llvm-project/flang/cmake/modules/AddFlang.cmake

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

133 lines
4.0 KiB
CMake
Raw Normal View History

include(GNUInstallDirs)
include(LLVMDistributionSupport)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
macro(set_flang_windows_version_resource_properties name)
if (DEFINED windows_resource_file)
set_windows_version_resource_properties(${name} ${windows_resource_file}
VERSION_MAJOR ${FLANG_VERSION_MAJOR}
VERSION_MINOR ${FLANG_VERSION_MINOR}
VERSION_PATCHLEVEL ${FLANG_VERSION_PATCHLEVEL}
VERSION_STRING "${FLANG_VERSION}"
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
PRODUCT_NAME "flang")
endif()
endmacro()
macro(add_flang_subdirectory name)
add_llvm_subdirectory(FLANG TOOL ${name})
endmacro()
function(add_flang_library name)
set(options SHARED STATIC INSTALL_WITH_TOOLCHAIN)
set(multiValueArgs ADDITIONAL_HEADERS CLANG_LIBS)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
cmake_parse_arguments(ARG
"${options}"
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
""
"${multiValueArgs}"
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
${ARGN})
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
set(srcs)
if (MSVC_IDE OR XCODE)
# Add public headers
file(RELATIVE_PATH lib_path
${FLANG_SOURCE_DIR}/lib/
${CMAKE_CURRENT_SOURCE_DIR})
if(NOT lib_path MATCHES "^[.][.]")
file( GLOB_RECURSE headers
${FLANG_SOURCE_DIR}/include/flang/${lib_path}/*.h
${FLANG_SOURCE_DIR}/include/flang/${lib_path}/*.def)
set_source_files_properties(${headers} PROPERTIES HEADER_FILE_ONLY ON)
if (headers)
set(srcs ${headers})
endif()
endif()
endif(MSVC_IDE OR XCODE)
if (srcs OR ARG_ADDITIONAL_HEADERS)
set(srcs
ADDITIONAL_HEADERS
${srcs}
${ARG_ADDITIONAL_HEADERS}) # It may contain unparsed unknown args.
endif()
Avoid object libraries in the VS IDE (#93519) As discussed in #89743, when using the Visual Studio solution generators, object library projects are displayed as a collection of non-editable *.obj files. To look for the corresponding source files, one has to browse (or search) to the library's obj.libname project. This patch tries to avoid this as much as possible. For Clang, there is already an exception for XCode. We handle MSVC_IDE the same way. For MLIR, this is more complicated. There are explicit references to the obj.libname target that only work when there is an object library. This patch cleans up the reasons for why an object library is needed: 1. The obj.libname is modified in the calling CMakeLists.txt. Note that with use-only references, `add_library(<name> ALIAS <target>)` could have been used. 2. An `libMLIR.so` (mlir-shlib) is also created. This works by adding linking the object libraries' object files into the libMLIR.so (in addition to the library's own .so/.a). XCode is handled using the `-force_load` linker option instead. Windows is not supported. This mechanism is different from LLVM's llvm-shlib that is created by linking static libraries with `-Wl,--whole-archive` (and `-Wl,-all_load` on MacOS). 3. The library might be added to an aggregate library. In-tree, the seems to be only `libMLIR-C.so` and the standalone example. In XCode, it uses the object library and `-force_load` mechanism as above. Again, this is different from `libLLVM-C.so`. 4. Build an object library whenever it was before this patch, except when generating a Visual Studio solution. This condition could be removed, but I am trying to avoid build breakages of whatever configurations others use. This seems to never have worked with XCode because of the explicit references to obj.libname (reason 1.). I don't have access to XCode, but I tried to preserve the current working. IMHO there should be a common mechanism to build aggregate libraries for all LLVM projects instead of the 4 that we have now. As far as I can see, this means for LLVM there are the following changes on whether object libraries are created: 1. An object library is created even in XCode if FORCE_OBJECT_LIBRARY is set. I do not know how XCode handles it, but I also know CMake will abort otherwise. 2. An object library is created even for explicitly SHARED libraries for building `libMLIR.so`. Again, mlir-shlib does not work otherwise. `libMLIR.so` itself is created using SHARED so this patch is marking it as EXCLUDE_FROM_LIBMLIR. 3. For the second condition, it is now sensitive to whether the mlir-shlib is built at all (LLVM_BUILD_LLVM_DYLIB). However, an object library is still built using the fourth condition unless using the MSVC solution generator. That is, except with MSVC_IDE, when an object library was built before, it will also be an object library now.
