llvm-project/llvm/lib/IR/AttributeImpl.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

421 lines
14 KiB
C
Raw Normal View History

//===- AttributeImpl.h - Attribute Internals --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines various helper methods and classes used by
/// LLVMContextImpl for creating and managing attributes.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_IR_ATTRIBUTEIMPL_H
#define LLVM_LIB_IR_ATTRIBUTEIMPL_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/ConstantRangeList.h"
#include "llvm/Support/TrailingObjects.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <optional>
#include <string>
#include <utility>
namespace llvm {
class LLVMContext;
class Type;
//===----------------------------------------------------------------------===//
/// \class
/// This class represents a single, uniqued attribute. That attribute
/// could be a single enum, a tuple, or a string.
class AttributeImpl : public FoldingSetNode {
unsigned char KindID; ///< Holds the AttrEntryKind of the attribute
protected:
enum AttrEntryKind {
EnumAttrEntry,
IntAttrEntry,
StringAttrEntry,
TypeAttrEntry,
ConstantRangeAttrEntry,
ConstantRangeListAttrEntry,
};
AttributeImpl(AttrEntryKind KindID) : KindID(KindID) {}
public:
// AttributesImpl is uniqued, these should not be available.
AttributeImpl(const AttributeImpl &) = delete;
AttributeImpl &operator=(const AttributeImpl &) = delete;
bool isEnumAttribute() const { return KindID == EnumAttrEntry; }
bool isIntAttribute() const { return KindID == IntAttrEntry; }
bool isStringAttribute() const { return KindID == StringAttrEntry; }
bool isTypeAttribute() const { return KindID == TypeAttrEntry; }
bool isConstantRangeAttribute() const {
return KindID == ConstantRangeAttrEntry;
}
bool isConstantRangeListAttribute() const {
return KindID == ConstantRangeListAttrEntry;
}
bool hasAttribute(Attribute::AttrKind A) const;
bool hasAttribute(StringRef Kind) const;
Attribute::AttrKind getKindAsEnum() const;
uint64_t getValueAsInt() const;
bool getValueAsBool() const;
StringRef getKindAsString() const;
StringRef getValueAsString() const;
Type *getValueAsType() const;
const ConstantRange &getValueAsConstantRange() const;
ArrayRef<ConstantRange> getValueAsConstantRangeList() const;
/// Used when sorting the attributes.
bool operator<(const AttributeImpl &AI) const;
void Profile(FoldingSetNodeID &ID) const {
if (isEnumAttribute())
Profile(ID, getKindAsEnum());
else if (isIntAttribute())
Profile(ID, getKindAsEnum(), getValueAsInt());
else if (isStringAttribute())
Profile(ID, getKindAsString(), getValueAsString());
else if (isTypeAttribute())
Profile(ID, getKindAsEnum(), getValueAsType());
else if (isConstantRangeAttribute())
Profile(ID, getKindAsEnum(), getValueAsConstantRange());
else
Profile(ID, getKindAsEnum(), getValueAsConstantRangeList());
}
static void Profile(FoldingSetNodeID &ID, Attribute::AttrKind Kind) {
assert(Attribute::isEnumAttrKind(Kind) && "Expected enum attribute");
ID.AddInteger(Kind);
}
static void Profile(FoldingSetNodeID &ID, Attribute::AttrKind Kind,
uint64_t Val) {
assert(Attribute::isIntAttrKind(Kind) && "Expected int attribute");
ID.AddInteger(Kind);
ID.AddInteger(Val);
}
static void Profile(FoldingSetNodeID &ID, StringRef Kind, StringRef Values) {
ID.AddString(Kind);
if (!Values.empty()) ID.AddString(Values);
}
static void Profile(FoldingSetNodeID &ID, Attribute::AttrKind Kind,
Type *Ty) {
ID.AddInteger(Kind);
ID.AddPointer(Ty);
}
static void Profile(FoldingSetNodeID &ID, Attribute::AttrKind Kind,
const ConstantRange &CR) {
ID.AddInteger(Kind);
CR.getLower().Profile(ID);
CR.getUpper().Profile(ID);
}
static void Profile(FoldingSetNodeID &ID, Attribute::AttrKind Kind,
ArrayRef<ConstantRange> Val) {
ID.AddInteger(Kind);
ID.AddInteger(Val.size());
for (auto &CR : Val) {
CR.getLower().Profile(ID);
CR.getUpper().Profile(ID);
}
}
};
static_assert(std::is_trivially_destructible<AttributeImpl>::value,
"AttributeImpl should be trivially destructible");
//===----------------------------------------------------------------------===//
/// \class
/// A set of classes that contain the value of the
/// attribute object. There are three main categories: enum attribute entries,
/// represented by Attribute::AttrKind; alignment attribute entries; and string
/// attribute enties, which are for target-dependent attributes.
class EnumAttributeImpl : public AttributeImpl {
Attribute::AttrKind Kind;
protected:
EnumAttributeImpl(AttrEntryKind ID, Attribute::AttrKind Kind)
: AttributeImpl(ID), Kind(Kind) {}
public:
EnumAttributeImpl(Attribute::AttrKind Kind)
: AttributeImpl(EnumAttrEntry), Kind(Kind) {
assert(Kind != Attribute::AttrKind::None &&
"Can't create a None attribute!");
}
Attribute::AttrKind getEnumKind() const { return Kind; }
};
class IntAttributeImpl : public EnumAttributeImpl {
uint64_t Val;
public:
IntAttributeImpl(Attribute::AttrKind Kind, uint64_t Val)
: EnumAttributeImpl(IntAttrEntry, Kind), Val(Val) {
assert(Attribute::isIntAttrKind(Kind) &&
"Wrong kind for int attribute!");
}
uint64_t getValue() const { return Val; }
};
class StringAttributeImpl final
: public AttributeImpl,
private TrailingObjects<StringAttributeImpl, char> {
friend TrailingObjects;
unsigned KindSize;
unsigned ValSize;
size_t numTrailingObjects(OverloadToken<char>) const {
return KindSize + 1 + ValSize + 1;
}
public:
StringAttributeImpl(StringRef Kind, StringRef Val = StringRef())
: AttributeImpl(StringAttrEntry), KindSize(Kind.size()),
ValSize(Val.size()) {
char *TrailingString = getTrailingObjects<char>();
// Some users rely on zero-termination.
llvm::copy(Kind, TrailingString);
TrailingString[KindSize] = '\0';
llvm::copy(Val, &TrailingString[KindSize + 1]);
TrailingString[KindSize + 1 + ValSize] = '\0';
}
StringRef getStringKind() const {
return StringRef(getTrailingObjects<char>(), KindSize);
}
StringRef getStringValue() const {
return StringRef(getTrailingObjects<char>() + KindSize + 1, ValSize);
}
static size_t totalSizeToAlloc(StringRef Kind, StringRef Val) {
return TrailingObjects::totalSizeToAlloc<char>(Kind.size() + 1 +
Val.size() + 1);
}
};
class TypeAttributeImpl : public EnumAttributeImpl {
Type *Ty;
public:
TypeAttributeImpl(Attribute::AttrKind Kind, Type *Ty)
: EnumAttributeImpl(TypeAttrEntry, Kind), Ty(Ty) {}
Type *getTypeValue() const { return Ty; }
};
class ConstantRangeAttributeImpl : public EnumAttributeImpl {
ConstantRange CR;
public:
ConstantRangeAttributeImpl(Attribute::AttrKind Kind, const ConstantRange &CR)
: EnumAttributeImpl(ConstantRangeAttrEntry, Kind), CR(CR) {}
const ConstantRange &getConstantRangeValue() const { return CR; }
};
class ConstantRangeListAttributeImpl final
: public EnumAttributeImpl,
private TrailingObjects<ConstantRangeListAttributeImpl, ConstantRange> {
friend TrailingObjects;
unsigned Size;
size_t numTrailingObjects(OverloadToken<ConstantRange>) const { return Size; }
public:
ConstantRangeListAttributeImpl(Attribute::AttrKind Kind,
ArrayRef<ConstantRange> Val)
: EnumAttributeImpl(ConstantRangeListAttrEntry, Kind), Size(Val.size()) {
assert(Size > 0);
ConstantRange *TrailingCR = getTrailingObjects<ConstantRange>();
std::uninitialized_copy(Val.begin(), Val.end(), TrailingCR);
}
~ConstantRangeListAttributeImpl() {
ConstantRange *TrailingCR = getTrailingObjects<ConstantRange>();
for (unsigned I = 0; I != Size; ++I)
TrailingCR[I].~ConstantRange();
}
ArrayRef<ConstantRange> getConstantRangeListValue() const {
return ArrayRef(getTrailingObjects<ConstantRange>(), Size);
}
static size_t totalSizeToAlloc(ArrayRef<ConstantRange> Val) {
return TrailingObjects::totalSizeToAlloc<ConstantRange>(Val.size());
}
};
class AttributeBitSet {
/// Bitset with a bit for each available attribute Attribute::AttrKind.
uint8_t AvailableAttrs[12] = {};
static_assert(Attribute::EndAttrKinds <= sizeof(AvailableAttrs) * CHAR_BIT,
"Too many attributes");
public:
bool hasAttribute(Attribute::AttrKind Kind) const {
return AvailableAttrs[Kind / 8] & (1 << (Kind % 8));
}
void addAttribute(Attribute::AttrKind Kind) {
AvailableAttrs[Kind / 8] |= 1 << (Kind % 8);
}
};
//===----------------------------------------------------------------------===//
/// \class
/// This class represents a group of attributes that apply to one
/// element: function, return type, or parameter.
class AttributeSetNode final
: public FoldingSetNode,
private TrailingObjects<AttributeSetNode, Attribute> {
friend TrailingObjects;
unsigned NumAttrs; ///< Number of attributes in this node.
AttributeBitSet AvailableAttrs; ///< Available enum attributes.
DenseMap<StringRef, Attribute> StringAttrs;
AttributeSetNode(ArrayRef<Attribute> Attrs);
static AttributeSetNode *getSorted(LLVMContext &C,
ArrayRef<Attribute> SortedAttrs);
std::optional<Attribute> findEnumAttribute(Attribute::AttrKind Kind) const;
public:
// AttributesSetNode is uniqued, these should not be available.
AttributeSetNode(const AttributeSetNode &) = delete;
AttributeSetNode &operator=(const AttributeSetNode &) = delete;
void operator delete(void *p) { ::operator delete(p); }
static AttributeSetNode *get(LLVMContext &C, const AttrBuilder &B);
static AttributeSetNode *get(LLVMContext &C, ArrayRef<Attribute> Attrs);
/// Return the number of attributes this AttributeList contains.
unsigned getNumAttributes() const { return NumAttrs; }
bool hasAttribute(Attribute::AttrKind Kind) const {
return AvailableAttrs.hasAttribute(Kind);
}
bool hasAttribute(StringRef Kind) const;
bool hasAttributes() const { return NumAttrs != 0; }
Attribute getAttribute(Attribute::AttrKind Kind) const;
Attribute getAttribute(StringRef Kind) const;
MaybeAlign getAlignment() const;
MaybeAlign getStackAlignment() const;
uint64_t getDereferenceableBytes() const;
uint64_t getDereferenceableOrNullBytes() const;
std::optional<std::pair<unsigned, std::optional<unsigned>>> getAllocSizeArgs()
const;
unsigned getVScaleRangeMin() const;
std::optional<unsigned> getVScaleRangeMax() const;
Extend the `uwtable` attribute with unwind table kind We have the `clang -cc1` command-line option `-funwind-tables=1|2` and the codegen option `VALUE_CODEGENOPT(UnwindTables, 2, 0) ///< Unwind tables (1) or asynchronous unwind tables (2)`. However, this is encoded in LLVM IR by the presence or the absence of the `uwtable` attribute, i.e. we lose the information whether to generate want just some unwind tables or asynchronous unwind tables. Asynchronous unwind tables take more space in the runtime image, I'd estimate something like 80-90% more, as the difference is adding roughly the same number of CFI directives as for prologues, only a bit simpler (e.g. `.cfi_offset reg, off` vs. `.cfi_restore reg`). Or even more, if you consider tail duplication of epilogue blocks. Asynchronous unwind tables could also restrict code generation to having only a finite number of frame pointer adjustments (an example of *not* having a finite number of `SP` adjustments is on AArch64 when untagging the stack (MTE) in some cases the compiler can modify `SP` in a loop). Having the CFI precise up to an instruction generally also means one cannot bundle together CFI instructions once the prologue is done, they need to be interspersed with ordinary instructions, which means extra `DW_CFA_advance_loc` commands, further increasing the unwind tables size. That is to say, async unwind tables impose a non-negligible overhead, yet for the most common use cases (like C++ exceptions), they are not even needed. This patch extends the `uwtable` attribute with an optional value: - `uwtable` (default to `async`) - `uwtable(sync)`, synchronous unwind tables - `uwtable(async)`, asynchronous (instruction precise) unwind tables Reviewed By: MaskRay Differential Revision: https://reviews.llvm.org/D114543
2022-02-14 13:41:34 +00:00
UWTableKind getUWTableKind() const;
AllocFnKind getAllocKind() const;
MemoryEffects getMemoryEffects() const;
IR: Add nofpclass parameter attribute This carries a bitmask indicating forbidden floating-point value kinds in the argument or return value. This will enable interprocedural -ffinite-math-only optimizations. This is primarily to cover the no-nans and no-infinities cases, but also covers the other floating point classes for free. Textually, this provides a number of names corresponding to bits in FPClassTest, e.g. call nofpclass(nan inf) @must_be_finite() call nofpclass(snan) @cannot_be_snan() This is more expressive than the existing nnan and ninf fast math flags. As an added bonus, you can represent fun things like nanf: declare nofpclass(inf zero sub norm) float @only_nans() Compared to nnan/ninf: - Can be applied to individual call operands as well as the return value - Can distinguish signaling and quiet nans - Distinguishes the sign of infinities - Can be safely propagated since it doesn't imply anything about other operands. - