Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2542 lines
96 KiB
C++
Raw Normal View History

//===- Ops.cpp - Standard MLIR Operations ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
// Pull in all enum type definitions and utility function declarations.
#include "mlir/Dialect/StandardOps/IR/OpsEnums.cpp.inc"
using namespace mlir;
//===----------------------------------------------------------------------===//
// StandardOpsDialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for handling inlining with standard
/// operations.
struct StdInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks
//===--------------------------------------------------------------------===//
/// All operations within standard ops can be inlined.
bool isLegalToInline(Operation *, Region *,
BlockAndValueMapping &) const final {
return true;
}
//===--------------------------------------------------------------------===//
// Transformation Hooks
//===--------------------------------------------------------------------===//
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op, Block *newDest) const final {
// Only "std.return" needs to be handled here.
auto returnOp = dyn_cast<ReturnOp>(op);
if (!returnOp)
return;
// Replace the return with a branch to the dest.
OpBuilder builder(op);
builder.create<BranchOp>(op->getLoc(), newDest, returnOp.getOperands());
op->erase();
}
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
// Only "std.return" needs to be handled here.
auto returnOp = cast<ReturnOp>(op);
// Replace the values directly with the return operands.
assert(returnOp.getNumOperands() == valuesToRepl.size());
for (const auto &it : llvm::enumerate(returnOp.getOperands()))
valuesToRepl[it.index()].replaceAllUsesWith(it.value());
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// StandardOpsDialect
//===----------------------------------------------------------------------===//
/// A custom unary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardUnaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 1 && "unary op should have one operand");
assert(op->getNumResults() == 1 && "unary op should have one result");
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getOperand(0).getType();
}
/// A custom binary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardBinaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 2 && "binary op should have two operands");
assert(op->getNumResults() == 1 && "binary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0).getType();
if (op->getOperand(0).getType() != resultType ||
op->getOperand(1).getType() != resultType) {
p.printGenericOp(op);
return;
}
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << ", " << op->getOperand(1);
p.printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
p << " : " << op->getResult(0).getType();
}
/// A custom cast operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardCastOp(Operation *op, OpAsmPrinter &p) {
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << " : " << op->getOperand(0).getType() << " to "
<< op->getResult(0).getType();
}
/// A custom cast operation verifier.
template <typename T>
static LogicalResult verifyCastOp(T op) {
auto opType = op.getOperand().getType();
auto resType = op.getType();
if (!T::areCastCompatible(opType, resType))
return op.emitError("operand type ") << opType << " and result type "
<< resType << " are cast incompatible";
return success();
}
StandardOpsDialect::StandardOpsDialect(MLIRContext *context)
: Dialect(getDialectNamespace(), context) {
addOperations<DmaStartOp, DmaWaitOp,
#define GET_OP_LIST
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"
>();
addInterfaces<StdInlinerInterface>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *StandardOpsDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<ConstantOp>(loc, type, value);
}
void mlir::printDimAndSymbolList(Operation::operand_iterator begin,
Operation::operand_iterator end,
unsigned numDims, OpAsmPrinter &p) {
Operation::operand_range operands(begin, end);
p << '(' << operands.take_front(numDims) << ')';
if (operands.size() != numDims)
p << '[' << operands.drop_front(numDims) << ']';
}
// Parses dimension and symbol list, and sets 'numDims' to the number of
// dimension operands parsed.
// Returns 'false' on success and 'true' on error.
ParseResult mlir::parseDimAndSymbolList(OpAsmParser &parser,
SmallVectorImpl<Value> &operands,
unsigned &numDims) {
SmallVector<OpAsmParser::OperandType, 8> opInfos;
if (parser.parseOperandList(opInfos, OpAsmParser::Delimiter::Paren))
return failure();
// Store number of dimensions for validation by caller.
numDims = opInfos.size();
// Parse the optional symbol operands.
auto indexTy = parser.getBuilder().getIndexType();
if (parser.parseOperandList(opInfos,
OpAsmParser::Delimiter::OptionalSquare) ||
parser.resolveOperands(opInfos, indexTy, operands))
return failure();
return success();
}
/// Matches a ConstantIndexOp.
/// TODO: This should probably just be a general matcher that uses m_Constant
/// and checks the operation for an index type.
static detail::op_matcher<ConstantIndexOp> m_ConstantIndex() {
return detail::op_matcher<ConstantIndexOp>();
}
//===----------------------------------------------------------------------===//
// Common canonicalization pattern support logic
//===----------------------------------------------------------------------===//
/// This is a common class used for patterns of the form
/// "someop(memrefcast) -> someop". It folds the source of any memref_cast
/// into the root operation directly.
static LogicalResult foldMemRefCast(Operation *op) {
bool folded = false;
for (OpOperand &operand : op->getOpOperands()) {
auto cast = dyn_cast_or_null<MemRefCastOp>(operand.get().getDefiningOp());
if (cast && !cast.getOperand().getType().isa<UnrankedMemRefType>()) {
operand.set(cast.getOperand());
folded = true;
}
}
return success(folded);
}
//===----------------------------------------------------------------------===//
// AddFOp
//===----------------------------------------------------------------------===//
OpFoldResult AddFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AddIOp
//===----------------------------------------------------------------------===//
OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) {
/// addi(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AllocOp / AllocaOp
//===----------------------------------------------------------------------===//
template <typename AllocLikeOp>
static void printAllocLikeOp(OpAsmPrinter &p, AllocLikeOp op, StringRef name) {
static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value,
"applies to only alloc or alloca");
p << name;
// Print dynamic dimension operands.
MemRefType type = op.getType();
printDimAndSymbolList(op.operand_begin(), op.operand_end(),
type.getNumDynamicDims(), p);
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"map"});
p << " : " << type;
}
static void print(OpAsmPrinter &p, AllocOp op) {
printAllocLikeOp(p, op, "alloc");
}
static void print(OpAsmPrinter &p, AllocaOp op) {
printAllocLikeOp(p, op, "alloca");
}
static ParseResult parseAllocLikeOp(OpAsmParser &parser,
OperationState &result) {
MemRefType type;
// Parse the dimension operands and optional symbol operands, followed by a
// memref type.
unsigned numDimOperands;
if (parseDimAndSymbolList(parser, result.operands, numDimOperands) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type))
return failure();
// Check numDynamicDims against number of question marks in memref type.
// Note: this check remains here (instead of in verify()), because the
// partition between dim operands and symbol operands is lost after parsing.
// Verification still checks that the total number of operands matches
// the number of symbols in the affine map, plus the number of dynamic
// dimensions in the memref.
if (numDimOperands != type.getNumDynamicDims())
return parser.emitError(parser.getNameLoc())
<< "dimension operand count does not equal memref dynamic dimension "
"count";
result.types.push_back(type);
return success();
}
template <typename AllocLikeOp>
static LogicalResult verify(AllocLikeOp op) {
static_assert(std::is_same<AllocLikeOp, AllocOp>::value ||
std::is_same<AllocLikeOp, AllocaOp>::value,
"applies to only alloc or alloca");
auto memRefType = op.getResult().getType().template dyn_cast<MemRefType>();
if (!memRefType)
return op.emitOpError("result must be a memref");
unsigned numSymbols = 0;
if (!memRefType.getAffineMaps().empty()) {
// Store number of symbols used in affine map (used in subsequent check).
AffineMap affineMap = memRefType.getAffineMaps()[0];
numSymbols = affineMap.getNumSymbols();
}
// Check that the total number of operands matches the number of symbols in
// the affine map, plus the number of dynamic dimensions specified in the
// memref type.
unsigned numDynamicDims = memRefType.getNumDynamicDims();
if (op.getNumOperands() != numDynamicDims + numSymbols)
return op.emitOpError(
"operand count does not equal dimension plus symbol operand count");
// Verify that all operands are of type Index.
for (auto operandType : op.getOperandTypes())
if (!operandType.isIndex())
return op.emitOpError("requires operands to be of type Index");
return success();
}
namespace {
/// Fold constant dimensions into an alloc like operation.
template <typename AllocLikeOp>
struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> {
using OpRewritePattern<AllocLikeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AllocLikeOp alloc,
PatternRewriter &rewriter) const override {
// Check to see if any dimensions operands are constants. If so, we can
// substitute and drop them.
if (llvm::none_of(alloc.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return failure();
auto memrefType = alloc.getType();
// Ok, we have one or more constant operands. Collect the non-constant ones
// and keep track of the resultant memref type to build.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
SmallVector<Value, 4> newOperands;
unsigned dynamicDimPos = 0;
for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (dimSize != -1) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = alloc.getOperand(dynamicDimPos).getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(-1);
newOperands.push_back(alloc.getOperand(dynamicDimPos));
}
dynamicDimPos++;
}
// Create new memref type (which will have fewer dynamic dimensions).
