2010-05-11 19:42:16 +00:00
|
|
|
// -*- C++ -*-
|
2021-11-17 16:25:01 -05:00
|
|
|
//===----------------------------------------------------------------------===//
|
2010-05-11 19:42:16 +00:00
|
|
|
//
|
2019-01-19 10:56:40 +00:00
|
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
2010-05-11 19:42:16 +00:00
|
|
|
//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
#ifndef _LIBCPP_CMATH
|
|
|
|
#define _LIBCPP_CMATH
|
|
|
|
|
|
|
|
/*
|
|
|
|
cmath synopsis
|
|
|
|
|
|
|
|
Macros:
|
|
|
|
|
|
|
|
HUGE_VAL
|
|
|
|
HUGE_VALF // C99
|
|
|
|
HUGE_VALL // C99
|
|
|
|
INFINITY // C99
|
|
|
|
NAN // C99
|
|
|
|
FP_INFINITE // C99
|
|
|
|
FP_NAN // C99
|
|
|
|
FP_NORMAL // C99
|
|
|
|
FP_SUBNORMAL // C99
|
|
|
|
FP_ZERO // C99
|
|
|
|
FP_FAST_FMA // C99
|
|
|
|
FP_FAST_FMAF // C99
|
|
|
|
FP_FAST_FMAL // C99
|
|
|
|
FP_ILOGB0 // C99
|
|
|
|
FP_ILOGBNAN // C99
|
|
|
|
MATH_ERRNO // C99
|
|
|
|
MATH_ERREXCEPT // C99
|
|
|
|
math_errhandling // C99
|
|
|
|
|
|
|
|
namespace std
|
|
|
|
{
|
|
|
|
|
|
|
|
Types:
|
|
|
|
|
|
|
|
float_t // C99
|
|
|
|
double_t // C99
|
|
|
|
|
|
|
|
// C90
|
|
|
|
|
|
|
|
floating_point abs(floating_point x);
|
|
|
|
|
|
|
|
floating_point acos (arithmetic x);
|
|
|
|
float acosf(float x);
|
|
|
|
long double acosl(long double x);
|
|
|
|
|
|
|
|
floating_point asin (arithmetic x);
|
|
|
|
float asinf(float x);
|
|
|
|
long double asinl(long double x);
|
|
|
|
|
|
|
|
floating_point atan (arithmetic x);
|
|
|
|
float atanf(float x);
|
|
|
|
long double atanl(long double x);
|
|
|
|
|
|
|
|
floating_point atan2 (arithmetic y, arithmetic x);
|
|
|
|
float atan2f(float y, float x);
|
|
|
|
long double atan2l(long double y, long double x);
|
|
|
|
|
|
|
|
floating_point ceil (arithmetic x);
|
|
|
|
float ceilf(float x);
|
|
|
|
long double ceill(long double x);
|
|
|
|
|
|
|
|
floating_point cos (arithmetic x);
|
|
|
|
float cosf(float x);
|
|
|
|
long double cosl(long double x);
|
|
|
|
|
|
|
|
floating_point cosh (arithmetic x);
|
|
|
|
float coshf(float x);
|
|
|
|
long double coshl(long double x);
|
|
|
|
|
|
|
|
floating_point exp (arithmetic x);
|
|
|
|
float expf(float x);
|
|
|
|
long double expl(long double x);
|
|
|
|
|
|
|
|
floating_point fabs (arithmetic x);
|
|
|
|
float fabsf(float x);
|
|
|
|
long double fabsl(long double x);
|
|
|
|
|
|
|
|
floating_point floor (arithmetic x);
|
|
|
|
float floorf(float x);
|
|
|
|
long double floorl(long double x);
|
|
|
|
|
|
|
|
floating_point fmod (arithmetic x, arithmetic y);
|
|
|
|
float fmodf(float x, float y);
|
|
|
|
long double fmodl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point frexp (arithmetic value, int* exp);
|
|
|
|
float frexpf(float value, int* exp);
|
|
|
|
long double frexpl(long double value, int* exp);
|
|
|
|
|
|
|
|
floating_point ldexp (arithmetic value, int exp);
|
|
|
|
float ldexpf(float value, int exp);
|
|
|
|
long double ldexpl(long double value, int exp);
|
|
|
|
|
|
|
|
floating_point log (arithmetic x);
|
|
|
|
float logf(float x);
|
|
|
|
long double logl(long double x);
|
|
|
|
|
|
|
|
floating_point log10 (arithmetic x);
|
|
|
|
float log10f(float x);
|
|
|
|
long double log10l(long double x);
|
|
|
|
|
|
|
|
floating_point modf (floating_point value, floating_point* iptr);
|
|
|
|
float modff(float value, float* iptr);
|
|
|
|
long double modfl(long double value, long double* iptr);
|
|
|
|
|
|
|
|
floating_point pow (arithmetic x, arithmetic y);
|
|
|
|
float powf(float x, float y);
|
|
|
|
long double powl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point sin (arithmetic x);
|
|
|
|
float sinf(float x);
|
|
|
|
long double sinl(long double x);
|
|
|
|
|
|
|
|
floating_point sinh (arithmetic x);
|
|
|
|
float sinhf(float x);
|
|
|
|
long double sinhl(long double x);
|
|
|
|
|
|
|
|
floating_point sqrt (arithmetic x);
|
|
|
|
float sqrtf(float x);
|
|
|
|
long double sqrtl(long double x);
|
|
|
|
|
|
|
|
floating_point tan (arithmetic x);
|
|
|
|
float tanf(float x);
|
|
|
|
long double tanl(long double x);
|
|
|
|
|
|
|
|
floating_point tanh (arithmetic x);
|
|
|
|
float tanhf(float x);
|
|
|
|
long double tanhl(long double x);
|
|
|
|
|
|
|
|
// C99
|
|
|
|
|
2013-01-14 20:56:22 +00:00
|
|
|
bool signbit(arithmetic x);
|
2010-05-11 19:42:16 +00:00
|
|
|
|
