols with the same name, so they can't both live in the map in Scope. Those are: 1. When there is an erroneous redeclaration of a name we may delete the first symbol and replace it with a new one. If we have saved a pointer to the first one it is now dangling. This can be seen by running `f18 -fdebug-dump-symbols -fparse-only test/semantics/resolve19.f90` under valgrind. Subroutine s is declared twice: each results in a scope that contains a pointer back to the symbol for the subroutine. After the second symbol for s is created the first is gone so the pointer in the scope is invalid. 2. A generic and one of its specifics can have the same name. We currently handle that by moving the symbol for the specific into a unique_ptr in the generic. So in that case the symbol is owned by another symbol instead of by the scope. It is simpler if we only have to deal with moving the raw pointer around. 3. A generic and a derived type can have the same name. This case isn't handled yet, but it can be done like flang-compiler/f18#2 above. It's more complicated because the derived type and the generic can be declared in either order. Original-commit: flang-compiler/f18@55a68cf0235c8a3ac855de7dc0e2b08690866be0 Reviewed-on: https://github.com/flang-compiler/f18/pull/107
2018-06-19 16:06:41 -07:00
Symbol &symbol = *pair.second;
if (!symbol.attrs().HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
symbol.attrs().set(defaultAccess_);
}
}
}
// InterfaceVistor implementation
bool InterfaceVisitor::Pre(const parser::InterfaceStmt &x) {
inInterfaceBlock_ = true;
isAbstract_ = std::holds_alternative<parser::Abstract>(x.u);
return true;
}
void InterfaceVisitor::Post(const parser::InterfaceStmt &) {}
void InterfaceVisitor::Post(const parser::EndInterfaceStmt &) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (genericName_) {
if (const auto *proc{GetGenericDetails().CheckSpecific()}) {
SayAlreadyDeclared(*genericName_, *proc);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
genericName_ = nullptr;
}
inInterfaceBlock_ = false;
isAbstract_ = false;
}
// Create a symbol for the name in this GenericSpec, if any.
bool InterfaceVisitor::Pre(const parser::GenericSpec &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
genericName_ = GetGenericSpecName(x);
if (!genericName_) {
return false;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *genericSymbol{FindSymbol(*genericName_)};
if (genericSymbol) {
if (genericSymbol->has<DerivedTypeDetails>()) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// A generic and derived type with same name: create a generic symbol
// and save derived type in it.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
CHECK(genericSymbol->scope()->symbol() == genericSymbol);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
GenericDetails details;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
details.set_derivedType(*genericSymbol);
EraseSymbol(*genericName_);
genericSymbol = &MakeSymbol(*genericName_);
genericSymbol->set_details(details);
} else if (!genericSymbol->IsSubprogram()) {
SayAlreadyDeclared(*genericName_, *genericSymbol);
EraseSymbol(*genericName_);
genericSymbol = nullptr;
} else if (genericSymbol->has<UseDetails>()) {
// copy the USEd symbol into this scope so we can modify it
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const Symbol &ultimate{genericSymbol->GetUltimate()};
EraseSymbol(*genericName_);
genericSymbol = &CopySymbol(ultimate);
genericName_->symbol = genericSymbol;
if (const auto *details{ultimate.detailsIf<GenericDetails>()}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
genericSymbol->set_details(GenericDetails{details->specificProcs()});
} else if (const auto *details{ultimate.detailsIf<SubprogramDetails>()}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
genericSymbol->set_details(SubprogramDetails{*details});
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
common::die("unexpected kind of symbol");
}
}
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (!genericSymbol) {
genericSymbol = &MakeSymbol(*genericName_);
genericSymbol->set_details(GenericDetails{});
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (genericSymbol->has<GenericDetails>()) {
// okay
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
} else if (genericSymbol->has<SubprogramDetails>() ||
genericSymbol->has<SubprogramNameDetails>()) {
[flang] Change how memory for Symbol instances is managed. With this change, all instances Symbol are stored in class Symbols. Scope.symbols_, which used to own the symbol memory, now maps names to Symbol* instead. This causes a bunch of reference-to-pointer changes because of the change in type of key-value pairs. It also requires a default constructor for Symbol, which means owner_ can't be a reference. Symbols manages Symbol instances by allocating a block of them at a time and returning the next one when needed. They are never freed. The reason for the change is that there are a few cases where we need to have a two symbols with the same name, so they can't both live in the map in Scope. Those are: 1. When there is an erroneous redeclaration of a name we may delete the first symbol and replace it with a new one. If we have saved a pointer to the first one it is now dangling. This can be seen by running `f18 -fdebug-dump-symbols -fparse-only test/semantics/resolve19.f90` under valgrind. Subroutine s is declared twice: each results in a scope that contains a pointer back to the symbol for the subroutine. After the second symbol for s is created the first is gone so the pointer in the scope is invalid. 2. A generic and one of its specifics can have the same name. We currently handle that by moving the symbol for the specific into a unique_ptr in the generic. So in that case the symbol is owned by another symbol instead of by the scope. It is simpler if we only have to deal with moving the raw pointer around. 3. A generic and a derived type can have the same name. This case isn't handled yet, but it can be done like flang-compiler/f18#2 above. It's more complicated because the derived type and the generic can be declared in either order. Original-commit: flang-compiler/f18@55a68cf0235c8a3ac855de7dc0e2b08690866be0 Reviewed-on: https://github.com/flang-compiler/f18/pull/107
2018-06-19 16:06:41 -07:00
GenericDetails genericDetails;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
genericDetails.set_specific(*genericSymbol);
EraseSymbol(*genericName_);
genericSymbol = &MakeSymbol(*genericName_, genericDetails);
} else {
common::die("unexpected kind of symbol");
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
CHECK(genericName_->symbol == genericSymbol);
return false;
}
bool InterfaceVisitor::Pre(const parser::ProcedureStmt &x) {
if (!isGeneric()) {
Say("A PROCEDURE statement is only allowed in a generic interface block"_err_en_US);
return false;
}
auto kind{std::get<parser::ProcedureStmt::Kind>(x.t)};
const auto &names{std::get<std::list<parser::Name>>(x.t)};
AddSpecificProcs(names, kind);
return false;
}
void InterfaceVisitor::Post(const parser::GenericStmt &x) {
if (auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
genericName_->symbol->attrs().set(AccessSpecToAttr(*accessSpec));
}
const auto &names{std::get<std::list<parser::Name>>(x.t)};
AddSpecificProcs(names, ProcedureKind::Procedure);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
GenericDetails &InterfaceVisitor::GetGenericDetails() {
CHECK(genericName_);
CHECK(genericName_->symbol);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
return genericName_->symbol->get<GenericDetails>();
}
void InterfaceVisitor::AddSpecificProcs(
const std::list<parser::Name> &names, ProcedureKind kind) {
for (const auto &name : names) {
specificProcs_.emplace(genericName_->symbol, std::make_pair(&name, kind));
}
}
// By now we should have seen all specific procedures referenced by name in
// this generic interface. Resolve those names to symbols.
void InterfaceVisitor::ResolveSpecificsInGeneric(Symbol &generic) {
auto &details{generic.get<GenericDetails>()};
std::set<SourceName> namesSeen; // to check for duplicate names
for (const auto *symbol : details.specificProcs()) {
namesSeen.insert(symbol->name());
}
auto range{specificProcs_.equal_range(&generic)};
for (auto it{range.first}; it != range.second; ++it) {
auto *name{it->second.first};
auto kind{it->second.second};
const auto *symbol{FindSymbol(*name)};
if (!symbol) {
Say(*name, "Procedure '%s' not found"_err_en_US);
continue;
}
symbol = &symbol->GetUltimate();
if (symbol == &generic) {
if (auto *specific{generic.get<GenericDetails>().specific()}) {
symbol = specific;
}
}
if (!symbol->has<SubprogramDetails>() &&
!symbol->has<SubprogramNameDetails>()) {
Say(*name, "'%s' is not a subprogram"_err_en_US);
continue;
}
if (kind == ProcedureKind::ModuleProcedure) {
const auto *d{symbol->detailsIf<SubprogramNameDetails>()};
if (!d || d->kind() != SubprogramKind::Module) {
Say(*name, "'%s' is not a module procedure"_err_en_US);
}
}
if (!namesSeen.insert(name->source).second) {
Say(*name,
"Procedure '%s' is already specified in generic '%s'"_err_en_US,
name->source, generic.name());
continue;
}
details.add_specificProc(*symbol);
}
specificProcs_.erase(range.first, range.second);
}
// Check that the specific procedures are all functions or all subroutines.
// If there is a derived type with the same name they must be functions.
// Set the corresponding flag on generic.
void InterfaceVisitor::CheckGenericProcedures(Symbol &generic) {
ResolveSpecificsInGeneric(generic);
auto &details{generic.get<GenericDetails>()};
auto &specifics{details.specificProcs()};
if (specifics.empty()) {
if (details.derivedType()) {
generic.set(Symbol::Flag::Function);
}
return;
}
auto &firstSpecific{*specifics.front()};
bool isFunction{firstSpecific.test(Symbol::Flag::Function)};
for (auto *specific : specifics) {
if (isFunction != specific->test(Symbol::Flag::Function)) {
auto &msg{Say(generic.name(),
"Generic interface '%s' has both a function and a subroutine"_err_en_US)};
if (isFunction) {
msg.Attach(firstSpecific.name(), "Function declaration"_en_US);
msg.Attach(specific->name(), "Subroutine declaration"_en_US);
} else {
msg.Attach(firstSpecific.name(), "Subroutine declaration"_en_US);
msg.Attach(specific->name(), "Function declaration"_en_US);
}
}
}
if (!isFunction && details.derivedType()) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
SayDerivedType(generic.name(),
"Generic interface '%s' may only contain functions due to derived type"
" with same name"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
*details.derivedType()->scope());
}
generic.set(isFunction ? Symbol::Flag::Function : Symbol::Flag::Subroutine);
}
// SubprogramVisitor implementation
void SubprogramVisitor::Post(const parser::StmtFunctionStmt &x) {
if (badStmtFuncFound_) {
return; // This wasn't really a stmt function so no scope was created
}
PopScope();
}
// Return false if it is actually an assignment statement.
bool SubprogramVisitor::HandleStmtFunction(const parser::StmtFunctionStmt &x) {
const auto &name{std::get<parser::Name>(x.t)};
const DeclTypeSpec *resultType{nullptr};
// Look up name: provides return type or tells us if it's an array
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *symbol{FindSymbol(name)}) {
auto *details{symbol->detailsIf<EntityDetails>()};
if (!details) {
badStmtFuncFound_ = true;
return false;
}
// TODO: check that attrs are compatible with stmt func
resultType = details->type();
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
EraseSymbol(name);
}
if (badStmtFuncFound_) {
Say(name, "'%s' has not been declared as an array"_err_en_US);
return true;
}
auto &symbol{PushSubprogramScope(name, Symbol::Flag::Function)};
auto &details{symbol.get<SubprogramDetails>()};
for (const auto &dummyName : std::get<std::list<parser::Name>>(x.t)) {
EntityDetails dummyDetails{true};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *dummySymbol{FindInScope(currScope().parent(), dummyName)}) {
if (auto *d{dummySymbol->detailsIf<EntityDetails>()}) {
if (d->type()) {
dummyDetails.set_type(*d->type());
}
}
}
details.add_dummyArg(MakeSymbol(dummyName, dummyDetails));
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
EraseSymbol(name); // added by PushSubprogramScope
EntityDetails resultDetails;
if (resultType) {
resultDetails.set_type(*resultType);
}
details.set_result(MakeSymbol(name, resultDetails));
return true;
}
bool SubprogramVisitor::Pre(const parser::Suffix &suffix) {
if (suffix.resultName) {
funcResultName_ = &suffix.resultName.value();
}
return true;
}
bool HasModulePrefix(const std::list<parser::PrefixSpec> &prefixes) {
for (const auto &prefix : prefixes) {
if (std::holds_alternative<parser::PrefixSpec::Module>(prefix.u)) {
return true;
}
}
return false;
}
bool SubprogramVisitor::Pre(const parser::SubroutineSubprogram &x) {
const auto &stmt{
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement};
bool hasModulePrefix{
HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmt.t))};
const auto &name{std::get<parser::Name>(stmt.t)};
const auto &subpPart{
std::get<std::optional<parser::InternalSubprogramPart>>(x.t)};
return BeginSubprogram(
name, Symbol::Flag::Subroutine, hasModulePrefix, subpPart);
}
void SubprogramVisitor::Post(const parser::SubroutineSubprogram &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::FunctionSubprogram &x) {
const auto &stmt{
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement};
bool hasModulePrefix{
HasModulePrefix(std::get<std::list<parser::PrefixSpec>>(stmt.t))};
const auto &name{std::get<parser::Name>(stmt.t)};
const auto &subpPart{
std::get<std::optional<parser::InternalSubprogramPart>>(x.t)};
return BeginSubprogram(
name, Symbol::Flag::Function, hasModulePrefix, subpPart);
}
void SubprogramVisitor::Post(const parser::FunctionSubprogram &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Subroutine &x) {
const auto &name{std::get<parser::Name>(
std::get<parser::Statement<parser::SubroutineStmt>>(x.t).statement.t)};
return BeginSubprogram(name, Symbol::Flag::Subroutine,
/*hasModulePrefix*/ false, std::nullopt);
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Subroutine &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::InterfaceBody::Function &x) {
const auto &name{std::get<parser::Name>(
std::get<parser::Statement<parser::FunctionStmt>>(x.t).statement.t)};
return BeginSubprogram(
name, Symbol::Flag::Function, /*hasModulePrefix*/ false, std::nullopt);
}
void SubprogramVisitor::Post(const parser::InterfaceBody::Function &) {
EndSubprogram();
}
bool SubprogramVisitor::Pre(const parser::SubroutineStmt &stmt) {
return BeginAttrs();
}
bool SubprogramVisitor::Pre(const parser::FunctionStmt &stmt) {
if (!subpNamesOnly_) {
BeginDeclTypeSpec();
CHECK(!funcResultName_);
}
return BeginAttrs();
}
void SubprogramVisitor::Post(const parser::SubroutineStmt &stmt) {
const auto &name{std::get<parser::Name>(stmt.t)};
auto &details{PostSubprogramStmt(name)};
for (const auto &dummyArg : std::get<std::list<parser::DummyArg>>(stmt.t)) {
const parser::Name *dummyName = std::get_if<parser::Name>(&dummyArg.u);
CHECK(dummyName != nullptr && "TODO: alternate return indicator");
Symbol &dummy{MakeSymbol(*dummyName, EntityDetails(true))};
details.add_dummyArg(dummy);
}
}
void SubprogramVisitor::Post(const parser::FunctionStmt &stmt) {
const auto &name{std::get<parser::Name>(stmt.t)};
auto &details{PostSubprogramStmt(name)};
for (const auto &dummyName : std::get<std::list<parser::Name>>(stmt.t)) {
Symbol &dummy{MakeSymbol(dummyName, EntityDetails(true))};
details.add_dummyArg(dummy);
}
// add function result to function scope
EntityDetails funcResultDetails;
if (auto *type{GetDeclTypeSpec()}) {
funcResultDetails.set_type(*type);
}
EndDeclTypeSpec();
const parser::Name *funcResultName;
if (funcResultName_ && funcResultName_->source != name.source) {
funcResultName = funcResultName_;
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
EraseSymbol(name); // was added by PushSubprogramScope
funcResultName = &name;
}
details.set_result(MakeSymbol(*funcResultName, funcResultDetails));
funcResultName_ = nullptr;
}
SubprogramDetails &SubprogramVisitor::PostSubprogramStmt(
const parser::Name &name) {
Symbol &symbol{*currScope().symbol()};
CHECK(name.source == symbol.name());
SetBindNameOn(symbol);
symbol.attrs() |= EndAttrs();
if (symbol.attrs().test(Attr::MODULE)) {
symbol.attrs().set(Attr::EXTERNAL, false);
}
return symbol.get<SubprogramDetails>();
}
bool SubprogramVisitor::BeginSubprogram(const parser::Name &name,
Symbol::Flag subpFlag, bool hasModulePrefix,
const std::optional<parser::InternalSubprogramPart> &subpPart) {
if (subpNamesOnly_) {
auto &symbol{MakeSymbol(name, SubprogramNameDetails{*subpNamesOnly_})};
symbol.set(subpFlag);
return false;
}
if (hasModulePrefix && !inInterfaceBlock()) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *symbol{FindSymbol(name)};
if (!symbol || !symbol->IsSeparateModuleProc()) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say(name, "'%s' was not declared a separate module procedure"_err_en_US);
return false;
}
if (symbol->owner() == currScope()) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
// separate module procedure declared and defined in same module
PushScope(*symbol->scope());
} else {
PushSubprogramScope(name, subpFlag);
}
} else {
PushSubprogramScope(name, subpFlag);
}
WalkSubprogramPart(subpPart);
return true;
}
void SubprogramVisitor::EndSubprogram() {
if (!subpNamesOnly_) {
PopScope();
}
}
bool SubprogramVisitor::Pre(const parser::SeparateModuleSubprogram &x) {
if (subpNamesOnly_) {
return false;
}
const auto &name{
std::get<parser::Statement<parser::MpSubprogramStmt>>(x.t).statement.v};
const auto &subpPart{
std::get<std::optional<parser::InternalSubprogramPart>>(x.t)};
return BeginSubprogram(
name, Symbol::Flag::Subroutine, /*hasModulePrefix*/ true, subpPart);
}
void SubprogramVisitor::Post(const parser::SeparateModuleSubprogram &) {
EndSubprogram();
}
Symbol &SubprogramVisitor::PushSubprogramScope(
const parser::Name &name, Symbol::Flag subpFlag) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *symbol{GetSpecificFromGeneric(name)};
if (!symbol) {
symbol = &MakeSymbol(name, SubprogramDetails{});
symbol->set(subpFlag);
}
PushScope(Scope::Kind::Subprogram, symbol);
auto &details{symbol->get<SubprogramDetails>()};
if (inInterfaceBlock()) {
details.set_isInterface();
if (!isAbstract()) {
symbol->attrs().set(Attr::EXTERNAL);
}
if (isGeneric()) {
GetGenericDetails().add_specificProc(*symbol);
}
implicitRules().set_inheritFromParent(false);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
FindSymbol(name)->set(subpFlag);
return *symbol;
}
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// If name is a generic, return specific subprogram with the same name.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *SubprogramVisitor::GetSpecificFromGeneric(const parser::Name &name) {
if (auto *symbol{FindSymbol(name)}) {
if (auto *details{symbol->detailsIf<GenericDetails>()}) {
// found generic, want subprogram
auto *specific{details->specific()};
if (isGeneric()) {
if (specific) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
SayAlreadyDeclared(name, *specific);
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
EraseSymbol(name);
specific = &MakeSymbol(name, Attrs{}, SubprogramDetails{});
GetGenericDetails().set_specific(*specific);
}
}
if (specific) {
if (!specific->has<SubprogramDetails>()) {
specific->set_details(SubprogramDetails{});
}
return specific;
}
}
}
return nullptr;
}
// DeclarationVisitor implementation
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
bool DeclarationVisitor::BeginDecl() {
BeginDeclTypeSpec();
BeginArraySpec();
return BeginAttrs();
}
void DeclarationVisitor::EndDecl() {
EndDeclTypeSpec();
EndArraySpec();
EndAttrs();
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
bool DeclarationVisitor::CheckUseError(const parser::Name &name) {
const auto *details{name.symbol->detailsIf<UseErrorDetails>()};
if (!details) {
return false;
}
Message &msg{Say(name, "Reference to '%s' is ambiguous"_err_en_US)};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
for (const auto &[location, module] : details->occurrences()) {
msg.Attach(location, "'%s' was use-associated from module '%s'"_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
name.ToString().data(), module->name().ToString().data());
}
return true;
}
// Report error if accessibility of symbol doesn't match isPrivate.
