[Clang] [Sema] Fix bug in `_Complex float`+`int` arithmetic (#83063)
C23 6.3.1.8 ‘Usual arithmetic conversions’ p1 states (emphasis mine):
> Otherwise, if the corresponding real type of either operand is
`float`, the other operand is converted, *without change of type
domain*, to a type whose corresponding real type is `float`.
‘type domain’ here refers to `_Complex` vs real (i.e. non-`_Complex`);
there is another clause that states the same for `double`.
Consider the following code:
```c++
_Complex float f;
int x;
f / x;
```
After talking this over with @AaronBallman, we came to the conclusion
that `x` should be converted to `float` and *not* `_Complex float` (that
is, we should perform a division of `_Complex float / float`, and *not*
`_Complex float / _Complex float`; the same also applies to `-+*`). This
was already being done correctly for cases where `x` was already a
`float`; it’s just mixed `_Complex float`+`int` operations that
currently suffer from this problem.
This pr removes the extra `FloatingRealToComplex` conversion that we
were erroneously inserting and adds some tests to make sure we’re
actually doing `_Complex float / float` and not `_Complex float /
_Complex float` (and analogously for `double` and `-+*`).
The only exception here is `float / _Complex float`, which calls a
library function (`__divsc3`) that takes 4 `float`s, so we end up having
to convert the `float` to a `_Complex float` after all (and analogously
for `double`); I don’t believe there is a way around this.
Lastly, we were also missing tests for `_Complex` arithmetic at compile
time, so this adds some tests for that as well.
2024-03-13 17:39:23 +01:00
|
|
|
// RUN: %clang_cc1 %s -O0 -emit-llvm -triple x86_64-unknown-unknown -o - | FileCheck %s --check-prefix=X86
|
2024-05-04 23:08:11 -07:00
|
|
|
// RUN: %clang_cc1 %s -O0 -triple x86_64-unknown-unknown -ast-dump | FileCheck %s --check-prefix=AST
|
[Clang] [Sema] Fix bug in `_Complex float`+`int` arithmetic (#83063)
C23 6.3.1.8 ‘Usual arithmetic conversions’ p1 states (emphasis mine):
> Otherwise, if the corresponding real type of either operand is
`float`, the other operand is converted, *without change of type
domain*, to a type whose corresponding real type is `float`.
‘type domain’ here refers to `_Complex` vs real (i.e. non-`_Complex`);
there is another clause that states the same for `double`.
Consider the following code:
```c++
_Complex float f;
int x;
f / x;
```
After talking this over with @AaronBallman, we came to the conclusion
that `x` should be converted to `float` and *not* `_Complex float` (that
is, we should perform a division of `_Complex float / float`, and *not*
`_Complex float / _Complex float`; the same also applies to `-+*`). This
was already being done correctly for cases where `x` was already a
`float`; it’s just mixed `_Complex float`+`int` operations that
currently suffer from this problem.
This pr removes the extra `FloatingRealToComplex` conversion that we
were erroneously inserting and adds some tests to make sure we’re
actually doing `_Complex float / float` and not `_Complex float /
_Complex float` (and analogously for `double` and `-+*`).
The only exception here is `float / _Complex float`, which calls a
library function (`__divsc3`) that takes 4 `float`s, so we end up having
to convert the `float` to a `_Complex float` after all (and analogously
for `double`); I don’t believe there is a way around this.
Lastly, we were also missing tests for `_Complex` arithmetic at compile
time, so this adds some tests for that as well.
2024-03-13 17:39:23 +01:00
|
|
|
|
|
|
|
// Check that for 'F _Complex + int' (F = real floating-point type), we emit an
|
|
|
|
// implicit cast from 'int' to 'F', but NOT to 'F _Complex' (i.e. that we do
|
|
|
|
// 'F _Complex + F', NOT 'F _Complex + F _Complex'), and likewise for -/*.