2013-01-14 20:56:22 +00:00
|
|
|
int fpclassify(arithmetic x);
|
2010-05-11 19:42:16 +00:00
|
|
|
|
2013-01-14 20:56:22 +00:00
|
|
|
bool isfinite(arithmetic x);
|
|
|
|
bool isinf(arithmetic x);
|
|
|
|
bool isnan(arithmetic x);
|
|
|
|
bool isnormal(arithmetic x);
|
2010-08-22 00:02:43 +00:00
|
|
|
|
2013-01-14 20:56:22 +00:00
|
|
|
bool isgreater(arithmetic x, arithmetic y);
|
|
|
|
bool isgreaterequal(arithmetic x, arithmetic y);
|
|
|
|
bool isless(arithmetic x, arithmetic y);
|
|
|
|
bool islessequal(arithmetic x, arithmetic y);
|
|
|
|
bool islessgreater(arithmetic x, arithmetic y);
|
|
|
|
bool isunordered(arithmetic x, arithmetic y);
|
2010-05-11 19:42:16 +00:00
|
|
|
|
|
|
|
floating_point acosh (arithmetic x);
|
|
|
|
float acoshf(float x);
|
|
|
|
long double acoshl(long double x);
|
|
|
|
|
|
|
|
floating_point asinh (arithmetic x);
|
|
|
|
float asinhf(float x);
|
|
|
|
long double asinhl(long double x);
|
|
|
|
|
|
|
|
floating_point atanh (arithmetic x);
|
|
|
|
float atanhf(float x);
|
|
|
|
long double atanhl(long double x);
|
|
|
|
|
|
|
|
floating_point cbrt (arithmetic x);
|
|
|
|
float cbrtf(float x);
|
|
|
|
long double cbrtl(long double x);
|
|
|
|
|
|
|
|
floating_point copysign (arithmetic x, arithmetic y);
|
|
|
|
float copysignf(float x, float y);
|
|
|
|
long double copysignl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point erf (arithmetic x);
|
|
|
|
float erff(float x);
|
|
|
|
long double erfl(long double x);
|
|
|
|
|
|
|
|
floating_point erfc (arithmetic x);
|
|
|
|
float erfcf(float x);
|
|
|
|
long double erfcl(long double x);
|
|
|
|
|
|
|
|
floating_point exp2 (arithmetic x);
|
|
|
|
float exp2f(float x);
|
|
|
|
long double exp2l(long double x);
|
|
|
|
|
|
|
|
floating_point expm1 (arithmetic x);
|
|
|
|
float expm1f(float x);
|
|
|
|
long double expm1l(long double x);
|
|
|
|
|
|
|
|
floating_point fdim (arithmetic x, arithmetic y);
|
|
|
|
float fdimf(float x, float y);
|
|
|
|
long double fdiml(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point fma (arithmetic x, arithmetic y, arithmetic z);
|
|
|
|
float fmaf(float x, float y, float z);
|
|
|
|
long double fmal(long double x, long double y, long double z);
|
|
|
|
|
|
|
|
floating_point fmax (arithmetic x, arithmetic y);
|
|
|
|
float fmaxf(float x, float y);
|
|
|
|
long double fmaxl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point fmin (arithmetic x, arithmetic y);
|
|
|
|
float fminf(float x, float y);
|
|
|
|
long double fminl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point hypot (arithmetic x, arithmetic y);
|
|
|
|
float hypotf(float x, float y);
|
|
|
|
long double hypotl(long double x, long double y);
|
|
|
|
|
2016-05-17 14:52:19 +00:00
|
|
|
double hypot(double x, double y, double z); // C++17
|
|
|
|
float hypot(float x, float y, float z); // C++17
|
|
|
|
long double hypot(long double x, long double y, long double z); // C++17
|
|
|
|
|
2010-05-11 19:42:16 +00:00
|
|
|
int ilogb (arithmetic x);
|
|
|
|
int ilogbf(float x);
|
|
|
|
int ilogbl(long double x);
|
|
|
|
|
|
|
|
floating_point lgamma (arithmetic x);
|
|
|
|
float lgammaf(float x);
|
|
|
|
long double lgammal(long double x);
|
|
|
|
|
|
|
|
long long llrint (arithmetic x);
|
|
|
|
long long llrintf(float x);
|
|
|
|
long long llrintl(long double x);
|
|
|
|
|
|
|
|
long long llround (arithmetic x);
|
|
|
|
long long llroundf(float x);
|
|
|
|
long long llroundl(long double x);
|
|
|
|
|
|
|
|
floating_point log1p (arithmetic x);
|
|
|
|
float log1pf(float x);
|
|
|
|
long double log1pl(long double x);
|
|
|
|
|
|
|
|
floating_point log2 (arithmetic x);
|
|
|
|
float log2f(float x);
|
|
|
|
long double log2l(long double x);
|
|
|
|
|
|
|
|
floating_point logb (arithmetic x);
|
|
|
|
float logbf(float x);
|
|
|
|
long double logbl(long double x);
|
|
|
|
|
|
|
|
long lrint (arithmetic x);
|
|
|
|
long lrintf(float x);
|
|
|
|
long lrintl(long double x);
|
|
|
|
|
|
|
|
long lround (arithmetic x);
|
|
|
|
long lroundf(float x);
|
|
|
|
long lroundl(long double x);
|
|
|
|
|
|
|
|
double nan (const char* str);
|
|
|
|
float nanf(const char* str);
|
|
|
|
long double nanl(const char* str);
|
|
|
|
|
|
|
|
floating_point nearbyint (arithmetic x);
|
|
|
|
float nearbyintf(float x);
|
|
|
|
long double nearbyintl(long double x);