void DeclarationVisitor::CheckAccessibility(
const parser::Name &name, bool isPrivate, const Symbol &symbol) {
if (symbol.attrs().test(Attr::PRIVATE) != isPrivate) {
Say2(name,
"'%s' does not have the same accessibility as its previous declaration"_err_en_US,
symbol, "Previous declaration of '%s'"_en_US);
}
}
void DeclarationVisitor::Post(const parser::DimensionStmt::Declaration &x) {
const auto &name{std::get<parser::Name>(x.t)};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
DeclareObjectEntity(name, Attrs{});
}
void DeclarationVisitor::Post(const parser::EntityDecl &x) {
// TODO: may be under StructureStmt
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const auto &name{std::get<parser::ObjectName>(x.t)};
// TODO: CoarraySpec, CharLength, Initialization
Attrs attrs{attrs_ ? *attrs_ : Attrs{}};
Symbol &symbol{DeclareUnknownEntity(name, attrs)};
if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
if (ConvertToObjectEntity(symbol)) {
if (auto *expr{std::get_if<parser::ConstantExpr>(&init->u)}) {
symbol.get<ObjectEntityDetails>().set_init(EvaluateExpr(*expr));
}
}
}
}
void DeclarationVisitor::Post(const parser::PointerDecl &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const auto &name{std::get<parser::Name>(x.t)};
DeclareUnknownEntity(name, Attrs{Attr::POINTER});
}
bool DeclarationVisitor::Pre(const parser::BindEntity &x) {
auto &name{std::get<parser::Name>(x.t)};
if (std::get<parser::BindEntity::Kind>(x.t) ==
parser::BindEntity::Kind::Object) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
HandleAttributeStmt(Attr::BIND_C, name);
} else {
// TODO: name is common block
}
return false;
}
void DeclarationVisitor::Post(const parser::NamedConstantDef &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &name{std::get<parser::NamedConstant>(x.t).v};
auto &symbol{HandleAttributeStmt(Attr::PARAMETER, name)};
if (!ConvertToObjectEntity(symbol)) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say2(name, "PARAMETER attribute not allowed on '%s'"_err_en_US, symbol,
"Declaration of '%s'"_en_US);
return;
}
const auto &expr{std::get<parser::ConstantExpr>(x.t)};
symbol.get<ObjectEntityDetails>().set_init(EvaluateExpr(expr));
ApplyImplicitRules(symbol);
}
bool DeclarationVisitor::Pre(const parser::AsynchronousStmt &x) {
return HandleAttributeStmt(Attr::ASYNCHRONOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ContiguousStmt &x) {
return HandleAttributeStmt(Attr::CONTIGUOUS, x.v);
}
bool DeclarationVisitor::Pre(const parser::ExternalStmt &x) {
HandleAttributeStmt(Attr::EXTERNAL, x.v);
for (const auto &name : x.v) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *symbol{FindSymbol(name)};
[flang] Support writing interfaces in module files. Write symbols for external subprogram interfaces as interface-stmts. Those go in the decls part of the module file, as opposed to contained subprograms which go in the contains part. See modfile06.f90. Write symbols with GenericDetails to module files. The specific procedures of a generic interface are always written as procedure-stmts. If they also have specific interfaces those are written in a separate interface-stmt. See modfile07.f90. Fix a bug where `real, external :: f` was not written like `real f; external f`. We have to notice the EXTERNAL attribute on the type-declaration-stmt and convert the entity to a procedure entity. See modfile08.f90. Fix a bug where a use-associated symbol is referenced in a procedure-designator. We were not resolving that correctly. Change ModFileWriter::PutEntity to include the kind of Details when it reports an internal error due to a kind it can't handle. Make DetailsToString public to support that. Change test_errors.sh to fail if the f18 command exits due to a signal. We were missing bugs where the correct errors were written out but then module file writing crashed (due to failure to handle generics mentioned above). Non-zero exit status is okay because we are expecting compilation errors. Change test_modfile.sh to allow for the expected module file contents to be indented so the tests are easier to read. Original-commit: flang-compiler/f18@82a7931e51c63ba21f17261727e1e9dc4167dcc9 Reviewed-on: https://github.com/flang-compiler/f18/pull/132 Tree-same-pre-rewrite: false
2018-07-19 13:28:24 -07:00
if (!ConvertToProcEntity(*symbol)) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say2(name, "EXTERNAL attribute not allowed on '%s'"_err_en_US, *symbol,
"Declaration of '%s'"_en_US);
}
}
return false;
}
bool DeclarationVisitor::Pre(const parser::IntentStmt &x) {
auto &intentSpec{std::get<parser::IntentSpec>(x.t)};
auto &names{std::get<std::list<parser::Name>>(x.t)};
return HandleAttributeStmt(IntentSpecToAttr(intentSpec), names);
}
bool DeclarationVisitor::Pre(const parser::IntrinsicStmt &x) {
return HandleAttributeStmt(Attr::INTRINSIC, x.v);
}
bool DeclarationVisitor::Pre(const parser::OptionalStmt &x) {
return HandleAttributeStmt(Attr::OPTIONAL, x.v);
}
bool DeclarationVisitor::Pre(const parser::ProtectedStmt &x) {
return HandleAttributeStmt(Attr::PROTECTED, x.v);
}
bool DeclarationVisitor::Pre(const parser::ValueStmt &x) {
return HandleAttributeStmt(Attr::VALUE, x.v);
}
bool DeclarationVisitor::Pre(const parser::VolatileStmt &x) {
return HandleAttributeStmt(Attr::VOLATILE, x.v);
}
// Handle a statement that sets an attribute on a list of names.
bool DeclarationVisitor::HandleAttributeStmt(
Attr attr, const std::list<parser::Name> &names) {
for (const auto &name : names) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
HandleAttributeStmt(attr, name);
}
return false;
}
Symbol &DeclarationVisitor::HandleAttributeStmt(
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Attr attr, const parser::Name &name) {
auto *symbol{FindSymbol(name)};
if (symbol) {
// symbol was already there: set attribute on it
if (attr == Attr::ASYNCHRONOUS || attr == Attr::VOLATILE) {
// TODO: if in a BLOCK, attribute should only be set while in the block
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
} else if (symbol->has<UseDetails>()) {
Say(*currStmtSource(),
"Cannot change %s attribute on use-associated '%s'"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
EnumToString(attr), name.source);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
} else {
symbol = &MakeSymbol(name, EntityDetails{});
}
if (attr != Attr::BIND_C || !SetBindNameOn(*symbol)) {
symbol->attrs().set(attr);
}
return *symbol;
}
void DeclarationVisitor::Post(const parser::ObjectDecl &x) {
CHECK(objectDeclAttr_.has_value());
const auto &name{std::get<parser::ObjectName>(x.t)};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
DeclareObjectEntity(name, Attrs{*objectDeclAttr_});
}
// Declare an entity not yet known to be an object or proc.
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
Symbol &DeclarationVisitor::DeclareUnknownEntity(
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name &name, Attrs attrs) {
if (!arraySpec().empty()) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
return DeclareObjectEntity(name, attrs);
} else {
Symbol &symbol{DeclareEntity<EntityDetails>(name, attrs)};
if (auto *type{GetDeclTypeSpec()}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
SetType(name, *type);
}
SetBindNameOn(symbol);
if (symbol.attrs().test(Attr::EXTERNAL)) {
ConvertToProcEntity(symbol);
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
return symbol;
}
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
Symbol &DeclarationVisitor::DeclareProcEntity(
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name &name, Attrs attrs, const ProcInterface &interface) {
Symbol &symbol{DeclareEntity<ProcEntityDetails>(name, attrs)};
if (auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
if (interface.type()) {
symbol.set(Symbol::Flag::Function);
} else if (interface.symbol()) {
symbol.set(interface.symbol()->test(Symbol::Flag::Function)
? Symbol::Flag::Function
: Symbol::Flag::Subroutine);
}
details->set_interface(interface);
SetBindNameOn(symbol);
SetPassNameOn(symbol);
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
return symbol;
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
Symbol &DeclarationVisitor::DeclareObjectEntity(
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name &name, Attrs attrs) {
Symbol &symbol{DeclareEntity<ObjectEntityDetails>(name, attrs)};
if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (auto *type{GetDeclTypeSpec()}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
SetType(name, *type);
}
if (!arraySpec().empty()) {
if (!details->shape().empty()) {
Say(name,
"The dimensions of '%s' have already been declared"_err_en_US);
} else {
details->set_shape(arraySpec());
}
ClearArraySpec();
}
SetBindNameOn(symbol);
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
return symbol;
}
void DeclarationVisitor::Post(const parser::IntrinsicTypeSpec::Character &x) {
if (!charInfo_.length) {
charInfo_.length = ParamValue{1};
}
if (charInfo_.kind == 0) {
charInfo_.kind =
context().defaultKinds().GetDefaultKind(TypeCategory::Character);
}
SetDeclTypeSpec(currScope().MakeCharacterType(
std::move(*charInfo_.length), charInfo_.kind));
charInfo_ = {};
}
void DeclarationVisitor::Post(const parser::CharSelector::LengthAndKind &x) {
if (auto maybeExpr{EvaluateExpr(x.kind)}) {
charInfo_.kind = evaluate::ToInt64(*maybeExpr).value();
}
if (x.length) {
charInfo_.length = GetParamValue(*x.length);
}
}
void DeclarationVisitor::Post(const parser::CharLength &x) {
if (const auto *length{std::get_if<std::int64_t>(&x.u)}) {
charInfo_.length = ParamValue{*length};
} else {
charInfo_.length = GetParamValue(std::get<parser::TypeParamValue>(x.u));
}
}
void DeclarationVisitor::Post(const parser::LengthSelector &x) {
if (const auto *param{std::get_if<parser::TypeParamValue>(&x.u)}) {
charInfo_.length = GetParamValue(*param);
}
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
void DeclarationVisitor::Post(const parser::DeclarationTypeSpec::Class &x) {
// created by default with TypeDerived; change to ClassDerived
GetDeclTypeSpec()->set_category(DeclTypeSpec::ClassDerived);
}
bool DeclarationVisitor::Pre(const parser::DeclarationTypeSpec::Record &) {
return true; // TODO
}
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
bool DeclarationVisitor::Pre(const parser::DerivedTypeSpec &x) {
const auto &typeName{std::get<parser::Name>(x.t)};
if (const auto *symbol{ResolveDerivedType(&typeName)}) {
SetDeclTypeSpec(typeName, currScope().MakeDerivedType(*symbol));
GetDeclTypeSpec()->derivedTypeSpec().set_scope(*symbol->scope());
}
return true;
}
void DeclarationVisitor::Post(const parser::DerivedTypeDef &x) {
std::set<SourceName> paramNames;
auto &scope{currScope()};
auto &details{scope.symbol()->get<DerivedTypeDetails>()};
auto &stmt{std::get<parser::Statement<parser::DerivedTypeStmt>>(x.t)};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
for (auto &paramName : std::get<std::list<parser::Name>>(stmt.statement.t)) {
details.add_paramName(paramName.source);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *symbol{FindInScope(scope, paramName)};
if (!symbol) {
Say(paramName,
"No definition found for type parameter '%s'"_err_en_US); // C742
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
} else if (!symbol->has<TypeParamDetails>()) {
Say2(paramName, "'%s' is not defined as a type parameter"_err_en_US,
*symbol, "Definition of '%s'"_en_US); // C741
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (!paramNames.insert(paramName.source).second) {
Say(paramName,
"Duplicate type parameter name: '%s'"_err_en_US); // C731
}
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
for (const auto &[name, symbol] : currScope()) {
if (symbol->has<TypeParamDetails>() && !paramNames.count(name)) {
SayDerivedType(name,
"'%s' is not a type parameter of this derived type"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
currScope()); // C742
}
}
if (derivedTypeInfo_.sequence) {
details.set_sequence(true);
if (derivedTypeInfo_.extends) {
Say(stmt.source,
"A sequence type may not have the EXTENDS attribute"_err_en_US); // C735
}
if (!details.paramNames().empty()) {
Say(stmt.source,
"A sequence type may not have type parameters"_err_en_US); // C740
}
if (derivedTypeInfo_.sawContains) {
Say(stmt.source,
"A sequence type may not have a CONTAINS statement"_err_en_US); // C740
}
}
derivedTypeInfo_ = {};
PopScope();
}
bool DeclarationVisitor::Pre(const parser::DerivedTypeStmt &x) {
return BeginAttrs();
}
void DeclarationVisitor::Post(const parser::DerivedTypeStmt &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &name{std::get<parser::Name>(x.t)};
auto &symbol{MakeSymbol(name, GetAttrs(), DerivedTypeDetails{})};
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
PushScope(Scope::Kind::DerivedType, &symbol);
if (auto *extendsName{derivedTypeInfo_.extends}) {
if (const Symbol * extends{ResolveDerivedType(extendsName)}) {
symbol.get<DerivedTypeDetails>().set_extends(extendsName->source);
// Declare the "parent component"; private if the type is
if (OkToAddComponent(*extendsName, extends)) {
auto &comp{DeclareEntity<ObjectEntityDetails>(*extendsName, Attrs{})};
comp.attrs().set(Attr::PRIVATE, extends->attrs().test(Attr::PRIVATE));
comp.set(Symbol::Flag::ParentComp);
auto &type{currScope().MakeDerivedType(*extends)};
type.derivedTypeSpec().set_scope(currScope());
comp.SetType(type);
}
}
}
EndAttrs();
}
void DeclarationVisitor::Post(const parser::TypeParamDefStmt &x) {
auto *type{GetDeclTypeSpec()};
auto attr{std::get<common::TypeParamAttr>(x.t)};
for (auto &decl : std::get<std::list<parser::TypeParamDecl>>(x.t)) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &name{std::get<parser::Name>(decl.t)};
auto details{TypeParamDetails{attr}};
if (auto &init{
std::get<std::optional<parser::ScalarIntConstantExpr>>(decl.t)}) {
details.set_init(EvaluateIntExpr(*init));
}
if (MakeTypeSymbol(name, std::move(details))) {
SetType(name, *type);
}
}
EndDecl();
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
bool DeclarationVisitor::Pre(const parser::TypeAttrSpec::Extends &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
derivedTypeInfo_.extends = &x.v;
return false;
}
bool DeclarationVisitor::Pre(const parser::PrivateStmt &x) {
if (!currScope().parent().IsModule()) {
Say("PRIVATE is only allowed in a derived type that is"
" in a module"_err_en_US); // C766
} else if (derivedTypeInfo_.sawContains) {
derivedTypeInfo_.privateBindings = true;
} else if (!derivedTypeInfo_.privateComps) {
derivedTypeInfo_.privateComps = true;
} else {
Say("PRIVATE may not appear more than once in"
" derived type components"_en_US); // C738
}
return false;
}
bool DeclarationVisitor::Pre(const parser::SequenceStmt &x) {
derivedTypeInfo_.sequence = true;
return false;
}
void DeclarationVisitor::Post(const parser::ComponentDecl &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const auto &name{std::get<parser::Name>(x.t)};
auto attrs{GetAttrs()};
if (derivedTypeInfo_.privateComps &&
!attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
attrs.set(Attr::PRIVATE);
}
if (OkToAddComponent(name)) {
auto &symbol{DeclareObjectEntity(name, attrs)};
if (auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
if (auto &init{std::get<std::optional<parser::Initialization>>(x.t)}) {
if (auto *initExpr{std::get_if<parser::ConstantExpr>(&init->u)}) {
details->set_init(EvaluateExpr(*initExpr));
}
}
}
}
ClearArraySpec();
}
bool DeclarationVisitor::Pre(const parser::ProcedureDeclarationStmt &) {
CHECK(!interfaceName_);
return BeginDecl();
}
void DeclarationVisitor::Post(const parser::ProcedureDeclarationStmt &) {
interfaceName_ = nullptr;
EndDecl();
}
bool DeclarationVisitor::Pre(const parser::ProcComponentDefStmt &) {
CHECK(!interfaceName_);
return true;
}
void DeclarationVisitor::Post(const parser::ProcComponentDefStmt &) {
interfaceName_ = nullptr;
}
void DeclarationVisitor::Post(const parser::ProcInterface &x) {
if (auto *name{std::get_if<parser::Name>(&x.u)}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
interfaceName_ = name;
}
}
void DeclarationVisitor::Post(const parser::ProcDecl &x) {
ProcInterface interface;
if (interfaceName_) {
if (auto *symbol{FindExplicitInterface(*interfaceName_)}) {
interface.set_symbol(*symbol);
}
} else if (auto *type{GetDeclTypeSpec()}) {
interface.set_type(*type);
}
auto attrs{GetAttrs()};
if (currScope().kind() != Scope::Kind::DerivedType) {
attrs.set(Attr::EXTERNAL);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const auto &name{std::get<parser::Name>(x.t)};
DeclareProcEntity(name, attrs, interface);
}
bool DeclarationVisitor::Pre(const parser::TypeBoundProcedurePart &x) {
derivedTypeInfo_.sawContains = true;
return true;
}
void DeclarationVisitor::Post(
const parser::TypeBoundProcedureStmt::WithoutInterface &x) {
if (GetAttrs().test(Attr::DEFERRED)) { // C783
Say("DEFERRED is only allowed when an interface-name is provided"_err_en_US);
}
for (auto &declaration : x.declarations) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &bindingName{std::get<parser::Name>(declaration.t)};
auto &optName{std::get<std::optional<parser::Name>>(declaration.t)};
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &procedureName{optName ? *optName : bindingName};
auto *procedure{FindSymbol(procedureName)};
if (!procedure) {
Say(procedureName, "Procedure '%s' not found"_err_en_US);
continue;
}
procedure = &procedure->GetUltimate(); // may come from USE
if (!CanBeTypeBoundProc(*procedure)) {
Say2(procedureName,
"'%s' is not a module procedure or external procedure"
" with explicit interface"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
*procedure, "Declaration of '%s'"_en_US);
continue;
}
if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{*procedure})}) {
SetPassNameOn(*s);
}
}
}
void DeclarationVisitor::Post(
const parser::TypeBoundProcedureStmt::WithInterface &x) {
if (!GetAttrs().test(Attr::DEFERRED)) { // C783
Say("DEFERRED is required when an interface-name is provided"_err_en_US);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *interface{FindExplicitInterface(x.interfaceName)};
if (!interface) {
return;
}
for (auto &bindingName : x.bindingNames) {
if (auto *s{MakeTypeSymbol(bindingName, ProcBindingDetails{*interface})}) {
SetPassNameOn(*s);
}
}
}
void DeclarationVisitor::Post(const parser::FinalProcedureStmt &x) {
for (auto &name : x.v) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
MakeTypeSymbol(name, FinalProcDetails{});
}
}
bool DeclarationVisitor::Pre(const parser::TypeBoundGenericStmt &x) {
const auto &genericSpec{
std::get<common::Indirection<parser::GenericSpec>>(x.t)};
const auto *genericName{GetGenericSpecName(*genericSpec)};
if (!genericName) {
return false;
}
bool isPrivate{derivedTypeInfo_.privateBindings};
if (auto &accessSpec{std::get<std::optional<parser::AccessSpec>>(x.t)}) {
isPrivate = accessSpec->v == parser::AccessSpec::Kind::Private;
}
const SymbolList *inheritedProcs{nullptr}; // specific procs from parent type
auto *genericSymbol{FindInScope(currScope(), *genericName)};
if (genericSymbol) {
if (!genericSymbol->has<GenericBindingDetails>()) {
genericSymbol = nullptr; // MakeTypeSymbol will report the error below
}
} else if (const auto *inheritedSymbol{FindTypeSymbol(*genericName)}) {
// look in parent types:
if (inheritedSymbol->has<GenericBindingDetails>()) {
inheritedProcs =
&inheritedSymbol->get<GenericBindingDetails>().specificProcs();
CheckAccessibility(*genericName, isPrivate, *inheritedSymbol);
}
}
if (genericSymbol) {
CheckAccessibility(*genericName, isPrivate, *genericSymbol);
} else {
genericSymbol = MakeTypeSymbol(*genericName, GenericBindingDetails{});
if (!genericSymbol) {
return false;
}
if (isPrivate) {
genericSymbol->attrs().set(Attr::PRIVATE);
}
}
auto &details{genericSymbol->get<GenericBindingDetails>()};
if (inheritedProcs) {
details.add_specificProcs(*inheritedProcs);
}
for (const auto &bindingName : std::get<std::list<parser::Name>>(x.t)) {
const auto *symbol{FindTypeSymbol(bindingName)};
if (!symbol) {
Say(bindingName,
"Binding name '%s' not found in this derived type"_err_en_US);
} else if (!symbol->has<ProcBindingDetails>()) {
Say2(bindingName,
"'%s' is not the name of a specific binding of this type"_err_en_US,
*symbol, "Declaration of '%s'"_en_US);
} else {
details.add_specificProc(*symbol);
}
}
return false;
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
bool DeclarationVisitor::Pre(const parser::AllocateStmt &) {
BeginDeclTypeSpec();
return true;
}
void DeclarationVisitor::Post(const parser::AllocateStmt &) {
ResolveDerivedType();
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
EndDeclTypeSpec();
}
bool DeclarationVisitor::Pre(const parser::StructureConstructor &x) {
auto savedState{SetDeclTypeSpecState({})};
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
BeginDeclTypeSpec();
Walk(std::get<parser::DerivedTypeSpec>(x.t));
Walk(std::get<std::list<parser::ComponentSpec>>(x.t));
ResolveDerivedType();
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
EndDeclTypeSpec();
SetDeclTypeSpecState(savedState);
return false;
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *DeclarationVisitor::DeclareConstructEntity(const parser::Name &name) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
auto *prev{FindSymbol(name)};
if (prev) {
if (prev->owner().kind() == Scope::Kind::Forall ||
prev->owner() == currScope()) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
SayAlreadyDeclared(name, *prev);
return nullptr;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
name.symbol = nullptr;
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
}
auto &symbol{DeclareObjectEntity(name, {})};
if (symbol.GetType()) {
// type came from explicit type-spec
} else if (!prev) {
ApplyImplicitRules(symbol);
} else if (!prev->has<ObjectEntityDetails>() && !prev->has<EntityDetails>()) {
Say2(name, "Index name '%s' conflicts with existing identifier"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
*prev, "Previous declaration of '%s'"_en_US);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
return nullptr;
} else if (auto *type{prev->GetType()}) {
symbol.SetType(*type);
}
return &symbol;
}
// Set the type of an entity or report an error.
void DeclarationVisitor::SetType(
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name &name, const DeclTypeSpec &type) {
CHECK(name.symbol);
auto &symbol{*name.symbol};
auto *prevType{symbol.GetType()};
if (!prevType) {
symbol.SetType(type);
} else if (!symbol.test(Symbol::Flag::Implicit)) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say2(name, "The type of '%s' has already been declared"_err_en_US, symbol,
"Declaration of '%s'"_en_US);
} else if (type != *prevType) {
Say2(name,
"The type of '%s' has already been implicitly declared"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
symbol, "Declaration of '%s'"_en_US);
} else {
symbol.set(Symbol::Flag::Implicit, false);
}
}
// Find the Symbol for this derived type; derivedTypeName if not specified.
const Symbol *DeclarationVisitor::ResolveDerivedType(const parser::Name *name) {
if (name == nullptr) {
name = derivedTypeName();
if (name == nullptr) {
return nullptr;
}
}
const auto *symbol{FindSymbol(*name)};
if (!symbol) {
Say(*name, "Derived type '%s' not found"_err_en_US);
return nullptr;
}
if (CheckUseError(*name)) {
return nullptr;
}
if (auto *details{symbol->detailsIf<UseDetails>()}) {
symbol = &details->symbol();
}
if (auto *details{symbol->detailsIf<GenericDetails>()}) {
if (details->derivedType()) {
symbol = details->derivedType();
}
}
if (!symbol->has<DerivedTypeDetails>()) {
Say(*name, "'%s' is not a derived type"_err_en_US);
return nullptr;
}
return symbol;
}
// Check this symbol suitable as a type-bound procedure - C769
bool DeclarationVisitor::CanBeTypeBoundProc(const Symbol &symbol) {
if (symbol.has<SubprogramNameDetails>()) {
return symbol.owner().kind() == Scope::Kind::Module;
} else if (auto *details{symbol.detailsIf<SubprogramDetails>()}) {
return symbol.owner().kind() == Scope::Kind::Module ||
details->isInterface();
} else {
return false;
}
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *DeclarationVisitor::FindExplicitInterface(const parser::Name &name) {
auto *symbol{FindSymbol(name)};
if (!symbol) {
Say(name, "Explicit interface '%s' not found"_err_en_US);
} else if (!symbol->HasExplicitInterface()) {
Say2(name,
"'%s' is not an abstract interface or a procedure with an"
" explicit interface"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
*symbol, "Declaration of '%s'"_en_US);
symbol = nullptr;
}
return symbol;
}
// Find a component by name in the current derived type or its parents.
const Symbol *DeclarationVisitor::FindTypeSymbol(const parser::Name &name) {
for (const Scope *scope{&currScope()};;) {
CHECK(scope->kind() == Scope::Kind::DerivedType);
if (const Symbol * symbol{FindInScope(*scope, name)}) {
return symbol;
}
const Symbol *parent{scope->symbol()->GetParent()};
if (parent == nullptr) {
return nullptr;
}
scope = parent->scope();
}
}
// Create a symbol for a type parameter, component, or procedure binding in
// the current derived type scope. Return false on error.
Symbol *DeclarationVisitor::MakeTypeSymbol(
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name &name, Details &&details) {
Scope &derivedType{currScope()};
CHECK(derivedType.kind() == Scope::Kind::DerivedType);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *symbol{FindInScope(derivedType, name)}) {
Say2(name,
"Type parameter, component, or procedure binding '%s'"
" already defined in this type"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
*symbol, "Previous definition of '%s'"_en_US);
return nullptr;
} else {
auto attrs{GetAttrs()};
// Apply binding-private-stmt if present and this is a procedure binding
if (derivedTypeInfo_.privateBindings &&
!attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE}) &&
std::holds_alternative<ProcBindingDetails>(details)) {
attrs.set(Attr::PRIVATE);
}
return &MakeSymbol(name, attrs, details);
}
}
// Return true if it is ok to declare this component in the current scope.
// Otherwise, emit an error and return false.
bool DeclarationVisitor::OkToAddComponent(
const parser::Name &name, const Symbol *extends) {
const Scope *scope{&currScope()};
for (bool inParent{false};; inParent = true) {
CHECK(scope->kind() == Scope::Kind::DerivedType);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *prev{FindInScope(*scope, name)}) {
auto msg{""_en_US};
if (extends != nullptr) {
msg = "Type cannot be extended as it has a component named"
" '%s'"_err_en_US;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
} else if (prev->test(Symbol::Flag::ParentComp)) {
msg = "'%s' is a parent type of this type and so cannot be"
" a component"_err_en_US;
} else if (inParent) {
msg = "Component '%s' is already declared in a parent of this"
" derived type"_err_en_US;
} else {
msg = "Component '%s' is already declared in this"
" derived type"_err_en_US;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say2(name, std::move(msg), *prev, "Previous declaration of '%s'"_en_US);
return false;
}
if (!inParent && extends != nullptr) {
// The parent component has not yet been added to the scope.
scope = extends->scope();
} else if (const Symbol * parent{scope->symbol()->GetParent()}) {
scope = parent->scope();
} else {
return true;
}
}
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
// ConstructVisitor implementation
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
bool ConstructVisitor::Pre(const parser::ConcurrentHeader &) {
BeginDeclTypeSpec();
return true;
}
void ConstructVisitor::Post(const parser::ConcurrentHeader &) {
EndDeclTypeSpec();
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::Local &x) {
for (auto &name : x.v) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *symbol{DeclareConstructEntity(name)}) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
symbol->set(Symbol::Flag::LocalityLocal);
}
}
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::LocalInit &x) {
for (auto &name : x.v) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *symbol{DeclareConstructEntity(name)}) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
symbol->set(Symbol::Flag::LocalityLocalInit);
}
}
return false;
}
bool ConstructVisitor::Pre(const parser::LocalitySpec::Shared &x) {
for (auto &name : x.v) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *prev{FindSymbol(name)}) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
if (prev->owner() == currScope()) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
SayAlreadyDeclared(name, *prev);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
}
auto &symbol{MakeSymbol(name, HostAssocDetails{*prev})};
symbol.set(Symbol::Flag::LocalityShared);
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say(name, "Variable '%s' not found"_err_en_US);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
}
}
return false;
}
bool ConstructVisitor::Pre(const parser::DataImpliedDo &x) {
auto &objects{std::get<std::list<parser::DataIDoObject>>(x.t)};
auto &type{std::get<std::optional<parser::IntegerTypeSpec>>(x.t)};
auto &bounds{
std::get<parser::LoopBounds<parser::ScalarIntConstantExpr>>(x.t)};
if (type) {
BeginDeclTypeSpec();
DeclTypeSpecVisitor::Post(*type);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *symbol{DeclareConstructEntity(bounds.name.thing.thing)}) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
CheckIntegerType(*symbol);
}
if (type) {
EndDeclTypeSpec();
}
Walk(bounds);
Walk(objects);
return false;
}
bool ConstructVisitor::Pre(const parser::DataStmt &) {
PushScope(Scope::Kind::Block, nullptr);
return true;
}
void ConstructVisitor::Post(const parser::DataStmt &) { PopScope(); }
bool ConstructVisitor::Pre(const parser::DoConstruct &x) {
if (x.IsDoConcurrent()) {
PushScope(Scope::Kind::Block, nullptr);
}
return true;
}
void ConstructVisitor::Post(const parser::DoConstruct &x) {
if (x.IsDoConcurrent()) {
PopScope();
}
}
void ConstructVisitor::Post(const parser::ConcurrentControl &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &name{std::get<parser::Name>(x.t)};
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
if (auto *symbol{DeclareConstructEntity(name)}) {
CheckIntegerType(*symbol);
}
}
bool ConstructVisitor::Pre(const parser::ForallConstruct &) {
PushScope(Scope::Kind::Forall, nullptr);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
return true;
}
void ConstructVisitor::Post(const parser::ForallConstruct &) { PopScope(); }
bool ConstructVisitor::Pre(const parser::ForallStmt &) {
PushScope(Scope::Kind::Forall, nullptr);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
return true;
}
void ConstructVisitor::Post(const parser::ForallStmt &) { PopScope(); }
bool ConstructVisitor::Pre(const parser::BlockStmt &x) {
CheckDef(x.v);
PushScope(Scope::Kind::Block, nullptr);
return false;
}
bool ConstructVisitor::Pre(const parser::EndBlockStmt &x) {
PopScope();
CheckRef(x.v);
return false;
}
bool ConstructVisitor::CheckDef(const std::optional<parser::Name> &x) {
if (x) {
MakeSymbol(*x, MiscDetails{MiscDetails::Kind::ConstructName});
}
return true;
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
void ConstructVisitor::CheckRef(const std::optional<parser::Name> &x) {
if (x) {
// Just add an occurrence of this name; checking is done in ValidateLabels
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
FindSymbol(*x);
}
}
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
void ConstructVisitor::CheckIntegerType(const Symbol &symbol) {
if (auto *type{symbol.GetType()}) {
if (!type->IsNumeric(TypeCategory::Integer)) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
Say(symbol.name(), "Variable '%s' is not scalar integer"_err_en_US);
}
}
}
// ResolveNamesVisitor implementation
bool ResolveNamesVisitor::Pre(const parser::CommonBlockObject &x) {
BeginArraySpec();
return true;
}
void ResolveNamesVisitor::Post(const parser::CommonBlockObject &x) {
ClearArraySpec();
// TODO: CommonBlockObject
}
bool ResolveNamesVisitor::Pre(const parser::PrefixSpec &x) {
return true; // TODO
}
bool ResolveNamesVisitor::Pre(const parser::FunctionReference &) {
expectedProcFlag_ = Symbol::Flag::Function;
return true;
}
void ResolveNamesVisitor::Post(const parser::FunctionReference &) {
expectedProcFlag_ = std::nullopt;
}
bool ResolveNamesVisitor::Pre(const parser::CallStmt &) {
expectedProcFlag_ = Symbol::Flag::Subroutine;
return true;
}
void ResolveNamesVisitor::Post(const parser::CallStmt &) {
expectedProcFlag_ = std::nullopt;
}
bool ResolveNamesVisitor::Pre(const parser::ImportStmt &x) {
auto &scope{currScope()};
// Check C896 and C899: where IMPORT statements are allowed
switch (scope.kind()) {
case Scope::Kind::Module:
if (scope.IsModule()) {
Say("IMPORT is not allowed in a module scoping unit"_err_en_US);
return false;
} else if (x.kind == common::ImportKind::None) {
Say("IMPORT,NONE is not allowed in a submodule scoping unit"_err_en_US);
return false;
}
break;
case Scope::Kind::MainProgram:
Say("IMPORT is not allowed in a main program scoping unit"_err_en_US);
return false;
case Scope::Kind::Subprogram:
if (scope.parent().kind() == Scope::Kind::Global) {
Say("IMPORT is not allowed in an external subprogram scoping unit"_err_en_US);
return false;
}
break;
default:;
}
if (auto error{scope.SetImportKind(x.kind)}) {
Say(std::move(*error));
}
for (auto &name : x.names) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (FindSymbol(scope.parent(), name)) {
scope.add_importName(name.source);
} else {
Say(name, "'%s' not found in host scope"_err_en_US);
}
}
prevImportStmt_ = currStmtSource();
return false;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *ResolveNamesVisitor::ResolveStructureComponent(
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
const parser::StructureComponent &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
return FindComponent(ResolveDataRef(x.base), x.component);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *ResolveNamesVisitor::ResolveArrayElement(
const parser::ArrayElement &x) {
// TODO: need to resolve these
// for (auto &subscript : x.subscripts) {
// ResolveSectionSubscript(subscript);
//}
return ResolveDataRef(x.base);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *ResolveNamesVisitor::ResolveCoindexedNamedObject(
const parser::CoindexedNamedObject &x) {
return nullptr; // TODO
}
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *ResolveNamesVisitor::ResolveDataRef(
const parser::DataRef &x) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
return std::visit(
common::visitors{
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
[=](const parser::Name &y) { return ResolveName(y); },
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
[=](const common::Indirection<parser::StructureComponent> &y) {
return ResolveStructureComponent(*y);
},
[=](const common::Indirection<parser::ArrayElement> &y) {
return ResolveArrayElement(*y);
},
[=](const common::Indirection<parser::CoindexedNamedObject> &y) {
return ResolveCoindexedNamedObject(*y);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
},
},
x.u);
}
// If implicit types are allowed, ensure name is in the symbol table.
// Otherwise, report an error if it hasn't been declared.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *ResolveNamesVisitor::ResolveName(const parser::Name &name) {
if (FindSymbol(name)) {
if (CheckUseError(name)) {
return nullptr; // reported an error
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
return &name;
}
if (isImplicitNoneType()) {
Say(name, "No explicit type declared for '%s'"_err_en_US);
return nullptr;
}
// Create the symbol then ensure it is accessible
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
MakeSymbol(InclusiveScope(), name.source, Attrs{});
auto *symbol{FindSymbol(name)};
if (!symbol) {
Say(name,
"'%s' from host scoping unit is not accessible due to IMPORT"_err_en_US);
return nullptr;
}
ApplyImplicitRules(*symbol);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
return &name;
}
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
// base is a part-ref of a derived type; find the named component in its type.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const parser::Name *ResolveNamesVisitor::FindComponent(
const parser::Name *base, const parser::Name &component) {
if (!base || !base->symbol) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
return nullptr;
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto &symbol{*base->symbol};
if (!ConvertToObjectEntity(symbol)) {
Say2(*base, "'%s' is an invalid base for a component reference"_err_en_US,
symbol, "Declaration of '%s'"_en_US);
return nullptr;
}
auto *type{symbol.GetType()};
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
if (!type) {
return nullptr; // should have already reported error
}
if (type->IsNumeric(TypeCategory::Complex)) {
auto name{component.ToString()};
if (name == "re" || name == "im") {
return nullptr; // complex-part-designator, not structure-component
}
}
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
if (type->category() != DeclTypeSpec::TypeDerived) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (symbol.test(Symbol::Flag::Implicit)) {
Say(*base,
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
"'%s' is not an object of derived type; it is implicitly typed"_err_en_US);
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say2(*base, "'%s' is not an object of derived type"_err_en_US, symbol,
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
"Declaration of '%s'"_en_US);
}
return nullptr;
}
const Scope *scope{type->derivedTypeSpec().scope()};
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
if (!scope) {
return nullptr; // previously failed to resolve type
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
}
auto *result{FindComponent(*scope, component)};
if (!result) {
SayDerivedType(component.source,
"Component '%s' not found in derived type '%s'"_err_en_US, *scope);
return nullptr;
} else if (!CheckAccessibleComponent(component)) {
return nullptr;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
} else {
return &component;
}
}
// Check that component is accessible from current scope.