|
|
|
|
|
|
|
|
// AST-NOT: FloatingRealToComplex
|
|
|
|
|
|
|
|
float _Complex add_float_ci(float _Complex a, int b) {
|
|
|
|
// X86-LABEL: @add_float_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: fadd float {{.*}}, [[I]]
|
|
|
|
// X86-NOT: fadd
|
|
|
|
return a + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _Complex add_float_ic(int a, float _Complex b) {
|
|
|
|
// X86-LABEL: @add_float_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: fadd float [[I]]
|
|
|
|
// X86-NOT: fadd
|
|
|
|
return a + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _Complex sub_float_ci(float _Complex a, int b) {
|
|
|
|
// X86-LABEL: @sub_float_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: fsub float {{.*}}, [[I]]
|
|
|
|
// X86-NOT: fsub
|
|
|
|
return a - b;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _Complex sub_float_ic(int a, float _Complex b) {
|
|
|
|
// X86-LABEL: @sub_float_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: fsub float [[I]]
|
|
|
|
// X86: fneg
|
|
|
|
// X86-NOT: fsub
|
|
|
|
return a - b;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _Complex mul_float_ci(float _Complex a, int b) {
|
|
|
|
// X86-LABEL: @mul_float_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: fmul float {{.*}}, [[I]]
|
|
|
|
// X86: fmul float {{.*}}, [[I]]
|
|
|
|
// X86-NOT: fmul
|
|
|
|
return a * b;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _Complex mul_float_ic(int a, float _Complex b) {
|
|
|
|
// X86-LABEL: @mul_float_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: fmul float [[I]]
|
|
|
|
// X86: fmul float [[I]]
|
|
|
|
// X86-NOT: fmul
|
|
|
|
return a * b;
|
|
|
|
}
|
|
|
|
|
|
|
|
float _Complex div_float_ci(float _Complex a, int b) {
|
|
|
|
// X86-LABEL: @div_float_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: fdiv float {{.*}}, [[I]]
|
|
|
|
// X86: fdiv float {{.*}}, [[I]]
|
|
|
|
// X86-NOT: @__divsc3
|
|
|
|
return a / b;
|
|
|
|
}
|
|
|
|
|
|
|
|
// There is no good way of doing this w/o converting the 'int' to a complex
|
|
|
|
// number, so we expect complex division here.
|
|
|
|
float _Complex div_float_ic(int a, float _Complex b) {
|
|
|
|
// X86-LABEL: @div_float_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to float
|
|
|
|
// X86: call {{.*}} @__divsc3(float {{.*}} [[I]], float noundef 0.{{0+}}e+00, float {{.*}}, float {{.*}})
|
|
|
|
return a / b;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _Complex add_double_ci(double _Complex a, int b) {
|
|
|
|
// X86-LABEL: @add_double_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: fadd double {{.*}}, [[I]]
|
|
|
|
// X86-NOT: fadd
|
|
|
|
return a + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _Complex add_double_ic(int a, double _Complex b) {
|
|
|
|
// X86-LABEL: @add_double_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: fadd double [[I]]
|
|
|
|
// X86-NOT: fadd
|
|
|
|
return a + b;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _Complex sub_double_ci(double _Complex a, int b) {
|
|
|
|
// X86-LABEL: @sub_double_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: fsub double {{.*}}, [[I]]
|
|
|
|
// X86-NOT: fsub
|
|
|
|
return a - b;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _Complex sub_double_ic(int a, double _Complex b) {
|
|
|
|
// X86-LABEL: @sub_double_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: fsub double [[I]]
|
|
|
|
// X86: fneg
|
|
|
|
// X86-NOT: fsub
|
|
|
|
return a - b;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _Complex mul_double_ci(double _Complex a, int b) {
|
|
|
|
// X86-LABEL: @mul_double_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: fmul double {{.*}}, [[I]]
|
|
|
|
// X86: fmul double {{.*}}, [[I]]
|
|
|
|
// X86-NOT: fmul
|
|
|
|
return a * b;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _Complex mul_double_ic(int a, double _Complex b) {
|
|
|
|
// X86-LABEL: @mul_double_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: fmul double [[I]]
|
|
|
|
// X86: fmul double [[I]]
|
|
|
|
// X86-NOT: fmul
|
|
|
|
return a * b;
|
|
|
|
}
|
|
|
|
|
|
|
|
double _Complex div_double_ci(double _Complex a, int b) {
|
|
|
|
// X86-LABEL: @div_double_ci
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: fdiv double {{.*}}, [[I]]
|
|
|
|
// X86: fdiv double {{.*}}, [[I]]
|
|
|
|
// X86-NOT: @__divdc3
|
|
|
|
return a / b;
|
|
|
|
}
|
|
|
|
|
|
|
|
// There is no good way of doing this w/o converting the 'int' to a complex
|
|
|
|
// number, so we expect complex division here.
|
|
|
|
double _Complex div_double_ic(int a, double _Complex b) {
|
|
|
|
// X86-LABEL: @div_double_ic
|
|
|
|
// X86: [[I:%.*]] = sitofp i32 {{%.*}} to double
|
|
|
|
// X86: call {{.*}} @__divdc3(double {{.*}} [[I]], double noundef 0.{{0+}}e+00, double {{.*}}, double {{.*}})
|
|
|
|
return a / b;
|
|
|
|
}
|