MemRefType newMemRefType =
MemRefType::Builder(memrefType).setShape(newShapeConstants);
assert(static_cast<int64_t>(newOperands.size()) ==
newMemRefType.getNumDynamicDims());
// Create and insert the alloc op for the new memref.
auto newAlloc = rewriter.create<AllocLikeOp>(alloc.getLoc(), newMemRefType,
newOperands, IntegerAttr());
// Insert a cast so we have the same type as the old alloc.
auto resultCast = rewriter.create<MemRefCastOp>(alloc.getLoc(), newAlloc,
alloc.getType());
rewriter.replaceOp(alloc, {resultCast});
return success();
}
};
/// Fold alloc operations with no uses. Alloc has side effects on the heap,
/// but can still be deleted if it has zero uses.
struct SimplifyDeadAlloc : public OpRewritePattern<AllocOp> {
using OpRewritePattern<AllocOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AllocOp alloc,
PatternRewriter &rewriter) const override {
if (alloc.use_empty()) {
rewriter.eraseOp(alloc);
return success();
}
return failure();
}
};
} // end anonymous namespace.
void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc>(context);
}
void AllocaOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyAllocConst<AllocaOp>>(context);
}
//===----------------------------------------------------------------------===//
// AndOp
//===----------------------------------------------------------------------===//
OpFoldResult AndOp::fold(ArrayRef<Attribute> operands) {
/// and(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// and(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a & b; });
}
//===----------------------------------------------------------------------===//
// AssumeAlignmentOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AssumeAlignmentOp op) {
unsigned alignment = op.alignment().getZExtValue();
if (!llvm::isPowerOf2_32(alignment))
return op.emitOpError("alignment must be power of 2");
return success();
}
//===----------------------------------------------------------------------===//
// AtomicRMWOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AtomicRMWOp op) {
if (op.getMemRefType().getRank() != op.getNumOperands() - 2)
return op.emitOpError(
"expects the number of subscripts to be equal to memref rank");
switch (op.kind()) {
case AtomicRMWKind::addf:
case AtomicRMWKind::maxf:
case AtomicRMWKind::minf:
case AtomicRMWKind::mulf:
if (!op.value().getType().isa<FloatType>())
return op.emitOpError()
<< "with kind '" << stringifyAtomicRMWKind(op.kind())
<< "' expects a floating-point type";
break;
case AtomicRMWKind::addi:
case AtomicRMWKind::maxs:
case AtomicRMWKind::maxu:
case AtomicRMWKind::mins:
case AtomicRMWKind::minu:
case AtomicRMWKind::muli:
if (!op.value().getType().isa<IntegerType>())
return op.emitOpError()
<< "with kind '" << stringifyAtomicRMWKind(op.kind())
<< "' expects an integer type";
break;
default:
break;
}
return success();
}
//===----------------------------------------------------------------------===//
// BranchOp
//===----------------------------------------------------------------------===//
namespace {
/// Simplify a branch to a block that has a single predecessor. This effectively
/// merges the two blocks.
struct SimplifyBrToBlockWithSinglePred : public OpRewritePattern<BranchOp> {
using OpRewritePattern<BranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(BranchOp op,
PatternRewriter &rewriter) const override {
// Check that the successor block has a single predecessor.
Block *succ = op.getDest();
Block *opParent = op.getOperation()->getBlock();
if (succ == opParent || !has_single_element(succ->getPredecessors()))
return failure();
// Merge the successor into the current block and erase the branch.
rewriter.mergeBlocks(succ, opParent, op.getOperands());
rewriter.eraseOp(op);
return success();
}
};
} // end anonymous namespace.
Block *BranchOp::getDest() { return getSuccessor(); }
void BranchOp::setDest(Block *block) { return setSuccessor(block); }
void BranchOp::eraseOperand(unsigned index) {
getOperation()->eraseOperand(index);
}
void BranchOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyBrToBlockWithSinglePred>(context);
}
Optional<OperandRange> BranchOp::getSuccessorOperands(unsigned index) {
assert(index == 0 && "invalid successor index");
return getOperands();
}
bool BranchOp::canEraseSuccessorOperand() { return true; }
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(CallOp op) {
// Check that the callee attribute was specified.
auto fnAttr = op.getAttrOfType<FlatSymbolRefAttr>("callee");
if (!fnAttr)
return op.emitOpError("requires a 'callee' symbol reference attribute");
auto fn =
op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
if (!fn)
return op.emitOpError() << "'" << fnAttr.getValue()
<< "' does not reference a valid function";
// Verify that the operand and result types match the callee.
auto fnType = fn.getType();
if (fnType.getNumInputs() != op.getNumOperands())
return op.emitOpError("incorrect number of operands for callee");
for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
if (op.getOperand(i).getType() != fnType.getInput(i))
return op.emitOpError("operand type mismatch");
if (fnType.getNumResults() != op.getNumResults())
return op.emitOpError("incorrect number of results for callee");
for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
if (op.getResult(i).getType() != fnType.getResult(i))
return op.emitOpError("result type mismatch");
return success();
}
FunctionType CallOp::getCalleeType() {
SmallVector<Type, 8> argTypes(getOperandTypes());
return FunctionType::get(argTypes, getResultTypes(), getContext());
}
//===----------------------------------------------------------------------===//
// CallIndirectOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold indirect calls that have a constant function as the callee operand.
struct SimplifyIndirectCallWithKnownCallee
: public OpRewritePattern<CallIndirectOp> {
using OpRewritePattern<CallIndirectOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CallIndirectOp indirectCall,
PatternRewriter &rewriter) const override {
// Check that the callee is a constant callee.
SymbolRefAttr calledFn;
if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn)))
return failure();
// Replace with a direct call.
rewriter.replaceOpWithNewOp<CallOp>(indirectCall, calledFn,
indirectCall.getResultTypes(),
indirectCall.getArgOperands());
return success();
}
};
} // end anonymous namespace.
void CallIndirectOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<SimplifyIndirectCallWithKnownCallee>(context);
}
//===----------------------------------------------------------------------===//
// General helpers for comparison ops
//===----------------------------------------------------------------------===//
// Return the type of the same shape (scalar, vector or tensor) containing i1.
static Type getCheckedI1SameShape(Type type) {
auto i1Type = IntegerType::get(1, type.getContext());
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-10 14:48:24 -05:00
if (type.isSignlessIntOrIndexOrFloat())
return i1Type;
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return RankedTensorType::get(tensorType.getShape(), i1Type);
if (type.isa<UnrankedTensorType>())
return UnrankedTensorType::get(i1Type);
if (auto vectorType = type.dyn_cast<VectorType>())
return VectorType::get(vectorType.getShape(), i1Type);
return Type();
}
static Type getI1SameShape(Type type) {
Type res = getCheckedI1SameShape(type);
assert(res && "expected type with valid i1 shape");
return res;
}
//===----------------------------------------------------------------------===//
// CmpIOp
//===----------------------------------------------------------------------===//
static void buildCmpIOp(Builder *build, OperationState &result,
CmpIPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(
CmpIOp::getPredicateAttrName(),
build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
// comparison predicates.
static bool applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs,
const APInt &rhs) {
switch (predicate) {
case CmpIPredicate::eq:
return lhs.eq(rhs);
case CmpIPredicate::ne:
return lhs.ne(rhs);
case CmpIPredicate::slt:
return lhs.slt(rhs);
case CmpIPredicate::sle:
return lhs.sle(rhs);
case CmpIPredicate::sgt:
return lhs.sgt(rhs);
case CmpIPredicate::sge:
return lhs.sge(rhs);
case CmpIPredicate::ult:
return lhs.ult(rhs);
case CmpIPredicate::ule:
return lhs.ule(rhs);
case CmpIPredicate::ugt:
return lhs.ugt(rhs);
case CmpIPredicate::uge:
return lhs.uge(rhs);
}
llvm_unreachable("unknown comparison predicate");
}
// Constant folding hook for comparisons.
OpFoldResult CmpIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpi takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CmpFOp
//===----------------------------------------------------------------------===//
static void buildCmpFOp(Builder *build, OperationState &result,
CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(
CmpFOp::getPredicateAttrName(),
build->getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
/// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point
/// comparison predicates.
static bool applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs,
const APFloat &rhs) {
auto cmpResult = lhs.compare(rhs);
switch (predicate) {
case CmpFPredicate::AlwaysFalse:
return false;
case CmpFPredicate::OEQ:
return cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OGT:
return cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::OGE:
return cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OLT:
return cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::OLE:
return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ONE:
return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual;
case CmpFPredicate::ORD:
return cmpResult != APFloat::cmpUnordered;
case CmpFPredicate::UEQ:
return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UGT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::UGE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ULT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::ULE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UNE:
return cmpResult != APFloat::cmpEqual;
case CmpFPredicate::UNO:
return cmpResult == APFloat::cmpUnordered;
case CmpFPredicate::AlwaysTrue:
return true;
}
llvm_unreachable("unknown comparison predicate");
}
// Constant folding hook for comparisons.
OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpf takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
// TODO(gcmn) We could actually do some intelligent things if we know only one
// of the operands, but it's inf or nan.
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(1, getContext()), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CondBranchOp
//===----------------------------------------------------------------------===//
namespace {
/// cond_br true, ^bb1, ^bb2 -> br ^bb1
/// cond_br false, ^bb1, ^bb2 -> br ^bb2
///
struct SimplifyConstCondBranchPred : public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
if (matchPattern(condbr.getCondition(), m_NonZero())) {
// True branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getTrueDest(),
condbr.getTrueOperands());
return success();
} else if (matchPattern(condbr.getCondition(), m_Zero())) {
// False branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getFalseDest(),
condbr.getFalseOperands());
return success();
}
return failure();
}
};
} // end anonymous namespace.
void CondBranchOp::getCanonicalizationPatterns(
OwningRewritePatternList &results, MLIRContext *context) {
results.insert<SimplifyConstCondBranchPred>(context);
}
Optional<OperandRange> CondBranchOp::getSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return index == trueIndex ? getTrueOperands() : getFalseOperands();
}
bool CondBranchOp::canEraseSuccessorOperand() { return true; }
//===----------------------------------------------------------------------===//
// Constant*Op
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ConstantOp &op) {
p << "constant ";
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"value"});
if (op.getAttrs().size() > 1)
p << ' ';
p << op.getValue();
// If the value is a symbol reference, print a trailing type.
if (op.getValue().isa<SymbolRefAttr>())
p << " : " << op.getType();
}
static ParseResult parseConstantOp(OpAsmParser &parser,
OperationState &result) {
Attribute valueAttr;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseAttribute(valueAttr, "value", result.attributes))
return failure();
// If the attribute is a symbol reference, then we expect a trailing type.
Type type;
if (!valueAttr.isa<SymbolRefAttr>())
type = valueAttr.getType();
else if (parser.parseColonType(type))
return failure();
// Add the attribute type to the list.
return parser.addTypeToList(type, result.types);
}
/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
static LogicalResult verify(ConstantOp &op) {
auto value = op.getValue();
if (!value)
return op.emitOpError("requires a 'value' attribute");
auto type = op.getType();
if (!value.getType().isa<NoneType>() && type != value.getType())
return op.emitOpError() << "requires attribute's type (" << value.getType()
<< ") to match op's return type (" << type << ")";
if (type.isa<IndexType>() || value.isa<BoolAttr>())
return success();
if (auto intAttr = value.dyn_cast<IntegerAttr>()) {
// If the type has a known bitwidth we verify that the value can be
// represented with the given bitwidth.
auto bitwidth = type.cast<IntegerType>().getWidth();
auto intVal = intAttr.getValue();
if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
return op.emitOpError("requires 'value' to be an integer within the "
"range of the integer result type");
return success();
}
if (type.isa<FloatType>()) {
if (!value.isa<FloatAttr>())
return op.emitOpError("requires 'value' to be a floating point constant");
return success();
}
if (type.isa<ShapedType>()) {
if (!value.isa<ElementsAttr>())
return op.emitOpError("requires 'value' to be a shaped constant");
return success();
}
if (type.isa<FunctionType>()) {
auto fnAttr = value.dyn_cast<FlatSymbolRefAttr>();
if (!fnAttr)
return op.emitOpError("requires 'value' to be a function reference");
// Try to find the referenced function.
auto fn =
op.getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
if (!fn)
return op.emitOpError("reference to undefined function 'bar'");
// Check that the referenced function has the correct type.
if (fn.getType() != type)
return op.emitOpError("reference to function with mismatched type");
return success();
}
if (type.isa<NoneType>() && value.isa<UnitAttr>())
return success();
return op.emitOpError("unsupported 'value' attribute: ") << value;
}
OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) {
assert(operands.empty() && "constant has no operands");
return getValue();
}
void ConstantOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
Type type = getType();
if (auto intCst = getValue().dyn_cast<IntegerAttr>()) {
IntegerType intTy = type.dyn_cast<IntegerType>();
// Sugar i1 constants with 'true' and 'false'.
if (intTy && intTy.getWidth() == 1)
return setNameFn(getResult(), (intCst.getInt() ? "true" : "false"));
// Otherwise, build a complex name with the value and type.
SmallString<32> specialNameBuffer;
llvm::raw_svector_ostream specialName(specialNameBuffer);
specialName << 'c' << intCst.getInt();
if (intTy)
specialName << '_' << type;
setNameFn(getResult(), specialName.str());
} else if (type.isa<FunctionType>()) {
setNameFn(getResult(), "f");
} else {
setNameFn(getResult(), "cst");
}
}
/// Returns true if a constant operation can be built with the given value and
/// result type.
bool ConstantOp::isBuildableWith(Attribute value, Type type) {
// SymbolRefAttr can only be used with a function type.
if (value.isa<SymbolRefAttr>())
return type.isa<FunctionType>();
// Otherwise, the attribute must have the same type as 'type'.
if (value.getType() != type)
return false;
// Finally, check that the attribute kind is handled.
return value.isa<BoolAttr>() || value.isa<IntegerAttr>() ||
value.isa<FloatAttr>() || value.isa<ElementsAttr>() ||
value.isa<UnitAttr>();
}
void ConstantFloatOp::build(Builder *builder, OperationState &result,
const APFloat &value, FloatType type) {
ConstantOp::build(builder, result, type, builder->getFloatAttr(type, value));
}
bool ConstantFloatOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isa<FloatType>();
}
/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::classof(Operation *op) {
return ConstantOp::classof(op) &&
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-10 14:48:24 -05:00
op->getResult(0).getType().isSignlessInteger();
}
void ConstantIntOp::build(Builder *builder, OperationState &result,
int64_t value, unsigned width) {
Type type = builder->getIntegerType(width);
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// Build a constant int op producing an integer with the specified type,
/// which must be an integer type.
void ConstantIntOp::build(Builder *builder, OperationState &result,
int64_t value, Type type) {
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-10 14:48:24 -05:00
assert(type.isSignlessInteger() &&
"ConstantIntOp can only have signless integer type");
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
/// ConstantIndexOp only matches values whose result type is Index.
bool ConstantIndexOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isIndex();
}
void ConstantIndexOp::build(Builder *builder, OperationState &result,
int64_t value) {
Type type = builder->getIndexType();
ConstantOp::build(builder, result, type,
builder->getIntegerAttr(type, value));
}
//===----------------------------------------------------------------------===//
// DeallocOp
//===----------------------------------------------------------------------===//
namespace {
/// Fold Dealloc operations that are deallocating an AllocOp that is only used
/// by other Dealloc operations.
struct SimplifyDeadDealloc : public OpRewritePattern<DeallocOp> {
using OpRewritePattern<DeallocOp>::OpRewritePattern;
LogicalResult matchAndRewrite(DeallocOp dealloc,
PatternRewriter &rewriter) const override {
// Check that the memref operand's defining operation is an AllocOp.
Value memref = dealloc.memref();
if (!isa_and_nonnull<AllocOp>(memref.getDefiningOp()))
return failure();
// Check that all of the uses of the AllocOp are other DeallocOps.
for (auto *user : memref.getUsers())
if (!isa<DeallocOp>(user))
return failure();
// Erase the dealloc operation.
rewriter.eraseOp(dealloc);
return success();
}
};
} // end anonymous namespace.
static LogicalResult verify(DeallocOp op) {
if (!op.memref().getType().isa<MemRefType>())
return op.emitOpError("operand must be a memref");
return success();
}
void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SimplifyDeadDealloc>(context);
}
LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dealloc(memrefcast) -> dealloc
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// DimOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, DimOp op) {
p << "dim " << op.getOperand() << ", " << op.getIndex();
p.printOptionalAttrDict(op.getAttrs(), /*elidedAttrs=*/{"index"});
p << " : " << op.getOperand().getType();
}
static ParseResult parseDimOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType operandInfo;
IntegerAttr indexAttr;
Type type;
Type indexType = parser.getBuilder().getIndexType();
return failure(
parser.parseOperand(operandInfo) || parser.parseComma() ||
parser.parseAttribute(indexAttr, indexType, "index", result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(operandInfo, type, result.operands) ||
parser.addTypeToList(indexType, result.types));
}
static LogicalResult verify(DimOp op) {
// Check that we have an integer index operand.
auto indexAttr = op.getAttrOfType<IntegerAttr>("index");
if (!indexAttr)
return op.emitOpError("requires an integer attribute named 'index'");
int64_t index = indexAttr.getValue().getSExtValue();
auto type = op.getOperand().getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
if (index >= tensorType.getRank())
return op.emitOpError("index is out of range");
} else if (auto memrefType = type.dyn_cast<MemRefType>()) {
if (index >= memrefType.getRank())
return op.emitOpError("index is out of range");
} else if (type.isa<UnrankedTensorType>()) {
// ok, assumed to be in-range.