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
bool ResolveNamesVisitor::CheckAccessibleComponent(
const parser::Name &component) {
CHECK(component.symbol);
auto &symbol{*component.symbol};
if (!symbol.attrs().test(Attr::PRIVATE)) {
return true;
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
CHECK(symbol.owner().kind() == Scope::Kind::DerivedType);
// component must be in a module/submodule because of PRIVATE:
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const Scope &moduleScope{symbol.owner().parent()};
CHECK(moduleScope.kind() == Scope::Kind::Module);
for (auto *scope{&currScope()}; scope->kind() != Scope::Kind::Global;
scope = &scope->parent()) {
if (scope == &moduleScope) {
return true;
}
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say(component,
"PRIVATE component '%s' is only accessible within module '%s'"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
component.ToString(), moduleScope.name());
return false;
}
// Look in this type's scope and then its parents for component.
Symbol *ResolveNamesVisitor::FindComponent(
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
const Scope &type, const parser::Name &component) {
CHECK(type.kind() == Scope::Kind::DerivedType);
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *symbol{FindInScope(type, component)}) {
return symbol;
}
if (const Symbol * parent{type.symbol()->GetParent()}) {
return FindComponent(*parent->scope(), component);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
return nullptr;
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
void ResolveNamesVisitor::Post(const parser::ProcedureDesignator &x) {
if (const auto *name{std::get_if<parser::Name>(&x.u)}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
auto *symbol{FindSymbol(*name)};
if (symbol == nullptr) {
symbol = &MakeSymbol(context().globalScope(), name->source, Attrs{});
Resolve(*name, *symbol);
if (symbol->has<ModuleDetails>()) {
Say2(*name,
"Use of '%s' as a procedure conflicts with its declaration"_err_en_US,
*symbol, "Declaration of '%s'"_en_US);
return;
}
if (isImplicitNoneExternal() && !symbol->attrs().test(Attr::EXTERNAL)) {
Say(*name,
"'%s' is an external procedure without the EXTERNAL"
" attribute in a scope with IMPLICIT NONE(EXTERNAL)"_err_en_US);
return;
}
symbol->attrs().set(Attr::EXTERNAL);
if (!symbol->has<ProcEntityDetails>()) {
symbol->set_details(ProcEntityDetails{});
}
if (const auto type{GetImplicitType(*symbol)}) {
symbol->get<ProcEntityDetails>().interface().set_type(*type);
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
}
SetProcFlag(*name, *symbol);
} else if (symbol->has<UnknownDetails>()) {
CHECK(!"unexpected UnknownDetails");
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
} else if (CheckUseError(*name)) {
// error was reported
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
symbol = Resolve(*name, &symbol->GetUltimate());
ConvertToProcEntity(*symbol);
if (!SetProcFlag(*name, *symbol)) {
return; // reported error
}
if (symbol->has<ProcEntityDetails>() ||
symbol->has<SubprogramDetails>() ||
symbol->has<DerivedTypeDetails>() ||
symbol->has<ObjectEntityDetails>() ||
symbol->has<SubprogramNameDetails>() ||
symbol->has<GenericDetails>()) {
// these are all valid as procedure-designators
} else if (symbol->test(Symbol::Flag::Implicit)) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say(*name,
"Use of '%s' as a procedure conflicts with its implicit definition"_err_en_US);
} else {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say2(*name,
"Use of '%s' as a procedure conflicts with its declaration"_err_en_US,
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
*symbol, "Declaration of '%s'"_en_US);
}
}
}
}
// Check and set the Function or Subroutine flag on symbol; false on error.
bool ResolveNamesVisitor::SetProcFlag(
const parser::Name &name, Symbol &symbol) {
CHECK(expectedProcFlag_);
if (symbol.test(Symbol::Flag::Function) &&
expectedProcFlag_ == Symbol::Flag::Subroutine) {
Say2(name, "Cannot call function '%s' like a subroutine"_err_en_US, symbol,
"Declaration of '%s'"_en_US);
return false;
} else if (symbol.test(Symbol::Flag::Subroutine) &&
expectedProcFlag_ == Symbol::Flag::Function) {
Say2(name, "Cannot call subroutine '%s' like a function"_err_en_US, symbol,
"Declaration of '%s'"_en_US);
return false;
} else if (symbol.has<ProcEntityDetails>()) {
symbol.set(*expectedProcFlag_); // in case it hasn't been set yet
if (expectedProcFlag_ == Symbol::Flag::Function) {
ApplyImplicitRules(symbol);
}
}
return true;
}
bool ModuleVisitor::Pre(const parser::AccessStmt &x) {
Attr accessAttr{AccessSpecToAttr(std::get<parser::AccessSpec>(x.t))};
if (currScope().kind() != Scope::Kind::Module) {
Say(*currStmtSource(),
"%s statement may only appear in the specification part of a module"_err_en_US,
EnumToString(accessAttr));
return false;
}
const auto &accessIds{std::get<std::list<parser::AccessId>>(x.t)};
if (accessIds.empty()) {
if (prevAccessStmt_) {
Say("The default accessibility of this module has already been declared"_err_en_US)
.Attach(*prevAccessStmt_, "Previous declaration"_en_US);
}
prevAccessStmt_ = currStmtSource();
defaultAccess_ = accessAttr;
} else {
for (const auto &accessId : accessIds) {
std::visit(
common::visitors{
[=](const parser::Name &y) { SetAccess(y, accessAttr); },
[=](const common::Indirection<parser::GenericSpec> &y) {
std::visit(
common::visitors{
[=](const parser::Name &z) {
SetAccess(z, accessAttr);
},
[](const auto &) { common::die("TODO: GenericSpec"); },
},
y->u);
},
},
accessId.u);
}
}
return false;
}
// Set the access specification for this name.
void ModuleVisitor::SetAccess(const parser::Name &name, Attr attr) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol &symbol{MakeSymbol(name)};
Attrs &attrs{symbol.attrs()};
if (attrs.HasAny({Attr::PUBLIC, Attr::PRIVATE})) {
// PUBLIC/PRIVATE already set: make it a fatal error if it changed
Attr prev = attrs.test(Attr::PUBLIC) ? Attr::PUBLIC : Attr::PRIVATE;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Say(name,
attr == prev
? "The accessibility of '%s' has already been specified as %s"_en_US
: "The accessibility of '%s' has already been specified as %s"_err_en_US,
name.source, EnumToString(prev));
} else {
attrs.set(attr);
}
}
static bool NeedsExplicitType(const Symbol &symbol) {
if (symbol.has<UnknownDetails>()) {
return true;
} else if (const auto *details{symbol.detailsIf<EntityDetails>()}) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
return !details->type();
} else if (const auto *details{symbol.detailsIf<ObjectEntityDetails>()}) {
[flang] Name resolution for derived types. This consists of: - a new kind of symbols to represent them with DerivedTypeDetails - creating symbols for derived types when they are declared - creating a new kind of scope for the type to hold component symbols - resolving entity declarations of objects of derived type - resolving references to objects of derived type and to components - handling derived types with same name as generic Type parameters are not yet implemented. Refactor DeclTypeSpec to be a value class wrapping an IntrinsicTypeSpec or a DerivedTypeSpec (or neither in the TypeStar and ClassStar cases). Store DerivedTypeSpec objects in a new structure the current scope MakeDerivedTypeSpec so that DeclTypeSpec can just contain a pointer to them, as it currently does for intrinsic types. In GenericDetails, add derivedType field to handle case where generic and derived type have the same name. The generic is in the scope and the derived type is referenced from the generic, similar to the case where a generic and specific have the same name. When one of these names is mis-recognized, we sometimes have to fix up the 'occurrences' lists of the symbols. Assign implicit types as soon as an entity is encountered that requires one. Otherwise implicit derived types won't work. When we see 'x%y' we have to know the type of x in order to resolve y. Add an Implicit flag to mark symbols that were implicitly typed For symbols that introduce a new scope, include a pointer back to that scope. Add CurrNonTypeScope() for the times when we want the current scope but ignoring derived type scopes. For example, that happens when looking for types or parameters, or creating implicit symbols. Original-commit: flang-compiler/f18@9bd16da020b64b78ed3928e0244765cd2e2d8068 Reviewed-on: https://github.com/flang-compiler/f18/pull/109
2018-06-22 08:21:19 -07:00
return !details->type();
} else if (const auto *details{symbol.detailsIf<ProcEntityDetails>()}) {
return details->interface().symbol() == nullptr &&
details->interface().type() == nullptr;
} else {
return false;
}
}
void ResolveNamesVisitor::Post(const parser::SpecificationPart &) {
badStmtFuncFound_ = false;
CheckImports();
bool inModule{currScope().kind() == Scope::Kind::Module};
for (auto &pair : currScope()) {
auto &symbol{*pair.second};
if (NeedsExplicitType(symbol)) {
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
ApplyImplicitRules(symbol);
}
if (symbol.has<GenericDetails>()) {
CheckGenericProcedures(symbol);
}
if (inModule && symbol.attrs().test(Attr::EXTERNAL) &&
!symbol.test(Symbol::Flag::Function)) {
// in a module, external proc without return type is subroutine
symbol.set(Symbol::Flag::Subroutine);
}
}
}
void ResolveNamesVisitor::CheckImports() {
auto &scope{currScope()};
switch (scope.GetImportKind()) {
case common::ImportKind::None: break;