|
|
|
|
|
|
|
|
floating_point nextafter (arithmetic x, arithmetic y);
|
|
|
|
float nextafterf(float x, float y);
|
|
|
|
long double nextafterl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point nexttoward (arithmetic x, long double y);
|
|
|
|
float nexttowardf(float x, long double y);
|
|
|
|
long double nexttowardl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point remainder (arithmetic x, arithmetic y);
|
|
|
|
float remainderf(float x, float y);
|
|
|
|
long double remainderl(long double x, long double y);
|
|
|
|
|
|
|
|
floating_point remquo (arithmetic x, arithmetic y, int* pquo);
|
|
|
|
float remquof(float x, float y, int* pquo);
|
|
|
|
long double remquol(long double x, long double y, int* pquo);
|
|
|
|
|
|
|
|
floating_point rint (arithmetic x);
|
|
|
|
float rintf(float x);
|
|
|
|
long double rintl(long double x);
|
|
|
|
|
|
|
|
floating_point round (arithmetic x);
|
|
|
|
float roundf(float x);
|
|
|
|
long double roundl(long double x);
|
|
|
|
|
|
|
|
floating_point scalbln (arithmetic x, long ex);
|
|
|
|
float scalblnf(float x, long ex);
|
|
|
|
long double scalblnl(long double x, long ex);
|
|
|
|
|
|
|
|
floating_point scalbn (arithmetic x, int ex);
|
|
|
|
float scalbnf(float x, int ex);
|
|
|
|
long double scalbnl(long double x, int ex);
|
|
|
|
|
|
|
|
floating_point tgamma (arithmetic x);
|
|
|
|
float tgammaf(float x);
|
|
|
|
long double tgammal(long double x);
|
|
|
|
|
|
|
|
floating_point trunc (arithmetic x);
|
|
|
|
float truncf(float x);
|
|
|
|
long double truncl(long double x);
|
|
|
|
|
2020-05-25 22:26:50 +02:00
|
|
|
constexpr float lerp(float a, float b, float t) noexcept; // C++20
|
|
|
|
constexpr double lerp(double a, double b, double t) noexcept; // C++20
|
|
|
|
constexpr long double lerp(long double a, long double b, long double t) noexcept; // C++20
|
|
|
|
|
2010-05-11 19:42:16 +00:00
|
|
|
} // std
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
2022-03-25 12:55:36 -04:00
|
|
|
#include <__assert> // all public C++ headers provide the assertion handler
|
2010-05-11 19:42:16 +00:00
|
|
|
#include <__config>
|
2022-12-21 00:07:17 +01:00
|
|
|
#include <__type_traits/enable_if.h>
|
|
|
|
#include <__type_traits/is_arithmetic.h>
|
[libc++] [C++20] [P0415] Constexpr for std::complex.
This patch adds constexpr to <complex> header: operators, member operators, and member functions (real, imag, norm, conj).
https://eel.is/c++draft/complex.numbers
https://wg21.link/p0415
Reviewed By: ldionne, #libc
Spies: philnik, danilaml, Quuxplusone, wmaxey, arichardson, libcxx-commits
Differential Revision: https://reviews.llvm.org/D79555
2022-12-15 02:19:59 +01:00
|
|
|
#include <__type_traits/is_constant_evaluated.h>
|
2022-12-21 00:07:17 +01:00
|
|
|
#include <__type_traits/is_floating_point.h>
|
|
|
|
#include <__type_traits/is_same.h>
|
2023-01-26 14:46:53 -05:00
|
|
|
#include <__type_traits/promote.h>
|
2022-12-21 00:07:17 +01:00
|
|
|
#include <__type_traits/remove_cv.h>
|
2022-01-07 09:45:05 -05:00
|
|
|
#include <version>
|
2011-10-27 16:24:42 +00:00
|
|
|
|
2022-08-08 17:03:56 -04:00
|
|
|
#include <math.h>
|
|
|
|
|
|
|
|
#ifndef _LIBCPP_MATH_H
|
|
|
|
# error <cmath> tried including <math.h> but didn't find libc++'s <math.h> header. \
|
|
|
|
This usually means that your header search paths are not configured properly. \
|
|
|
|
The header search paths should contain the C++ Standard Library headers before \
|
|
|
|
any C Standard Library, and you are probably using compiler flags that make that \
|
|
|
|
not be the case.
|
|
|
|
#endif
|
|
|
|
|
2011-10-17 20:05:10 +00:00
|
|
|
#if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER)
|
2022-02-01 20:16:40 -05:00
|
|
|
# pragma GCC system_header
|
2011-10-17 20:05:10 +00:00
|
|
|
#endif
|
2010-05-11 19:42:16 +00:00
|
|
|
|
2019-09-04 13:35:03 +00:00
|
|
|
_LIBCPP_PUSH_MACROS
|
|
|
|
#include <__undef_macros>
|
|
|
|
|
2011-05-13 21:52:40 +00:00
|
|
|
_LIBCPP_BEGIN_NAMESPACE_STD
|
2010-05-11 19:42:16 +00:00
|
|
|
|
[libc++] Use the using_if_exists attribute when provided
As discussed on cfe-dev [1], use the using_if_exists Clang attribute when
the compiler supports it. This makes it easier to port libc++ on top of
new platforms that don't fully support the C Standard library.