} else {
return op.emitOpError("requires an operand with tensor or memref type");
}
return success();
}
OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
// Constant fold dim when the size along the index referred to is a constant.
auto opType = memrefOrTensor().getType();
int64_t dimSize = ShapedType::kDynamicSize;
if (auto tensorType = opType.dyn_cast<RankedTensorType>())
dimSize = tensorType.getShape()[getIndex()];
else if (auto memrefType = opType.dyn_cast<MemRefType>())
dimSize = memrefType.getShape()[getIndex()];
if (!ShapedType::isDynamic(dimSize))
return IntegerAttr::get(IndexType::get(getContext()), dimSize);
// Fold dim to the size argument for an AllocOp/ViewOp/SubViewOp.
auto memrefType = opType.dyn_cast<MemRefType>();
if (!memrefType)
return {};
// The size at getIndex() is now a dynamic size of a memref.
auto memref = memrefOrTensor().getDefiningOp();
if (auto alloc = dyn_cast_or_null<AllocOp>(memref))
return *(alloc.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(getIndex()));
if (auto view = dyn_cast_or_null<ViewOp>(memref))
return *(view.getDynamicSizes().begin() +
memrefType.getDynamicDimIndex(getIndex()));
// The subview op here is expected to have rank dynamic sizes now.
if (auto subview = dyn_cast_or_null<SubViewOp>(memref)) {
auto sizes = subview.sizes();
if (!sizes.empty())
return *(sizes.begin() + getIndex());
}
/// dim(memrefcast) -> dim
if (succeeded(foldMemRefCast(*this)))
return getResult();
return {};
}
// ---------------------------------------------------------------------------
// DmaStartOp
// ---------------------------------------------------------------------------
void DmaStartOp::build(Builder *builder, OperationState &result,
Value srcMemRef, ValueRange srcIndices, Value destMemRef,
ValueRange destIndices, Value numElements,
Value tagMemRef, ValueRange tagIndices, Value stride,
Value elementsPerStride) {
result.addOperands(srcMemRef);
result.addOperands(srcIndices);
result.addOperands(destMemRef);
result.addOperands(destIndices);
result.addOperands({numElements, tagMemRef});
result.addOperands(tagIndices);
if (stride)
result.addOperands({stride, elementsPerStride});
}
void DmaStartOp::print(OpAsmPrinter &p) {
p << "dma_start " << getSrcMemRef() << '[' << getSrcIndices() << "], "
<< getDstMemRef() << '[' << getDstIndices() << "], " << getNumElements()
<< ", " << getTagMemRef() << '[' << getTagIndices() << ']';
if (isStrided())
p << ", " << getStride() << ", " << getNumElementsPerStride();
p.printOptionalAttrDict(getAttrs());
p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType()
<< ", " << getTagMemRef().getType();
}
// Parse DmaStartOp.
// Ex:
// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
// %tag[%index], %stride, %num_elt_per_stride :
// : memref<3076 x f32, 0>,
// memref<1024 x f32, 2>,
// memref<1 x i32>
//
ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
OpAsmParser::OperandType dstMemRefInfo;
SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
OpAsmParser::OperandType numElementsInfo;
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
SmallVector<OpAsmParser::OperandType, 2> strideInfo;
SmallVector<Type, 3> types;
auto indexType = parser.getBuilder().getIndexType();
// Parse and resolve the following list of operands:
// *) source memref followed by its indices (in square brackets).
// *) destination memref followed by its indices (in square brackets).
// *) dma size in KiB.
if (parser.parseOperand(srcMemRefInfo) ||
parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseComma() || parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square))
return failure();
// Parse optional stride and elements per stride.
if (parser.parseTrailingOperandList(strideInfo))
return failure();
bool isStrided = strideInfo.size() == 2;
if (!strideInfo.empty() && !isStrided) {
return parser.emitError(parser.getNameLoc(),
"expected two stride related operands");
}
if (parser.parseColonTypeList(types))
return failure();
if (types.size() != 3)
return parser.emitError(parser.getNameLoc(), "fewer/more types expected");
if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
parser.resolveOperands(srcIndexInfos, indexType, result.operands) ||
parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
parser.resolveOperands(dstIndexInfos, indexType, result.operands) ||
// size should be an index.
parser.resolveOperand(numElementsInfo, indexType, result.operands) ||
parser.resolveOperand(tagMemrefInfo, types[2], result.operands) ||
// tag indices should be index.
parser.resolveOperands(tagIndexInfos, indexType, result.operands))
return failure();
auto memrefType0 = types[0].dyn_cast<MemRefType>();
if (!memrefType0)
return parser.emitError(parser.getNameLoc(),
"expected source to be of memref type");
auto memrefType1 = types[1].dyn_cast<MemRefType>();
if (!memrefType1)
return parser.emitError(parser.getNameLoc(),
"expected destination to be of memref type");
auto memrefType2 = types[2].dyn_cast<MemRefType>();
if (!memrefType2)
return parser.emitError(parser.getNameLoc(),
"expected tag to be of memref type");
if (isStrided) {
if (parser.resolveOperands(strideInfo, indexType, result.operands))
return failure();
}
// Check that source/destination index list size matches associated rank.
if (static_cast<int64_t>(srcIndexInfos.size()) != memrefType0.getRank() ||
static_cast<int64_t>(dstIndexInfos.size()) != memrefType1.getRank())
return parser.emitError(parser.getNameLoc(),
"memref rank not equal to indices count");
if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType2.getRank())
return parser.emitError(parser.getNameLoc(),
"tag memref rank not equal to indices count");
return success();
}
LogicalResult DmaStartOp::verify() {
// DMAs from different memory spaces supported.
if (getSrcMemorySpace() == getDstMemorySpace())
return emitOpError("DMA should be between different memory spaces");
if (getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
getDstMemRefRank() + 3 + 1 &&
getNumOperands() != getTagMemRefRank() + getSrcMemRefRank() +
getDstMemRefRank() + 3 + 1 + 2) {
return emitOpError("incorrect number of operands");
}
return success();
}
LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_start(memrefcast) -> dma_start
return foldMemRefCast(*this);
}
// ---------------------------------------------------------------------------
// DmaWaitOp
// ---------------------------------------------------------------------------
void DmaWaitOp::build(Builder *builder, OperationState &result, Value tagMemRef,
ValueRange tagIndices, Value numElements) {
result.addOperands(tagMemRef);
result.addOperands(tagIndices);
result.addOperands(numElements);
}
void DmaWaitOp::print(OpAsmPrinter &p) {
p << "dma_wait " << getTagMemRef() << '[' << getTagIndices() << "], "
<< getNumElements();
p.printOptionalAttrDict(getAttrs());
p << " : " << getTagMemRef().getType();
}
// Parse DmaWaitOp.
// Eg:
// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
//
ParseResult DmaWaitOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType tagMemrefInfo;
SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
Type type;
auto indexType = parser.getBuilder().getIndexType();
OpAsmParser::OperandType numElementsInfo;
// Parse tag memref, its indices, and dma size.
if (parser.parseOperand(tagMemrefInfo) ||
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
parser.parseColonType(type) ||
parser.resolveOperand(tagMemrefInfo, type, result.operands) ||
parser.resolveOperands(tagIndexInfos, indexType, result.operands) ||
parser.resolveOperand(numElementsInfo, indexType, result.operands))
return failure();
auto memrefType = type.dyn_cast<MemRefType>();
if (!memrefType)
return parser.emitError(parser.getNameLoc(),
"expected tag to be of memref type");
if (static_cast<int64_t>(tagIndexInfos.size()) != memrefType.getRank())
return parser.emitError(parser.getNameLoc(),
"tag memref rank not equal to indices count");
return success();
}
LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// dma_wait(memrefcast) -> dma_wait
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// ExtractElementOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ExtractElementOp op) {
// Verify the # indices match if we have a ranked type.
auto aggregateType = op.getAggregate().getType().cast<ShapedType>();
if (aggregateType.hasRank() &&
aggregateType.getRank() != op.getNumOperands() - 1)
return op.emitOpError("incorrect number of indices for extract_element");
return success();
}
OpFoldResult ExtractElementOp::fold(ArrayRef<Attribute> operands) {
assert(!operands.empty() && "extract_element takes at least one operand");
// The aggregate operand must be a known constant.