2024-06-19 14:30:01 +02:00
if(ARG_SHARED AND ARG_STATIC)
set(LIBTYPE SHARED STATIC)
elseif(ARG_SHARED)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
set(LIBTYPE SHARED)
[flang] Simplify LIBTYPE logic (#98072) When the `add_flang_library` was first added, it was apparently copied over from `add_clang_library`, including its logic to determine the library type. It includes a workaround: If `BUILD_SHARED_LIBS` is enabled, it should build all libraries as shared, including those that are explicitly marked as `STATIC`[^1], because `add_clang_library` always passes at least one of `STATIC`/`SHARED` to `llvm_add_library`, and `llvm_add_library` could not distinguish the two cases. Then, the two implementations diverged. For its runtime libraries, Flang requires some libraries to always be static libraries, so if a library is explicitly marked as `STATIC`, `BUILD_SHARED_LIBS` is ignored[^2].   I noticed the two implementations of the same functionality, modified only the `add_clang_library`, and copied over the result to `add_flang_library`[^3], without noticing that they are slightly different. As a result, Flang runtime libraries would be built as shared libraries with `-DBUILD_SHARED_LIBS=ON`, which may break some build configurations[^4]. This PR fixes the problem and at the same time simplifies the library type algorithm by just passing SHARED/STATIC verbatim to `llvm_add_library`. This is effectively what [^2] should have done instead adding more code to undo the workaround of [^1]. Ideally, one would use ``` llvm_add_library(${name} ${ARG_STATIC} ${ARG_SHARED} [...]) ``` but `ARG_STATIC`/`ARG_SHARED` as set by `cmake_parse_arguments` contain `TRUE`/`FALSE` instead of the keywords themselves. I could imagine a utility function akin to `pythonize_bool` that does this. This simplification adds two more changes: 1. Object libraries are not explicitly requested anymore. `llvm_add_library` itself should determine whether an object library is necessary. As the comment notes, using an object library is not without problems and seem of no use here since it works fine without object library when in `XCODE`/`MSVC_IDE` mode. 2. The property `CLANG_STATIC_LIBS` was removed. It was `FLANG_STATIC_LIBS` before to copy&paste error of #93519 [^3] which not used anywhere. In clang, `CLANG_STATIC_LIBS` is used for `clang-shlib` to include all component libraries in a single large library. There is no equivalent `flang-shlib`. [^1]: dbc2a12c7311ff4cc2cd7887d128b506bd35b579 [^2]: 3d2e05d542e646891745c5278a09950d3c4fb4a5 [^3]: #93519 [^4]: https://github.com/llvm/llvm-project/pull/93519#issuecomment-2192359002
2024-07-12 16:11:55 +02:00
elseif(ARG_STATIC)
# If BUILD_SHARED_LIBS and ARG_STATIC are both set, llvm_add_library prioritizes STATIC.
# This is required behavior for libFortranFloat128Math.
set(LIBTYPE STATIC)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
else()
[flang] Simplify LIBTYPE logic (#98072) When the `add_flang_library` was first added, it was apparently copied over from `add_clang_library`, including its logic to determine the library type. It includes a workaround: If `BUILD_SHARED_LIBS` is enabled, it should build all libraries as shared, including those that are explicitly marked as `STATIC`[^1], because `add_clang_library` always passes at least one of `STATIC`/`SHARED` to `llvm_add_library`, and `llvm_add_library` could not distinguish the two cases. Then, the two implementations diverged. For its runtime libraries, Flang requires some libraries to always be static libraries, so if a library is explicitly marked as `STATIC`, `BUILD_SHARED_LIBS` is ignored[^2].   I noticed the two implementations of the same functionality, modified only the `add_clang_library`, and copied over the result to `add_flang_library`[^3], without noticing that they are slightly different. As a result, Flang runtime libraries would be built as shared libraries with `-DBUILD_SHARED_LIBS=ON`, which may break some build configurations[^4]. This PR fixes the problem and at the same time simplifies the library type algorithm by just passing SHARED/STATIC verbatim to `llvm_add_library`. This is effectively what [^2] should have done instead adding more code to undo the workaround of [^1]. Ideally, one would use ``` llvm_add_library(${name} ${ARG_STATIC} ${ARG_SHARED} [...]) ``` but `ARG_STATIC`/`ARG_SHARED` as set by `cmake_parse_arguments` contain `TRUE`/`FALSE` instead of the keywords themselves. I could imagine a utility function akin to `pythonize_bool` that does this. This simplification adds two more changes: 1. Object libraries are not explicitly requested anymore. `llvm_add_library` itself should determine whether an object library is necessary. As the comment notes, using an object library is not without problems and seem of no use here since it works fine without object library when in `XCODE`/`MSVC_IDE` mode. 2. The property `CLANG_STATIC_LIBS` was removed. It was `FLANG_STATIC_LIBS` before to copy&paste error of #93519 [^3] which not used anywhere. In clang, `CLANG_STATIC_LIBS` is used for `clang-shlib` to include all component libraries in a single large library. There is no equivalent `flang-shlib`. [^1]: dbc2a12c7311ff4cc2cd7887d128b506bd35b579 [^2]: 3d2e05d542e646891745c5278a09950d3c4fb4a5 [^3]: #93519 [^4]: https://github.com/llvm/llvm-project/pull/93519#issuecomment-2192359002
2024-07-12 16:11:55 +02:00
# Let llvm_add_library decide, taking BUILD_SHARED_LIBS into account.
set(LIBTYPE)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
endif()
llvm_add_library(${name} ${LIBTYPE} ${ARG_UNPARSED_ARGUMENTS} ${srcs})
clang_target_link_libraries(${name} PRIVATE ${ARG_CLANG_LIBS})
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
if (TARGET ${name})
if (NOT LLVM_INSTALL_TOOLCHAIN_ONLY OR ${name} STREQUAL "libflang"
OR ARG_INSTALL_WITH_TOOLCHAIN)
get_target_export_arg(${name} Flang export_to_flangtargets UMBRELLA flang-libraries)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
install(TARGETS ${name}
COMPONENT ${name}
${export_to_flangtargets}
LIBRARY DESTINATION lib${LLVM_LIBDIR_SUFFIX}
ARCHIVE DESTINATION lib${LLVM_LIBDIR_SUFFIX}
RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}")
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
if (NOT LLVM_ENABLE_IDE)
add_llvm_install_targets(install-${name}
DEPENDS ${name}
COMPONENT ${name})
endif()
set_property(GLOBAL APPEND PROPERTY FLANG_LIBS ${name})
endif()
set_property(GLOBAL APPEND PROPERTY FLANG_EXPORTS ${name})
else()
# Add empty "phony" target
add_custom_target(${name})
endif()
set_target_properties(${name} PROPERTIES FOLDER "Flang/Libraries")
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
set_flang_windows_version_resource_properties(${name})
endfunction(add_flang_library)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
macro(add_flang_executable name)
add_llvm_executable(${name} ${ARGN})
set_flang_windows_version_resource_properties(${name})
endmacro(add_flang_executable)
macro(add_flang_tool name)
if (NOT FLANG_BUILD_TOOLS)
set(EXCLUDE_FROM_ALL ON)
endif()
add_flang_executable(${name} ${ARGN})
if (FLANG_BUILD_TOOLS)
get_target_export_arg(${name} Flang export_to_flangtargets)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
install(TARGETS ${name}
${export_to_flangtargets}
RUNTIME DESTINATION "${CMAKE_INSTALL_BINDIR}"
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
COMPONENT ${name})
if(NOT LLVM_ENABLE_IDE)
add_llvm_install_targets(install-${name}
DEPENDS ${name}
COMPONENT ${name})
endif()
set_property(GLOBAL APPEND PROPERTY FLANG_EXPORTS ${name})
endif()
endmacro()
macro(add_flang_symlink name dest)
[cmake] Don't export `LLVM_TOOLS_INSTALL_DIR` anymore First of all, `LLVM_TOOLS_INSTALL_DIR` put there breaks our NixOS builds, because `LLVM_TOOLS_INSTALL_DIR` defined the same as `CMAKE_INSTALL_BINDIR` becomes an *absolute* path, and then when downstream projects try to install there too this breaks because our builds always install to fresh directories for isolation's sake. Second of all, note that `LLVM_TOOLS_INSTALL_DIR` stands out against the other specially crafted `LLVM_CONFIG_*` variables substituted in `llvm/cmake/modules/LLVMConfig.cmake.in`. @beanz added it in d0e1c2a550ef348aae036d0fe78cab6f038c420c to fix a dangling reference in `AddLLVM`, but I am suspicious of how this variable doesn't follow the pattern. Those other ones are carefully made to be build-time vs install-time variables depending on which `LLVMConfig.cmake` is being generated, are carefully made relative as appropriate, etc. etc. For my NixOS use-case they are also fine because they are never used as downstream install variables, only for reading not writing. To avoid the problems I face, and restore symmetry, I deleted the exported and arranged to have many `${project}_TOOLS_INSTALL_DIR`s. `AddLLVM` now instead expects each project to define its own, and they do so based on `CMAKE_INSTALL_BINDIR`. `LLVMConfig` still exports `LLVM_TOOLS_BINARY_DIR` which is the location for the tools defined in the usual way, matching the other remaining exported variables. For the `AddLLVM` changes, I tried to copy the existing pattern of internal vs non-internal or for LLVM vs for downstream function/macro names, but it would good to confirm I did that correctly. Reviewed By: nikic Differential Revision: https://reviews.llvm.org/D117977
2022-06-11 06:11:59 +00:00
llvm_add_tool_symlink(FLANG ${name} ${dest} ALWAYS_GENERATE)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
# Always generate install targets
[cmake] Don't export `LLVM_TOOLS_INSTALL_DIR` anymore First of all, `LLVM_TOOLS_INSTALL_DIR` put there breaks our NixOS builds, because `LLVM_TOOLS_INSTALL_DIR` defined the same as `CMAKE_INSTALL_BINDIR` becomes an *absolute* path, and then when downstream projects try to install there too this breaks because our builds always install to fresh directories for isolation's sake. Second of all, note that `LLVM_TOOLS_INSTALL_DIR` stands out against the other specially crafted `LLVM_CONFIG_*` variables substituted in `llvm/cmake/modules/LLVMConfig.cmake.in`. @beanz added it in d0e1c2a550ef348aae036d0fe78cab6f038c420c to fix a dangling reference in `AddLLVM`, but I am suspicious of how this variable doesn't follow the pattern. Those other ones are carefully made to be build-time vs install-time variables depending on which `LLVMConfig.cmake` is being generated, are carefully made relative as appropriate, etc. etc. For my NixOS use-case they are also fine because they are never used as downstream install variables, only for reading not writing. To avoid the problems I face, and restore symmetry, I deleted the exported and arranged to have many `${project}_TOOLS_INSTALL_DIR`s. `AddLLVM` now instead expects each project to define its own, and they do so based on `CMAKE_INSTALL_BINDIR`. `LLVMConfig` still exports `LLVM_TOOLS_BINARY_DIR` which is the location for the tools defined in the usual way, matching the other remaining exported variables. For the `AddLLVM` changes, I tried to copy the existing pattern of internal vs non-internal or for LLVM vs for downstream function/macro names, but it would good to confirm I did that correctly. Reviewed By: nikic Differential Revision: https://reviews.llvm.org/D117977
2022-06-11 06:11:59 +00:00
llvm_install_symlink(FLANG ${name} ${dest} ALWAYS_GENERATE)
[flang] A rework of the cmake build components for in and out of tree builds. In general all the basic functionality seems to work and removes some redundancy and more complicated features in favor of borrowing infrastructure from LLVM build configurations. Here's a quick summary of details and remaining issues: * Testing has spanned Ubuntu 18.04 & 19.10, CentOS 7, RHEL 8, and MacOS/darwin. Architectures include x86_64 and Arm. Without access to Window nothing has been tested there yet. * As we change file and directory naming schemes (i.e., capitalization) some odd things can occur on MacOS systems with case preserving but not case senstive file system configurations. Can be painful and certainly something to watch out for as any any such changes continue. * Testing infrastructure still needs to be tuned up and worked on. Note that there do appear to be cases of some tests hanging (on MacOS in particular). They appear unrelated to the build process. * Shared library configurations need testing (and probably fixing). * Tested both standalone and 'in-mono repo' builds. Changes for supporting the mono repo builds will require LLVM-level changes that are straightforward when the time comes. * The configuration contains a work-around for LLVM's C++ standard mode passing down into Flang/F18 builds (i.e., LLVM CMake configuration would force a -std=c++11 flag to show up in command line arguments. The current configuration removes that automatically and is more strict in following new CMake guidelines for enforcing C++17 mode across all the CMake files. * Cleaned up a lot of repetition in the command line arguments. It is likely that more work is still needed to both allow for customization and working around CMake defailts (or those inherited from LLVM's configuration files). On some platforms agressive optimization flags (e.g. -O3) can actually break builds due to the inlining of templates in .cpp source files that then no longer are available for use cases outside those source files (shows up as link errors). Sticking at -O2 appears to fix this. Currently this CMake configuration forces this in release mode but at the cost of stomping on any CMake, or user customized, settings for the release flags. * Made the lit tests non-source directory dependent where appropriate. This is done by configuring certain test shell files to refer to the correct paths whether an in or out of tree build is being performed. These configured files are output in the build directory. A %B substitution is introduced in lit to refer to the build directory, mirroring the %S substitution for the source directory, so that the tests can refer to the configured shell scripts. Co-authored-by: David Truby <david.truby@arm.com> Original-commit: flang-compiler/f18@d1c7184159b2d3c542a8f36c58a0c817e7506845 Reviewed-on: https://github.com/flang-compiler/f18/pull/1045
2020-02-25 16:22:14 -07:00
endmacro()