Previously, libc++ would fail to build when trying to import a missing
declaration in a <cXXXX> header. With the attribute, the declaration will
simply not be imported into namespace std, and hence it won't be available
for libc++ to use. In many cases, the declarations were *not* actually
required for libc++ to work (they were only surfaced for users to use
them as std::XXXX), so not importing them into namespace std is acceptable.
The same thing could be achieved by conscious usage of `#ifdef` along
with platform detection, however that quickly creates a maintenance
problem as libc++ is ported to new platforms. Furthermore, this problem
is exacerbated when mixed with vendor internal-only platforms, which can
lead to difficulties maintaining a downstream fork of the library.
For the time being, we only use the using_if_exists attribute when it
is supported. At some point in the future, we will start removing #ifdef
paths that are unnecessary when the attribute is supported, and folks
who need those #ifdef paths will be required to use a compiler that
supports the attribute.
[1]: http://lists.llvm.org/pipermail/cfe-dev/2020-June/066038.html
Differential Revision: https://reviews.llvm.org/D90257
2021-06-02 10:41:37 -04:00
|
|
|
using ::signbit _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fpclassify _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isfinite _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isinf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isnan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isnormal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isgreater _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isgreaterequal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isless _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::islessequal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::islessgreater _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isunordered _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::isunordered _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::float_t _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::double_t _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::abs _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::acos _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::acosf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asin _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan2 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan2f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ceil _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ceilf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cos _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cosf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cosh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::coshf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::exp _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::fabs _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fabsf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::floor _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::floorf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::fmod _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmodf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::frexp _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::frexpf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ldexp _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ldexpf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::log _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::log10 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log10f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::modf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::modff _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::pow _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::powf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::sin _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::sqrt _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sqrtf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tanf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::tanh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tanhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::acosh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::acoshf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanh _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanhf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cbrt _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cbrtf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::copysign _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::copysignf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::erf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erff _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erfc _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erfcf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::exp2 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::exp2f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expm1 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expm1f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fdim _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fdimf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmaf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fma _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmax _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmaxf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmin _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fminf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::hypot _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::hypotf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ilogb _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ilogbf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lgamma _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lgammaf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llrint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llrintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llround _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llroundf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log1p _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log1pf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log2 _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log2f _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logb _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logbf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lrint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lrintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lround _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lroundf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::nan _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nanf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::nearbyint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nearbyintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nextafter _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nextafterf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nexttoward _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nexttowardf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remainder _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remainderf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remquo _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remquof _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::rint _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::rintf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::round _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::roundf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbln _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalblnf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbn _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbnf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tgamma _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tgammaf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::trunc _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::truncf _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::acosl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atan2l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ceill _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cosl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::coshl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fabsl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::floorl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmodl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::frexpl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ldexpl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log10l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::modfl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::powl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sinhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::sqrtl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tanl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::tanhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::acoshl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::asinhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::atanhl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::cbrtl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::copysignl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
|
|
|
|
using ::erfl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::erfcl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::exp2l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::expm1l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fdiml _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fmaxl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::fminl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::hypotl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::ilogbl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lgammal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llrintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::llroundl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log1pl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::log2l _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::logbl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lrintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::lroundl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nanl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nearbyintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nextafterl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::nexttowardl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remainderl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::remquol _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::rintl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::roundl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalblnl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::scalbnl _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::tgammal _LIBCPP_USING_IF_EXISTS;
|
|
|
|
using ::truncl _LIBCPP_USING_IF_EXISTS;
|
2010-05-11 19:42:16 +00:00
|
|
|
|
2023-02-14 00:56:09 +01:00
|
|
|
#if _LIBCPP_STD_VER >= 17
|
2022-07-08 18:17:26 +02:00
|
|
|
inline _LIBCPP_INLINE_VISIBILITY float hypot( float __x, float __y, float __z ) { return sqrt(__x*__x + __y*__y + __z*__z); }
|
|
|
|
inline _LIBCPP_INLINE_VISIBILITY double hypot( double __x, double __y, double __z ) { return sqrt(__x*__x + __y*__y + __z*__z); }
|
|
|
|
inline _LIBCPP_INLINE_VISIBILITY long double hypot( long double __x, long double __y, long double __z ) { return sqrt(__x*__x + __y*__y + __z*__z); }
|
2016-05-17 14:52:19 +00:00
|
|
|
|
|
|
|
template <class _A1, class _A2, class _A3>
|
|
|
|
inline _LIBCPP_INLINE_VISIBILITY
|
[libc++] Use enable_if_t instead of _EnableIf
I just ran into a compiler error involving __bind_back and some overloads
that were being disabled with _EnableIf. I noticed that the error message
was quite bad and did not mention the reason for the overload being
excluded. Specifically, the error looked like this:
candidate template ignored: substitution failure [with _Args =
<ContiguousView>]: no member named '_EnableIfImpl' in 'std::_MetaBase<false>'
Instead, when using enable_if or enable_if_t, the compiler is clever and
can produce better diagnostics, like so:
candidate template ignored: requirement 'is_invocable_v<
std::__bind_back_op<1, std::integer_sequence<unsigned long, 0>>,
std::ranges::views::__transform::__fn &, std::tuple<PlusOne> &,
ContiguousView>' was not satisfied [with _Args = <ContiguousView>]
Basically, it tries to do a poor man's implementation of concepts, which
is already a lot better than simply complaining about substitution failure.
Hence, this commit uses enable_if_t instead of _EnableIf whenever
possible. That is both more straightforward than using the internal
helper, and also leads to better error messages in those cases.
I understand the motivation for _EnableIf's implementation was to improve
compile-time performance, however I believe striving to improve error
messages is even more important for our QOI, hence this patch. Furthermore,
it is unclear that _EnableIf actually improved compile-time performance
in any noticeable way (see discussion in the review for details).
Differential Revision: https://reviews.llvm.org/D108216
2021-08-17 12:26:09 -04:00
|
|
|
typename enable_if_t
|
2016-05-17 14:52:19 +00:00
|
|
|
<
|
2016-10-01 20:38:44 +00:00
|
|
|
is_arithmetic<_A1>::value &&
|
|
|
|
is_arithmetic<_A2>::value &&
|
|
|
|
is_arithmetic<_A3>::value,
|
|
|
|
__promote<_A1, _A2, _A3>
|
2016-05-17 14:52:19 +00:00
|
|
|
>::type
|
|
|
|
hypot(_A1 __lcpp_x, _A2 __lcpp_y, _A3 __lcpp_z) _NOEXCEPT
|
|
|
|
{
|
2016-10-01 20:38:44 +00:00
|
|
|
typedef typename __promote<_A1, _A2, _A3>::type __result_type;
|
|
|
|
static_assert((!(is_same<_A1, __result_type>::value &&
|
|
|
|
is_same<_A2, __result_type>::value &&
|
|
|
|
is_same<_A3, __result_type>::value)), "");
|
[libc++] Add custom clang-tidy checks
Reviewed By: #libc, ldionne
Spies: jwakely, beanz, smeenai, cfe-commits, tschuett, avogelsgesang, Mordante, sstefan1, libcxx-commits, ldionne, mgorny, arichardson, miyuki
Differential Revision: https://reviews.llvm.org/D131963
2022-08-13 22:33:12 +02:00
|
|
|
return std::hypot((__result_type)__lcpp_x, (__result_type)__lcpp_y, (__result_type)__lcpp_z);
|
2016-05-17 14:52:19 +00:00
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
template <class _A1>
|
2018-07-11 23:14:33 +00:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-15 19:15:57 +00:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
|
2022-12-07 12:05:32 +01:00
|
|
|
__constexpr_isnan(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
{
|
|
|
|
#if __has_builtin(__builtin_isnan)
|
|
|
|
return __builtin_isnan(__lcpp_x);
|
|
|
|
#else
|
|
|
|
return isnan(__lcpp_x);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-11 23:14:33 +00:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-15 19:15:57 +00:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
|
2022-12-07 12:05:32 +01:00
|
|
|
__constexpr_isnan(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
{
|
[libc++] Add custom clang-tidy checks
Reviewed By: #libc, ldionne
Spies: jwakely, beanz, smeenai, cfe-commits, tschuett, avogelsgesang, Mordante, sstefan1, libcxx-commits, ldionne, mgorny, arichardson, miyuki
Differential Revision: https://reviews.llvm.org/D131963
2022-08-13 22:33:12 +02:00
|
|
|
return std::isnan(__lcpp_x);
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-11 23:14:33 +00:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-15 19:15:57 +00:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
|
2022-12-07 12:05:32 +01:00
|
|
|
__constexpr_isinf(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
{
|
|
|
|
#if __has_builtin(__builtin_isinf)
|
|
|
|
return __builtin_isinf(__lcpp_x);
|
|
|
|
#else
|
|
|
|
return isinf(__lcpp_x);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-11 23:14:33 +00:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-15 19:15:57 +00:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
|
2022-12-07 12:05:32 +01:00
|
|
|
__constexpr_isinf(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
{
|
[libc++] Add custom clang-tidy checks
Reviewed By: #libc, ldionne
Spies: jwakely, beanz, smeenai, cfe-commits, tschuett, avogelsgesang, Mordante, sstefan1, libcxx-commits, ldionne, mgorny, arichardson, miyuki
Differential Revision: https://reviews.llvm.org/D131963
2022-08-13 22:33:12 +02:00
|
|
|
return std::isinf(__lcpp_x);
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-11 23:14:33 +00:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-15 19:15:57 +00:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<is_floating_point<_A1>::value, bool>::type
|
2022-12-07 12:05:32 +01:00
|
|
|
__constexpr_isfinite(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
{
|
|
|
|
#if __has_builtin(__builtin_isfinite)
|
|
|
|
return __builtin_isfinite(__lcpp_x);
|
|
|
|
#else
|
|
|
|
return isfinite(__lcpp_x);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1>
|
2018-07-11 23:14:33 +00:00
|
|
|
_LIBCPP_INLINE_VISIBILITY
|
2016-11-15 19:15:57 +00:00
|
|
|
_LIBCPP_CONSTEXPR typename enable_if<!is_floating_point<_A1>::value, bool>::type
|
2022-12-07 12:05:32 +01:00
|
|
|
__constexpr_isfinite(_A1 __lcpp_x) _NOEXCEPT
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
{
|
[libc++] [C++20] [P0415] Constexpr for std::complex.
This patch adds constexpr to <complex> header: operators, member operators, and member functions (real, imag, norm, conj).
https://eel.is/c++draft/complex.numbers
https://wg21.link/p0415
Reviewed By: ldionne, #libc
Spies: philnik, danilaml, Quuxplusone, wmaxey, arichardson, libcxx-commits
Differential Revision: https://reviews.llvm.org/D79555
2022-12-15 02:19:59 +01:00
|
|
|
return __builtin_isfinite(__lcpp_x);
|
|
|
|
}
|
|
|
|
|
|
|
|
_LIBCPP_CONSTEXPR inline _LIBCPP_HIDE_FROM_ABI float __constexpr_copysign(float __x, float __y) _NOEXCEPT {
|
|
|
|
return __builtin_copysignf(__x, __y);
|
|
|
|
}
|
|
|
|
|
|
|
|
_LIBCPP_CONSTEXPR inline _LIBCPP_HIDE_FROM_ABI double __constexpr_copysign(double __x, double __y) _NOEXCEPT {
|
|
|
|
return __builtin_copysign(__x, __y);
|
|
|
|
}
|
|
|
|
|
|
|
|
_LIBCPP_CONSTEXPR inline _LIBCPP_HIDE_FROM_ABI long double
|
|
|
|
__constexpr_copysign(long double __x, long double __y) _NOEXCEPT {
|
|
|
|
return __builtin_copysignl(__x, __y);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _A1, class _A2>
|
|
|
|
_LIBCPP_CONSTEXPR inline _LIBCPP_HIDE_FROM_ABI
|
|
|
|
typename std::__enable_if_t<std::is_arithmetic<_A1>::value && std::is_arithmetic<_A2>::value,
|
|
|
|
std::__promote<_A1, _A2> >::type
|
|
|
|
__constexpr_copysign(_A1 __x, _A2 __y) _NOEXCEPT {
|
|
|
|
typedef typename std::__promote<_A1, _A2>::type __result_type;
|
|
|
|
static_assert((!(std::_IsSame<_A1, __result_type>::value && std::_IsSame<_A2, __result_type>::value)), "");
|
|
|
|
return __builtin_copysign((__result_type)__x, (__result_type)__y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR float __constexpr_fabs(float __x) _NOEXCEPT {
|
|
|
|
return __builtin_fabsf(__x);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR double __constexpr_fabs(double __x) _NOEXCEPT {
|
|
|
|
return __builtin_fabs(__x);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR long double __constexpr_fabs(long double __x) _NOEXCEPT {
|
|
|
|
return __builtin_fabsl(__x);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _Tp, __enable_if_t<is_integral<_Tp>::value, int> = 0>
|
|
|
|
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR double __constexpr_fabs(_Tp __x) _NOEXCEPT {
|
|
|
|
return __builtin_fabs(static_cast<double>(__x));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 float __constexpr_fmax(float __x, float __y) _NOEXCEPT {
|
|
|
|
#if !__has_constexpr_builtin(__builtin_fmaxf)
|
|
|
|
if (__libcpp_is_constant_evaluated()) {
|
|
|
|
if (std::__constexpr_isnan(__x))
|
|
|
|
return __y;
|
|
|
|
if (std::__constexpr_isnan(__y))
|
|
|
|
return __x;
|
|
|
|
return __x < __y ? __y : __x;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return __builtin_fmaxf(__x, __y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 double __constexpr_fmax(double __x, double __y) _NOEXCEPT {
|
|
|
|
#if !__has_constexpr_builtin(__builtin_fmax)
|
|
|
|
if (__libcpp_is_constant_evaluated()) {
|
|
|
|
if (std::__constexpr_isnan(__x))
|
|
|
|
return __y;
|
|
|
|
if (std::__constexpr_isnan(__y))
|
|
|
|
return __x;
|
|
|
|
return __x < __y ? __y : __x;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return __builtin_fmax(__x, __y);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 long double
|
|
|
|
__constexpr_fmax(long double __x, long double __y) _NOEXCEPT {
|
|
|
|
#if !__has_constexpr_builtin(__builtin_fmaxl)
|
|
|
|
if (__libcpp_is_constant_evaluated()) {
|
|
|
|
if (std::__constexpr_isnan(__x))
|
|
|
|
return __y;
|
|
|
|
if (std::__constexpr_isnan(__y))
|
|
|
|
return __x;
|
|
|
|
return __x < __y ? __y : __x;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return __builtin_fmaxl(__x, __y);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _Tp, class _Up, __enable_if_t<is_arithmetic<_Tp>::value && is_arithmetic<_Up>::value, int> = 0>
|
|
|
|
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 typename __promote<_Tp, _Up>::type
|
|
|
|
__constexpr_fmax(_Tp __x, _Up __y) _NOEXCEPT {
|
|
|
|
using __result_type = typename __promote<_Tp, _Up>::type;
|
|
|
|
return std::__constexpr_fmax(static_cast<__result_type>(__x), static_cast<__result_type>(__y));
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _Tp>
|
2023-01-09 01:16:34 +01:00
|
|
|
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX14 _Tp __constexpr_logb(_Tp __x) {
|
[libc++] [C++20] [P0415] Constexpr for std::complex.
This patch adds constexpr to <complex> header: operators, member operators, and member functions (real, imag, norm, conj).
https://eel.is/c++draft/complex.numbers
https://wg21.link/p0415
Reviewed By: ldionne, #libc
Spies: philnik, danilaml, Quuxplusone, wmaxey, arichardson, libcxx-commits
Differential Revision: https://reviews.llvm.org/D79555
2022-12-15 02:19:59 +01:00
|
|
|
#if !__has_constexpr_builtin(__builtin_logb)
|
|
|
|
if (__libcpp_is_constant_evaluated()) {
|
|
|
|
if (__x == _Tp(0)) {
|
|
|
|
// raise FE_DIVBYZERO
|
|
|
|
return -numeric_limits<_Tp>::infinity();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (std::__constexpr_isinf(__x))
|
|
|
|
return numeric_limits<_Tp>::infinity();
|
|
|
|
|
|
|
|
if (std::__constexpr_isnan(__x))
|
|
|
|
return numeric_limits<_Tp>::quiet_NaN();
|
|
|
|
|
|
|
|
__x = std::__constexpr_fabs(__x);
|
|
|
|
unsigned long long __exp = 0;
|
|
|
|
while (__x >= numeric_limits<_Tp>::radix) {
|
|
|
|
__x /= numeric_limits<_Tp>::radix;
|
|
|
|
__exp += 1;
|
|
|
|
}
|
|
|
|
return _Tp(__exp);
|
|
|
|
}
|
2023-01-12 02:47:41 +01:00
|
|
|
#endif // !__has_constexpr_builtin(__builtin_logb)
|
[libc++] [C++20] [P0415] Constexpr for std::complex.
This patch adds constexpr to <complex> header: operators, member operators, and member functions (real, imag, norm, conj).
https://eel.is/c++draft/complex.numbers
https://wg21.link/p0415
Reviewed By: ldionne, #libc
Spies: philnik, danilaml, Quuxplusone, wmaxey, arichardson, libcxx-commits
Differential Revision: https://reviews.llvm.org/D79555
2022-12-15 02:19:59 +01:00
|
|
|
return __builtin_logb(__x);
|
|
|
|
}
|
|
|
|
|
|
|
|
template <class _Tp>
|
2023-01-09 01:16:34 +01:00
|
|
|
_LIBCPP_HIDE_FROM_ABI _LIBCPP_CONSTEXPR_SINCE_CXX20 _Tp __constexpr_scalbn(_Tp __x, int __exp) {
|
[libc++] [C++20] [P0415] Constexpr for std::complex.
This patch adds constexpr to <complex> header: operators, member operators, and member functions (real, imag, norm, conj).
https://eel.is/c++draft/complex.numbers
https://wg21.link/p0415
Reviewed By: ldionne, #libc
Spies: philnik, danilaml, Quuxplusone, wmaxey, arichardson, libcxx-commits
Differential Revision: https://reviews.llvm.org/D79555
2022-12-15 02:19:59 +01:00
|
|
|
#if !__has_constexpr_builtin(__builtin_scalbln)
|
|
|
|
if (__libcpp_is_constant_evaluated()) {
|
|
|
|
if (__x == _Tp(0))
|
|
|
|
return __x;
|
|
|
|
|
|
|
|
if (std::__constexpr_isinf(__x))
|
|
|
|
return __x;
|
|
|
|
|
|
|
|
if (__exp == _Tp(0))
|
|
|
|
return __x;
|
|
|
|
|
|
|
|
if (std::__constexpr_isnan(__x))
|
|
|
|
return numeric_limits<_Tp>::quiet_NaN();
|
|
|
|
|
|
|
|
_Tp __mult(1);
|
|
|
|
if (__exp > 0) {
|
|
|
|
__mult = numeric_limits<_Tp>::radix;
|
|
|
|
--__exp;
|
|
|
|
} else {
|
|
|
|
++__exp;
|
|
|
|
__exp = -__exp;
|
|
|
|
__mult /= numeric_limits<_Tp>::radix;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (__exp > 0) {
|
|
|
|
if (!(__exp & 1)) {
|
|
|
|
__mult *= __mult;
|
|
|
|
__exp >>= 1;
|
|
|
|
} else {
|
|
|
|
__x *= __mult;
|
|
|
|
--__exp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return __x;
|
|
|
|
}
|
2023-01-12 02:47:41 +01:00
|
|
|
#endif // !__has_constexpr_builtin(__builtin_scalbln)
|
[libc++] [C++20] [P0415] Constexpr for std::complex.
This patch adds constexpr to <complex> header: operators, member operators, and member functions (real, imag, norm, conj).
https://eel.is/c++draft/complex.numbers
https://wg21.link/p0415
Reviewed By: ldionne, #libc
Spies: philnik, danilaml, Quuxplusone, wmaxey, arichardson, libcxx-commits
Differential Revision: https://reviews.llvm.org/D79555
2022-12-15 02:19:59 +01:00
|
|
|
return __builtin_scalbn(__x, __exp);
|
Use __builtin_isnan/isinf/isfinite in complex
The libc-provided isnan/isinf/isfinite macro implementations are specifically
designed to function correctly, even in the presence of -ffast-math (or, more
specifically, -ffinite-math-only). As such, on most implementation, these
either always turn into external function calls (e.g. glibc) or are
specifically function calls when FINITE_MATH_ONLY is defined (e.g. Darwin).
Our implementation of complex arithmetic makes heavy use of isnan/isinf/isfinite
to deal with corner cases involving non-finite quantities. This was problematic
in two respects:
1. On systems where these are always function calls (e.g. Linux/glibc), there was a
performance penalty
2. When compiling with -ffast-math, there was a significant performance
penalty (in fact, on Darwin and systems with similar implementations, the code
may in fact be slower than not using -ffast-math, because the inline
definitions provided by libc become unavailable to prevent the checks from
being optimized out).
Eliding these inf/nan checks in -ffast-math mode is consistent with what
happens with libstdc++, and in my experience, what users expect. This is
critical to getting high-performance code when using complex<T>. This change
replaces uses of those functions on basic floating-point types with calls to
__builtin_isnan/isinf/isfinite, which Clang will always expand inline. When
using -ffast-math (or -ffinite-math-only), the optimizer will remove the checks
as expected.
Differential Revision: https://reviews.llvm.org/D18639
llvm-svn: 283051
2016-10-01 20:38:31 +00:00
|
|
|
}
|
|
|
|
|
2023-02-14 00:56:09 +01:00
|
|
|
#if _LIBCPP_STD_VER >= 20
|
2019-04-25 17:44:18 +00:00
|
|
|
template <typename _Fp>
|
2022-08-13 13:23:16 +02:00
|
|
|
_LIBCPP_HIDE_FROM_ABI constexpr
|
2019-04-25 17:44:18 +00:00
|
|
|
_Fp __lerp(_Fp __a, _Fp __b, _Fp __t) noexcept {
|
|
|
|
if ((__a <= 0 && __b >= 0) || (__a >= 0 && __b <= 0))
|
|
|
|
return __t * __b + (1 - __t) * __a;
|
|
|
|
|
|
|
|
if (__t == 1) return __b;
|
|
|
|
const _Fp __x = __a + __t * (__b - __a);
|
2021-07-27 17:30:47 -04:00
|
|
|
if ((__t > 1) == (__b > __a))
|
2021-04-17 17:03:20 -04:00
|
|
|
return __b < __x ? __x : __b;
|
2019-04-25 17:44:18 +00:00
|
|
|
else
|
2021-04-17 17:03:20 -04:00
|
|
|
return __x < __b ? __x : __b;
|
2019-04-25 17:44:18 +00:00
|
|
|
}
|
|
|
|
|
2022-08-13 13:23:16 +02:00
|
|
|
_LIBCPP_HIDE_FROM_ABI constexpr float
|
2019-04-25 17:44:18 +00:00
|
|
|
lerp(float __a, float __b, float __t) _NOEXCEPT { return __lerp(__a, __b, __t); }
|
|
|
|
|
2022-08-13 13:23:16 +02:00
|
|
|
_LIBCPP_HIDE_FROM_ABI constexpr double
|
2019-04-25 17:44:18 +00:00
|
|
|
lerp(double __a, double __b, double __t) _NOEXCEPT { return __lerp(__a, __b, __t); }
|
|
|
|
|
2022-08-13 13:23:16 +02:00
|
|
|
_LIBCPP_HIDE_FROM_ABI constexpr long double
|
2019-04-25 17:44:18 +00:00
|
|
|
lerp(long double __a, long double __b, long double __t) _NOEXCEPT { return __lerp(__a, __b, __t); }
|
|
|
|
|
2021-12-26 22:16:45 -05:00
|
|
|
template <class _A1, class _A2, class _A3>
|
|
|
|
inline _LIBCPP_HIDE_FROM_ABI
|
|
|
|
constexpr typename enable_if_t
|
|
|
|
<
|
|
|
|
is_arithmetic<_A1>::value &&
|
|
|
|
is_arithmetic<_A2>::value &&
|
|
|
|
is_arithmetic<_A3>::value,
|
|
|
|
__promote<_A1, _A2, _A3>
|
|
|
|
>::type
|
|
|
|
lerp(_A1 __a, _A2 __b, _A3 __t) noexcept
|
|
|
|
{
|
|
|
|
typedef typename __promote<_A1, _A2, _A3>::type __result_type;
|
|
|
|
static_assert(!(_IsSame<_A1, __result_type>::value &&
|
|
|
|
_IsSame<_A2, __result_type>::value &&
|
|
|
|
_IsSame<_A3, __result_type>::value));
|
[libc++] Add custom clang-tidy checks
Reviewed By: #libc, ldionne
Spies: jwakely, beanz, smeenai, cfe-commits, tschuett, avogelsgesang, Mordante, sstefan1, libcxx-commits, ldionne, mgorny, arichardson, miyuki
Differential Revision: https://reviews.llvm.org/D131963
2022-08-13 22:33:12 +02:00
|
|
|
return std::__lerp((__result_type)__a, (__result_type)__b, (__result_type)__t);
|
2021-12-26 22:16:45 -05:00
|
|
|
}
|
2023-02-14 00:56:09 +01:00
|
|
|
#endif // _LIBCPP_STD_VER >= 20
|
2019-04-25 17:44:18 +00:00
|
|
|
|
2010-05-11 19:42:16 +00:00
|
|
|
_LIBCPP_END_NAMESPACE_STD
|
|
|
|
|
2019-09-04 13:35:03 +00:00
|
|
|
_LIBCPP_POP_MACROS
|
|
|
|
|
2022-12-21 00:07:17 +01:00
|
|
|
#if !defined(_LIBCPP_REMOVE_TRANSITIVE_INCLUDES) && _LIBCPP_STD_VER <= 20
|
|
|
|
# include <type_traits>
|
|
|
|
#endif
|
|
|
|
|
2021-04-20 12:03:32 -04:00
|
|
|
#endif // _LIBCPP_CMATH
|