Attribute aggregate = operands.front();
if (!aggregate)
return {};
// If this is a splat elements attribute, simply return the value. All of the
// elements of a splat attribute are the same.
if (auto splatAggregate = aggregate.dyn_cast<SplatElementsAttr>())
return splatAggregate.getSplatValue();
// Otherwise, collect the constant indices into the aggregate.
SmallVector<uint64_t, 8> indices;
for (Attribute indice : llvm::drop_begin(operands, 1)) {
if (!indice || !indice.isa<IntegerAttr>())
return {};
indices.push_back(indice.cast<IntegerAttr>().getInt());
}
// If this is an elements attribute, query the value at the given indices.
auto elementsAttr = aggregate.dyn_cast<ElementsAttr>();
if (elementsAttr && elementsAttr.isValidIndex(indices))
return elementsAttr.getValue(indices);
return {};
}
//===----------------------------------------------------------------------===//
// FPExtOp
//===----------------------------------------------------------------------===//
bool FPExtOp::areCastCompatible(Type a, Type b) {
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() < fb.getWidth();
if (auto va = a.dyn_cast<VectorType>())
if (auto vb = b.dyn_cast<VectorType>())
return va.getShape().equals(vb.getShape()) &&
areCastCompatible(va.getElementType(), vb.getElementType());
return false;
}
//===----------------------------------------------------------------------===//
// FPTruncOp
//===----------------------------------------------------------------------===//
bool FPTruncOp::areCastCompatible(Type a, Type b) {
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() > fb.getWidth();
if (auto va = a.dyn_cast<VectorType>())
if (auto vb = b.dyn_cast<VectorType>())
return va.getShape().equals(vb.getShape()) &&
areCastCompatible(va.getElementType(), vb.getElementType());
return false;
}
//===----------------------------------------------------------------------===//
// IndexCastOp
//===----------------------------------------------------------------------===//
// Index cast is applicable from index to integer and backwards.
bool IndexCastOp::areCastCompatible(Type a, Type b) {
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-10 14:48:24 -05:00
return (a.isIndex() && b.isSignlessInteger()) ||
(a.isSignlessInteger() && b.isIndex());
}
OpFoldResult IndexCastOp::fold(ArrayRef<Attribute> cstOperands) {
// Fold IndexCast(IndexCast(x)) -> x
auto cast = dyn_cast_or_null<IndexCastOp>(getOperand().getDefiningOp());
if (cast && cast.getOperand().getType() == getType())
return cast.getOperand();
// Fold IndexCast(constant) -> constant
// A little hack because we go through int. Otherwise, the size
// of the constant might need to change.
if (auto value = cstOperands[0].dyn_cast_or_null<IntegerAttr>())
return IntegerAttr::get(getType(), value.getInt());
return {};
}
//===----------------------------------------------------------------------===//
// LoadOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(LoadOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("incorrect number of indices for load");
return success();
}
OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) {
/// load(memrefcast) -> load
if (succeeded(foldMemRefCast(*this)))
return getResult();
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// MemRefCastOp
//===----------------------------------------------------------------------===//
bool MemRefCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<MemRefType>();
auto bT = b.dyn_cast<MemRefType>();
auto uaT = a.dyn_cast<UnrankedMemRefType>();
auto ubT = b.dyn_cast<UnrankedMemRefType>();
if (aT && bT) {
if (aT.getElementType() != bT.getElementType())
return false;
if (aT.getAffineMaps() != bT.getAffineMaps()) {
int64_t aOffset, bOffset;
SmallVector<int64_t, 4> aStrides, bStrides;
if (failed(getStridesAndOffset(aT, aStrides, aOffset)) ||
failed(getStridesAndOffset(bT, bStrides, bOffset)) ||
aStrides.size() != bStrides.size())
return false;
// Strides along a dimension/offset are compatible if the value in the
// source memref is static and the value in the target memref is the
// same. They are also compatible if either one is dynamic (see
// description of MemRefCastOp for details).
auto checkCompatible = [](int64_t a, int64_t b) {
return (a == MemRefType::getDynamicStrideOrOffset() ||
b == MemRefType::getDynamicStrideOrOffset() || a == b);
};
if (!checkCompatible(aOffset, bOffset))
return false;
for (auto aStride : enumerate(aStrides))
if (!checkCompatible(aStride.value(), bStrides[aStride.index()]))
return false;
}
if (aT.getMemorySpace() != bT.getMemorySpace())
return false;
// They must have the same rank, and any specified dimensions must match.
if (aT.getRank() != bT.getRank())
return false;
for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
if (aDim != -1 && bDim != -1 && aDim != bDim)
return false;
}
return true;
} else {
if (!aT && !uaT)
return false;
if (!bT && !ubT)
return false;
// Unranked to unranked casting is unsupported
if (uaT && ubT)
return false;
auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType();
auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType();
if (aEltType != bEltType)
return false;
auto aMemSpace = (aT) ? aT.getMemorySpace() : uaT.getMemorySpace();
auto bMemSpace = (bT) ? bT.getMemorySpace() : ubT.getMemorySpace();
if (aMemSpace != bMemSpace)
return false;
return true;
}
return false;
}
OpFoldResult MemRefCastOp::fold(ArrayRef<Attribute> operands) {
return impl::foldCastOp(*this);
}
//===----------------------------------------------------------------------===//
// MulFOp
//===----------------------------------------------------------------------===//
OpFoldResult MulFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// MulIOp
//===----------------------------------------------------------------------===//
OpFoldResult MulIOp::fold(ArrayRef<Attribute> operands) {
/// muli(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// muli(x, 1) -> x
if (matchPattern(rhs(), m_One()))
return getOperand(0);
// TODO: Handle the overflow case.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//
OpFoldResult OrOp::fold(ArrayRef<Attribute> operands) {
/// or(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// or(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a | b; });
}
//===----------------------------------------------------------------------===//
// PrefetchOp
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, PrefetchOp op) {
p << PrefetchOp::getOperationName() << " " << op.memref() << '[';
p.printOperands(op.indices());
p << ']' << ", " << (op.isWrite() ? "write" : "read");
p << ", locality<" << op.localityHint();
p << ">, " << (op.isDataCache() ? "data" : "instr");
p.printOptionalAttrDict(
op.getAttrs(),
/*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"});
p << " : " << op.getMemRefType();
}
static ParseResult parsePrefetchOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType memrefInfo;
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
IntegerAttr localityHint;
MemRefType type;
StringRef readOrWrite, cacheType;
auto indexTy = parser.getBuilder().getIndexType();
auto i32Type = parser.getBuilder().getIntegerType(32);
if (parser.parseOperand(memrefInfo) ||
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
parser.parseComma() || parser.parseKeyword("locality") ||
parser.parseLess() ||
parser.parseAttribute(localityHint, i32Type, "localityHint",
result.attributes) ||
parser.parseGreater() || parser.parseComma() ||
parser.parseKeyword(&cacheType) || parser.parseColonType(type) ||
parser.resolveOperand(memrefInfo, type, result.operands) ||
parser.resolveOperands(indexInfo, indexTy, result.operands))
return failure();
if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
return parser.emitError(parser.getNameLoc(),
"rw specifier has to be 'read' or 'write'");
result.addAttribute(
PrefetchOp::getIsWriteAttrName(),
parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));
if (!cacheType.equals("data") && !cacheType.equals("instr"))
return parser.emitError(parser.getNameLoc(),
"cache type has to be 'data' or 'instr'");
result.addAttribute(
PrefetchOp::getIsDataCacheAttrName(),
parser.getBuilder().getBoolAttr(cacheType.equals("data")));
return success();
}
static LogicalResult verify(PrefetchOp op) {
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
return op.emitOpError("too few indices");
return success();
}
LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
// prefetch(memrefcast) -> prefetch
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//
OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
// Constant fold rank when the rank of the tensor is known.
auto type = getOperand().getType();
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return IntegerAttr::get(IndexType::get(getContext()), tensorType.getRank());
return IntegerAttr();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReturnOp op) {
auto function = cast<FuncOp>(op.getParentOp());
// The operand number and types must match the function signature.
const auto &results = function.getType().getResults();
if (op.getNumOperands() != results.size())
return op.emitOpError("has ")
<< op.getNumOperands()
<< " operands, but enclosing function returns " << results.size();
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (op.getOperand(i).getType() != results[i])
return op.emitError()
<< "type of return operand " << i << " ("
<< op.getOperand(i).getType()
<< ") doesn't match function result type (" << results[i] << ")";
return success();
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
OpFoldResult SelectOp::fold(ArrayRef<Attribute> operands) {
auto condition = getCondition();
// select true, %0, %1 => %0
if (matchPattern(condition, m_One()))
return getTrueValue();
// select false, %0, %1 => %1
if (matchPattern(condition, m_Zero()))
return getFalseValue();
return nullptr;
}
//===----------------------------------------------------------------------===//
// SignExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SignExtendIOp op) {
// Get the scalar type (which is either directly the type of the operand
// or the vector's/tensor's element type.
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
// For now, index is forbidden for the source and the destination type.
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
//===----------------------------------------------------------------------===//
// SignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would overflow or if it requires a division by zero.
bool overflowOrDiv0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (overflowOrDiv0 || !b) {
overflowOrDiv0 = true;
return a;
}
return a.sdiv_ov(b, overflowOrDiv0);
});
return overflowOrDiv0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// SignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_signed takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue));
}
//===----------------------------------------------------------------------===//
// SIToFPOp
//===----------------------------------------------------------------------===//
// sitofp is applicable from integer types to float types.
bool SIToFPOp::areCastCompatible(Type a, Type b) {
return a.isSignlessInteger() && b.isa<FloatType>();
}
//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SplatOp op) {
// TODO: we could replace this by a trait.
if (op.getOperand().getType() !=
op.getType().cast<ShapedType>().getElementType())
return op.emitError("operand should be of elemental type of result type");
return success();
}
// Constant folding hook for SplatOp.
OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 1 && "splat takes one operand");
auto constOperand = operands.front();
if (!constOperand ||
(!constOperand.isa<IntegerAttr>() && !constOperand.isa<FloatAttr>()))
return {};
auto shapedType = getType().cast<ShapedType>();
assert(shapedType.getElementType() == constOperand.getType() &&
"incorrect input attribute type for folding");
// SplatElementsAttr::get treats single value for second arg as being a splat.
return SplatElementsAttr::get(shapedType, {constOperand});
}
//===----------------------------------------------------------------------===//
// StoreOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(StoreOp op) {
if (op.getNumOperands() != 2 + op.getMemRefType().getRank())
return op.emitOpError("store index operand count not equal to memref rank");
return success();
}
LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands,
SmallVectorImpl<OpFoldResult> &results) {
/// store(memrefcast) -> store
return foldMemRefCast(*this);
}
//===----------------------------------------------------------------------===//
// SubFOp
//===----------------------------------------------------------------------===//
OpFoldResult SubFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// SubIOp
//===----------------------------------------------------------------------===//
OpFoldResult SubIOp::fold(ArrayRef<Attribute> operands) {
// subi(x,x) -> 0
if (getOperand(0) == getOperand(1))
return Builder(getContext()).getZeroAttr(getType());
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// SubViewOp
//===----------------------------------------------------------------------===//
// Returns a MemRefType with dynamic sizes and offset and the same stride as the
// `memRefType` passed as argument.
// TODO(andydavis,ntv) Evolve to a more powerful inference that can also keep
// sizes and offset static.
static Type inferSubViewResultType(MemRefType memRefType) {
auto rank = memRefType.getRank();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto res = getStridesAndOffset(memRefType, strides, offset);
assert(succeeded(res) && "SubViewOp expected strided memref type");
(void)res;
// Assume sizes and offset are fully dynamic for now until canonicalization
// occurs on the ranges. Typed strides don't change though.
offset = MemRefType::getDynamicStrideOrOffset();
// Overwrite strides because verifier will not pass.
// TODO(b/144419106): don't force degrade the strides to fully dynamic.
for (auto &stride : strides)
stride = MemRefType::getDynamicStrideOrOffset();
auto stridedLayout =
makeStridedLinearLayoutMap(strides, offset, memRefType.getContext());
SmallVector<int64_t, 4> sizes(rank, ShapedType::kDynamicSize);
return MemRefType::Builder(memRefType)
.setShape(sizes)
.setAffineMaps(stridedLayout);
}
void mlir::SubViewOp::build(Builder *b, OperationState &result, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides, Type resultType,
ArrayRef<NamedAttribute> attrs) {
if (!resultType)
resultType = inferSubViewResultType(source.getType().cast<MemRefType>());
build(b, result, resultType, source, offsets, sizes, strides);
result.addAttributes(attrs);
}
void mlir::SubViewOp::build(Builder *b, OperationState &result, Type resultType,
Value source) {
build(b, result, source, /*offsets=*/{}, /*sizes=*/{}, /*strides=*/{},
resultType);
}
static LogicalResult verify(SubViewOp op) {
auto baseType = op.getBaseMemRefType().cast<MemRefType>();
auto subViewType = op.getType();
// The rank of the base and result subview must match.
if (baseType.getRank() != subViewType.getRank()) {
return op.emitError(
"expected rank of result type to match rank of base type ");
}
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != subViewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and subview memref type " << subViewType;
// Verify that the base memref type has a strided layout map.
int64_t baseOffset;
SmallVector<int64_t, 4> baseStrides;
if (failed(getStridesAndOffset(baseType, baseStrides, baseOffset)))
return op.emitError("base type ") << subViewType << " is not strided";
// Verify that the result memref type has a strided layout map.
int64_t subViewOffset;
SmallVector<int64_t, 4> subViewStrides;
if (failed(getStridesAndOffset(subViewType, subViewStrides, subViewOffset)))
return op.emitError("result type ") << subViewType << " is not strided";
// Num offsets should either be zero or rank of memref.
if (op.getNumOffsets() != 0 && op.getNumOffsets() != subViewType.getRank()) {
return op.emitError("expected number of dynamic offsets specified to match "
"the rank of the result type ")
<< subViewType;
}
// Num sizes should either be zero or rank of memref.
if (op.getNumSizes() != 0 && op.getNumSizes() != subViewType.getRank()) {
return op.emitError("expected number of dynamic sizes specified to match "
"the rank of the result type ")
<< subViewType;
}
// Num strides should either be zero or rank of memref.
if (op.getNumStrides() != 0 && op.getNumStrides() != subViewType.getRank()) {
return op.emitError("expected number of dynamic strides specified to match "
"the rank of the result type ")
<< subViewType;
}
// Verify that if the shape of the subview type is static, then sizes are not
// dynamic values, and vice versa.
if ((subViewType.hasStaticShape() && op.getNumSizes() != 0) ||
(op.getNumSizes() == 0 && !subViewType.hasStaticShape())) {
return op.emitError("invalid to specify dynamic sizes when subview result "
"type is statically shaped and viceversa");
}
// Verify that if dynamic sizes are specified, then the result memref type
// have full dynamic dimensions.
if (op.getNumSizes() > 0) {
if (llvm::any_of(subViewType.getShape(), [](int64_t dim) {
return dim != ShapedType::kDynamicSize;
})) {
// TODO: This is based on the assumption that number of size arguments are
// either 0, or the rank of the result type. It is possible to have more
// fine-grained verification where only particular dimensions are
// dynamic. That probably needs further changes to the shape op
// specification.
return op.emitError("expected shape of result type to be fully dynamic "
"when sizes are specified");
}
}
// Verify that if dynamic offsets are specified or base memref has dynamic
// offset or base memref has dynamic strides, then the subview offset is
// dynamic.
if ((op.getNumOffsets() > 0 ||
baseOffset == MemRefType::getDynamicStrideOrOffset() ||
llvm::is_contained(baseStrides,
MemRefType::getDynamicStrideOrOffset())) &&
subViewOffset != MemRefType::getDynamicStrideOrOffset()) {
return op.emitError(
"expected result memref layout map to have dynamic offset");
}
// For now, verify that if dynamic strides are specified, then all the result
// memref type have dynamic strides.
if (op.getNumStrides() > 0) {
if (llvm::any_of(subViewStrides, [](int64_t stride) {
return stride != MemRefType::getDynamicStrideOrOffset();
})) {
return op.emitError("expected result type to have dynamic strides");
}
}
// If any of the base memref has dynamic stride, then the corresponding
// stride of the subview must also have dynamic stride.
assert(baseStrides.size() == subViewStrides.size());
for (auto stride : enumerate(baseStrides)) {
if (stride.value() == MemRefType::getDynamicStrideOrOffset() &&
subViewStrides[stride.index()] !=
MemRefType::getDynamicStrideOrOffset()) {
return op.emitError(
"expected result type to have dynamic stride along a dimension if "
"the base memref type has dynamic stride along that dimension");
}
}
return success();
}
raw_ostream &mlir::operator<<(raw_ostream &os, SubViewOp::Range &range) {
return os << "range " << range.offset << ":" << range.size << ":"
<< range.stride;
}
SmallVector<SubViewOp::Range, 8> SubViewOp::getRanges() {
SmallVector<Range, 8> res;
unsigned rank = getType().getRank();
res.reserve(rank);
for (unsigned i = 0; i < rank; ++i)
res.emplace_back(Range{*(offsets().begin() + i), *(sizes().begin() + i),
*(strides().begin() + i)});
return res;
}
LogicalResult
SubViewOp::getStaticStrides(SmallVectorImpl<int64_t> &staticStrides) {
// If the strides are dynamic return failure.