case common::ImportKind::All:
// C8102: all entities in host must not be hidden
for (const auto &pair : scope.parent()) {
auto &name{pair.first};
if (name != scope.name()) {
CheckImport(*prevImportStmt_, name);
}
}
break;
case common::ImportKind::Default:
case common::ImportKind::Only:
// C8102: entities named in IMPORT must not be hidden
for (auto &name : scope.importNames()) {
CheckImport(name, name);
}
break;
}
}
void ResolveNamesVisitor::CheckImport(
const SourceName &location, const SourceName &name) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
if (auto *symbol{FindInScope(currScope(), name)}) {
Say(location, "'%s' from host is not accessible"_err_en_US, name)
.Attach(symbol->name(), "'%s' is hidden by this entity"_en_US,
symbol->name().ToString().c_str());
}
}
bool ResolveNamesVisitor::Pre(const parser::MainProgram &x) {
using stmtType = std::optional<parser::Statement<parser::ProgramStmt>>;
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
Symbol *symbol{nullptr};
if (auto &stmt{std::get<stmtType>(x.t)}) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
symbol = &MakeSymbol(stmt->statement.v, MainProgramDetails{});
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
PushScope(Scope::Kind::MainProgram, symbol);
auto &subpPart{std::get<std::optional<parser::InternalSubprogramPart>>(x.t)};
WalkSubprogramPart(subpPart);
return true;
}
void ResolveNamesVisitor::Post(const parser::EndProgramStmt &) { PopScope(); }
bool ResolveNamesVisitor::Pre(const parser::ImplicitStmt &x) {
if (currScope().kind() == Scope::Kind::Block) {
Say("IMPLICIT statement is not allowed in BLOCK construct"_err_en_US);
return false;
}
return ImplicitRulesVisitor::Pre(x);
}
void ResolveNamesVisitor::Post(const parser::PointerObject &x) {
std::visit(
common::visitors{
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
[&](const parser::Name &x) { ResolveName(x); },
[&](const parser::StructureComponent &x) {
ResolveStructureComponent(x);
},
},
x.u);
}
void ResolveNamesVisitor::Post(const parser::AllocateObject &x) {
std::visit(
common::visitors{
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
[&](const parser::Name &x) { ResolveName(x); },
[&](const parser::StructureComponent &x) {
ResolveStructureComponent(x);
},
},
x.u);
}
void ResolveNamesVisitor::Post(const parser::PointerAssignmentStmt &x) {
ResolveDataRef(std::get<parser::DataRef>(x.t));
}
void ResolveNamesVisitor::Post(const parser::Designator &x) {
std::visit(
common::visitors{
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
[&](const parser::ObjectName &x) { ResolveName(x); },
[&](const parser::DataRef &x) { ResolveDataRef(x); },
[&](const parser::Substring &x) {
ResolveDataRef(std::get<parser::DataRef>(x.t));
// TODO: SubstringRange
},
},
x.u);
}
template<typename T>
void ResolveNamesVisitor::Post(const parser::LoopBounds<T> &x) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
ResolveName(x.name.thing.thing);
}
void ResolveNamesVisitor::Post(const parser::ProcComponentRef &x) {
ResolveStructureComponent(x.v.thing);
}
void ResolveNamesVisitor::Post(const parser::TypeGuardStmt &x) {
DeclTypeSpecVisitor::Post(x);
[flang] More name resolution for construct entities Push a new scope for constructs and statements that require one (DataStmt, DO CONCURRENT, ForallConstruct, ForallStmt -- there are more to do). Currently we use the Block kind of scope because there is no difference. Perhaps that kind should be renamed to Construct, though it does apply to statements as well as constructs. Add DeclareConstructEntity to create a construct or statement entity. When the type is not specified it can come from the type of a symbol in the enclosing scope with the same name. Change DeclareObjectEntity et al. to return the symbol declared, for the benefit of DeclareConstructEntity. Use DeclareConstructEntity for DO CONCURRENT index-name, LOCAL, and LOCAL_INIT variables and the data-i-do-variable in DataImpliedDo Names in SHARED locality spec need special handling: create a new kinds of symbol with HostAssocDetails to represent the host-association of the shared variables within the construct scope. That symbol gets the LocalityShared flag without affecting the symbol in the outer scope. HostAssoc symbols may be useful in other contexts, e.g. up-level references to local variables. Add parser::DoConstruct::IsDoConcurrent() because DO CONCURRENT loops introduce a construct scope while other DO loops do not. Move CanonicalizeDo to before name resolution so that name resolution doesn't have to deal with labeled DO CONCURRENT loops. Allow for type of index name to be specified in ConcurrentHeader. Resolve the derived type name in an AllocateStmt, StructureConstructor Original-commit: flang-compiler/f18@bc7b9891367f3174c9b5018ce5636a36a5a76c1c Reviewed-on: https://github.com/flang-compiler/f18/pull/214
2018-10-18 07:55:48 -07:00
ConstructVisitor::Post(x);
}
bool ResolveNamesVisitor::Pre(const parser::StmtFunctionStmt &x) {
if (!HandleStmtFunction(x)) {
// This is an array element assignment: resolve names of indices
const auto &names{std::get<std::list<parser::Name>>(x.t)};
for (auto &name : names) {
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
ResolveName(name);
}
}
return true;
}
void ResolveNamesVisitor::Post(const parser::Program &) {
// ensure that all temps were deallocated
CHECK(!attrs_);
CHECK(!GetDeclTypeSpec());
}
[flang] Partial implementation of Symbols and Scopes. A Symbol consists of a common part (in class Symbol) containing name, owner, attributes. Information for a specific kind of symbol is in a variant containing one of the *Details classes. So the kind of symbol is determined by the type of details class stored in the details_ variant. For scopes there is a single Scope class with an enum indicating the kind. So far there isn't a need for extra kind-specific details as with Symbols but that could change. Symbols defined in a Scope are stored there in a simple map. resolve-names.cc is a partial implementation of a parse-tree walker that resolves names to Symbols. Currently is only handles functions (which introduce a new Scope) and entity-decls. The test-type executable was reused as a driver for this to avoid the need for a new one. Sample output is below. When each "end function" is encountered the scope is dumped, which shows the symbols defined in it. $ cat a.f90 pure integer(8) function foo(arg1, arg2) result(res) integer :: arg1 real :: arg2 contains function bar(arg1) real :: bar real :: arg1 end function end function $ Debug/tools/f18/test-type a.f90 Subprogram scope: 0 children arg1: Entity type: REAL bar: Entity type: REAL Subprogram scope: 1 children arg1: Entity type: INTEGER arg2: Entity type: REAL bar: Subprogram (arg1) foo: Subprogram (arg1, arg2) result(res) res: Entity type: INTEGER(8) Original-commit: flang-compiler/f18@1cd2fbc04da1d6bb2ef5bc1cf07c808460ea7547 Reviewed-on: https://github.com/flang-compiler/f18/pull/30 Tree-same-pre-rewrite: false
2018-03-22 17:08:20 -07:00
void ResolveNames(SemanticsContext &context, const parser::Program &program) {
ResolveNamesVisitor{context}.Walk(program);
}
[flang] Change when symbol is set in parser::Name Rework how `parser::Name` is resolved to contain a `Symbol`. so that constants in types can be evaluated. For example: ``` integer, parameter :: k = 8 integer(k) :: i ``` The old approach of collecting the symbols at the end of name resolution and filling in the `parser::Name` does not work because the type of `i` needs to be set in the symbol table. The symbol field in `parser::Name` is now mutable so that we can set it during name resolution. `RewriteParseTree` no longer needs to do that (it still warns about unresolved ones), so it does not need to collect symbols and fill them in. Consequently, we can eliminate "occurrences" from symbols -- we just need the name where each is first defined. This requires a lot of refactoring in `resolve-names.cc` to pass around `parser::Name` rather than `SourceName` so that we can resolve the name to a symbol. Fix some bugs where we stored `SourceName *` instead of `SourceName` in the symbol table. The pointers were into the parse tree, so they were only valid as long as the parse tree was around. The symbol table needs to remain valid longer than that, so the names need to be copied. `parser::Name` is not used in the symbol table. Eliminate `GenericSpec`. Currently all we need to do is to resolve the kinds of GenericSpec that contain names. Add `ScopeName` kind of `MiscDetails` for when we need a symbol in the scope to match the name of the scope. For example, `module m` cannot contain a declaration of a new `m`. Subprograms need real details because they can be called recursively. Fix output of partially resolved modules where we know it is a submodule but have not yet resolved the ancestor. Original-commit: flang-compiler/f18@5c1a4b99d2421f5b32e83426488d3fdf7951cfba Reviewed-on: https://github.com/flang-compiler/f18/pull/238 Tree-same-pre-rewrite: false
2018-11-16 12:43:08 -08:00
// Get the Name out of a GenericSpec, or nullptr if none.
static const parser::Name *GetGenericSpecName(const parser::GenericSpec &x) {
const auto *op{std::get_if<parser::DefinedOperator>(&x.u)};
if (!op) {
return std::get_if<parser::Name>(&x.u);
} else if (const auto *opName{std::get_if<parser::DefinedOpName>(&op->u)}) {
return &opName->v;
} else {
return nullptr;
}
}
}