if (getNumStrides())
return failure();
// When static, the stride operands can be retrieved by taking the strides of
// the result of the subview op, and dividing the strides of the base memref.
int64_t resultOffset, baseOffset;
SmallVector<int64_t, 2> resultStrides, baseStrides;
if (failed(
getStridesAndOffset(getBaseMemRefType(), baseStrides, baseOffset)) ||
llvm::is_contained(baseStrides, MemRefType::getDynamicStrideOrOffset()) ||
failed(getStridesAndOffset(getType(), resultStrides, resultOffset)))
return failure();
assert(static_cast<int64_t>(resultStrides.size()) == getType().getRank() &&
baseStrides.size() == resultStrides.size() &&
"base and result memrefs must have the same rank");
assert(!llvm::is_contained(resultStrides,
MemRefType::getDynamicStrideOrOffset()) &&
"strides of subview op must be static, when there are no dynamic "
"strides specified");
staticStrides.resize(getType().getRank());
for (auto resultStride : enumerate(resultStrides)) {
auto baseStride = baseStrides[resultStride.index()];
// The result stride is expected to be a multiple of the base stride. Abort
// if that is not the case.
if (resultStride.value() < baseStride ||
resultStride.value() % baseStride != 0)
return failure();
staticStrides[resultStride.index()] = resultStride.value() / baseStride;
}
return success();
}
namespace {
/// Pattern to rewrite a subview op with constant size arguments.
class SubViewOpShapeFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
MemRefType subViewType = subViewOp.getType();
// Follow all or nothing approach for shapes for now. If all the operands
// for sizes are constants then fold it into the type of the result memref.
if (subViewType.hasStaticShape() ||
llvm::any_of(subViewOp.sizes(), [](Value operand) {
return !matchPattern(operand, m_ConstantIndex());
})) {
return failure();
}
SmallVector<int64_t, 4> staticShape(subViewOp.getNumSizes());
for (auto size : llvm::enumerate(subViewOp.sizes())) {
auto defOp = size.value().getDefiningOp();
assert(defOp);
staticShape[size.index()] = cast<ConstantIndexOp>(defOp).getValue();
}
MemRefType newMemRefType =
MemRefType::Builder(subViewType).setShape(staticShape);
auto newSubViewOp = rewriter.create<SubViewOp>(
subViewOp.getLoc(), subViewOp.source(), subViewOp.offsets(),
ArrayRef<Value>(), subViewOp.strides(), newMemRefType);
// Insert a memref_cast for compatibility of the uses of the op.
rewriter.replaceOpWithNewOp<MemRefCastOp>(subViewOp, newSubViewOp,
subViewOp.getType());
return success();
}
};
// Pattern to rewrite a subview op with constant stride arguments.
class SubViewOpStrideFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
if (subViewOp.getNumStrides() == 0) {
return failure();
}
// Follow all or nothing approach for strides for now. If all the operands
// for strides are constants then fold it into the strides of the result
// memref.
int64_t baseOffset, resultOffset;
SmallVector<int64_t, 4> baseStrides, resultStrides;
MemRefType subViewType = subViewOp.getType();
if (failed(getStridesAndOffset(subViewOp.getBaseMemRefType(), baseStrides,
baseOffset)) ||
failed(getStridesAndOffset(subViewType, resultStrides, resultOffset)) ||
llvm::is_contained(baseStrides,
MemRefType::getDynamicStrideOrOffset()) ||
llvm::any_of(subViewOp.strides(), [](Value stride) {
return !matchPattern(stride, m_ConstantIndex());
})) {
return failure();
}
SmallVector<int64_t, 4> staticStrides(subViewOp.getNumStrides());
for (auto stride : llvm::enumerate(subViewOp.strides())) {
auto defOp = stride.value().getDefiningOp();
assert(defOp);
assert(baseStrides[stride.index()] > 0);
staticStrides[stride.index()] =
cast<ConstantIndexOp>(defOp).getValue() * baseStrides[stride.index()];
}
AffineMap layoutMap = makeStridedLinearLayoutMap(
staticStrides, resultOffset, rewriter.getContext());
MemRefType newMemRefType =
MemRefType::Builder(subViewType).setAffineMaps(layoutMap);
auto newSubViewOp = rewriter.create<SubViewOp>(
subViewOp.getLoc(), subViewOp.source(), subViewOp.offsets(),
subViewOp.sizes(), ArrayRef<Value>(), newMemRefType);
// Insert a memref_cast for compatibility of the uses of the op.
rewriter.replaceOpWithNewOp<MemRefCastOp>(subViewOp, newSubViewOp,
subViewOp.getType());
return success();
}
};
// Pattern to rewrite a subview op with constant offset arguments.
class SubViewOpOffsetFolder final : public OpRewritePattern<SubViewOp> {
public:
using OpRewritePattern<SubViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubViewOp subViewOp,
PatternRewriter &rewriter) const override {
if (subViewOp.getNumOffsets() == 0) {
return failure();
}
// Follow all or nothing approach for offsets for now. If all the operands
// for offsets are constants then fold it into the offset of the result
// memref.
int64_t baseOffset, resultOffset;
SmallVector<int64_t, 4> baseStrides, resultStrides;
MemRefType subViewType = subViewOp.getType();
if (failed(getStridesAndOffset(subViewOp.getBaseMemRefType(), baseStrides,
baseOffset)) ||
failed(getStridesAndOffset(subViewType, resultStrides, resultOffset)) ||
llvm::is_contained(baseStrides,
MemRefType::getDynamicStrideOrOffset()) ||
baseOffset == MemRefType::getDynamicStrideOrOffset() ||
llvm::any_of(subViewOp.offsets(), [](Value stride) {
return !matchPattern(stride, m_ConstantIndex());
})) {
return failure();
}
auto staticOffset = baseOffset;
for (auto offset : llvm::enumerate(subViewOp.offsets())) {
auto defOp = offset.value().getDefiningOp();
assert(defOp);
assert(baseStrides[offset.index()] > 0);
staticOffset +=
cast<ConstantIndexOp>(defOp).getValue() * baseStrides[offset.index()];
}
AffineMap layoutMap = makeStridedLinearLayoutMap(
resultStrides, staticOffset, rewriter.getContext());
MemRefType newMemRefType =
MemRefType::Builder(subViewType).setAffineMaps(layoutMap);
auto newSubViewOp = rewriter.create<SubViewOp>(
subViewOp.getLoc(), subViewOp.source(), ArrayRef<Value>(),
subViewOp.sizes(), subViewOp.strides(), newMemRefType);
// Insert a memref_cast for compatibility of the uses of the op.
rewriter.replaceOpWithNewOp<MemRefCastOp>(subViewOp, newSubViewOp,
subViewOp.getType());
return success();
}
};
} // end anonymous namespace
void SubViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SubViewOpShapeFolder, SubViewOpStrideFolder,
SubViewOpOffsetFolder>(context);
}
//===----------------------------------------------------------------------===//
// TensorCastOp
//===----------------------------------------------------------------------===//
bool TensorCastOp::areCastCompatible(Type a, Type b) {
auto aT = a.dyn_cast<TensorType>();
auto bT = b.dyn_cast<TensorType>();
if (!aT || !bT)
return false;
if (aT.getElementType() != bT.getElementType())
return false;
return succeeded(verifyCompatibleShape(aT, bT));
}
OpFoldResult TensorCastOp::fold(ArrayRef<Attribute> operands) {
return impl::foldCastOp(*this);
}
//===----------------------------------------------------------------------===//
// Helpers for Tensor[Load|Store]Op
//===----------------------------------------------------------------------===//
static Type getTensorTypeFromMemRefType(Type type) {
if (auto memref = type.dyn_cast<MemRefType>())
return RankedTensorType::get(memref.getShape(), memref.getElementType());
return NoneType::get(type.getContext());
}
//===----------------------------------------------------------------------===//
// TruncateIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(TruncateIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() <=
dstType.cast<IntegerType>().getWidth())
return op.emitError("operand type ")
<< srcType << " must be wider than result type " << dstType;
return success();
}
//===----------------------------------------------------------------------===//
// UnsignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would require a division by zero.
bool div0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (div0 || !b) {
div0 = true;
return a;
}
return a.udiv(b);
});
return div0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// UnsignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_unsigned takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue));
}
//===----------------------------------------------------------------------===//
// ViewOp
//===----------------------------------------------------------------------===//
static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) {
OpAsmParser::OperandType srcInfo;
SmallVector<OpAsmParser::OperandType, 1> offsetInfo;
SmallVector<OpAsmParser::OperandType, 4> sizesInfo;
auto indexType = parser.getBuilder().getIndexType();
Type srcType, dstType;
llvm::SMLoc offsetLoc;
if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) ||
parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square))
return failure();
if (offsetInfo.size() > 1)
return parser.emitError(offsetLoc) << "expects 0 or 1 offset operand";
return failure(
parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(srcType) ||
parser.resolveOperand(srcInfo, srcType, result.operands) ||
parser.resolveOperands(offsetInfo, indexType, result.operands) ||
parser.resolveOperands(sizesInfo, indexType, result.operands) ||
parser.parseKeywordType("to", dstType) ||
parser.addTypeToList(dstType, result.types));
}
static void print(OpAsmPrinter &p, ViewOp op) {
p << op.getOperationName() << ' ' << op.getOperand(0) << '[';
auto dynamicOffset = op.getDynamicOffset();
if (dynamicOffset != nullptr)
p.printOperand(dynamicOffset);
p << "][" << op.getDynamicSizes() << ']';
p.printOptionalAttrDict(op.getAttrs());
p << " : " << op.getOperand(0).getType() << " to " << op.getType();
}
Value ViewOp::getDynamicOffset() {
int64_t offset;
SmallVector<int64_t, 4> strides;
auto result =
succeeded(mlir::getStridesAndOffset(getType(), strides, offset));
assert(result);
if (result && offset == MemRefType::getDynamicStrideOrOffset())
return getOperand(1);
return nullptr;
}
static LogicalResult verifyDynamicStrides(MemRefType memrefType,
ArrayRef<int64_t> strides) {
unsigned rank = memrefType.getRank();
assert(rank == strides.size());
bool dynamicStrides = false;
for (int i = rank - 2; i >= 0; --i) {
// If size at dim 'i + 1' is dynamic, set the 'dynamicStrides' flag.
if (memrefType.isDynamicDim(i + 1))
dynamicStrides = true;
// If stride at dim 'i' is not dynamic, return error.
if (dynamicStrides && strides[i] != MemRefType::getDynamicStrideOrOffset())
return failure();
}
return success();
}
static LogicalResult verify(ViewOp op) {
auto baseType = op.getOperand(0).getType().cast<MemRefType>();
auto viewType = op.getResult().getType().cast<MemRefType>();
// The base memref should have identity layout map (or none).
if (baseType.getAffineMaps().size() > 1 ||
(baseType.getAffineMaps().size() == 1 &&
!baseType.getAffineMaps()[0].isIdentity()))
return op.emitError("unsupported map for base memref type ") << baseType;
// The base memref and the view memref should be in the same memory space.
if (baseType.getMemorySpace() != viewType.getMemorySpace())
return op.emitError("different memory spaces specified for base memref "
"type ")
<< baseType << " and view memref type " << viewType;
// Verify that the result memref type has a strided layout map.
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(viewType, strides, offset)))
return op.emitError("result type ") << viewType << " is not strided";
// Verify that we have the correct number of operands for the result type.
unsigned memrefOperandCount = 1;
unsigned numDynamicDims = viewType.getNumDynamicDims();
unsigned dynamicOffsetCount =
offset == MemRefType::getDynamicStrideOrOffset() ? 1 : 0;
if (op.getNumOperands() !=
memrefOperandCount + numDynamicDims + dynamicOffsetCount)
return op.emitError("incorrect number of operands for type ") << viewType;
// Verify dynamic strides symbols were added to correct dimensions based
// on dynamic sizes.
if (failed(verifyDynamicStrides(viewType, strides)))
return op.emitError("incorrect dynamic strides in view memref type ")
<< viewType;
return success();
}
namespace {
struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
// Return if none of the operands are constants.
if (llvm::none_of(viewOp.getOperands(), [](Value operand) {
return matchPattern(operand, m_ConstantIndex());
}))
return failure();
// Get result memref type.
auto memrefType = viewOp.getType();
if (memrefType.getAffineMaps().size() > 1)
return failure();
auto map = memrefType.getAffineMaps().empty()
? AffineMap::getMultiDimIdentityMap(memrefType.getRank(),
rewriter.getContext())
: memrefType.getAffineMaps()[0];
// Get offset from old memref view type 'memRefType'.
int64_t oldOffset;
SmallVector<int64_t, 4> oldStrides;
if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset)))
return failure();
SmallVector<Value, 4> newOperands;
// Fold dynamic offset operand if it is produced by a constant.
auto dynamicOffset = viewOp.getDynamicOffset();
int64_t newOffset = oldOffset;
unsigned dynamicOffsetOperandCount = 0;
if (dynamicOffset != nullptr) {
auto *defOp = dynamicOffset.getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic offset will be folded into the map.
newOffset = constantIndexOp.getValue();
} else {
// Unable to fold dynamic offset. Add it to 'newOperands' list.
newOperands.push_back(dynamicOffset);
dynamicOffsetOperandCount = 1;
}
}
// Fold any dynamic dim operands which are produced by a constant.
SmallVector<int64_t, 4> newShapeConstants;
newShapeConstants.reserve(memrefType.getRank());
unsigned dynamicDimPos = viewOp.getDynamicSizesOperandStart();
unsigned rank = memrefType.getRank();
for (unsigned dim = 0, e = rank; dim < e; ++dim) {
int64_t dimSize = memrefType.getDimSize(dim);
// If this is already static dimension, keep it.
if (!ShapedType::isDynamic(dimSize)) {
newShapeConstants.push_back(dimSize);
continue;
}
auto *defOp = viewOp.getOperand(dynamicDimPos).getDefiningOp();
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
// Dynamic shape dimension will be folded.
newShapeConstants.push_back(constantIndexOp.getValue());
} else {
// Dynamic shape dimension not folded; copy operand from old memref.
newShapeConstants.push_back(dimSize);
newOperands.push_back(viewOp.getOperand(dynamicDimPos));
}
dynamicDimPos++;
}
// Compute new strides based on 'newShapeConstants'.
SmallVector<int64_t, 4> newStrides(rank);
newStrides[rank - 1] = 1;
bool dynamicStrides = false;
for (int i = rank - 2; i >= 0; --i) {
if (ShapedType::isDynamic(newShapeConstants[i + 1]))
dynamicStrides = true;
if (dynamicStrides)
newStrides[i] = MemRefType::getDynamicStrideOrOffset();
else
newStrides[i] = newShapeConstants[i + 1] * newStrides[i + 1];
}
// Regenerate strided layout map with 'newStrides' and 'newOffset'.
map = makeStridedLinearLayoutMap(newStrides, newOffset,
rewriter.getContext());
// Create new memref type with constant folded dims and/or offset/strides.
MemRefType newMemRefType = MemRefType::Builder(memrefType)
.setShape(newShapeConstants)
.setAffineMaps({map});
(void)dynamicOffsetOperandCount; // unused in opt mode
assert(static_cast<int64_t>(newOperands.size()) ==
dynamicOffsetOperandCount + newMemRefType.getNumDynamicDims());
// Create new ViewOp.
auto newViewOp = rewriter.create<ViewOp>(viewOp.getLoc(), newMemRefType,
viewOp.getOperand(0), newOperands);
// Insert a cast so we have the same type as the old memref type.
rewriter.replaceOpWithNewOp<MemRefCastOp>(viewOp, newViewOp,
viewOp.getType());
return success();
}
};
struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> {
using OpRewritePattern<ViewOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ViewOp viewOp,
PatternRewriter &rewriter) const override {
Value memrefOperand = viewOp.getOperand(0);
MemRefCastOp memrefCastOp =
dyn_cast_or_null<MemRefCastOp>(memrefOperand.getDefiningOp());
if (!memrefCastOp)
return failure();
Value allocOperand = memrefCastOp.getOperand();
AllocOp allocOp = dyn_cast_or_null<AllocOp>(allocOperand.getDefiningOp());
if (!allocOp)
return failure();
rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand,
viewOp.operands());
return success();
}
};
} // end anonymous namespace
void ViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context);
}
//===----------------------------------------------------------------------===//
// XOrOp
//===----------------------------------------------------------------------===//
OpFoldResult XOrOp::fold(ArrayRef<Attribute> operands) {
/// xor(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// xor(x,x) -> 0
if (lhs() == rhs())
return Builder(getContext()).getZeroAttr(getType());
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a ^ b; });
}
//===----------------------------------------------------------------------===//
// ZeroExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ZeroExtendIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"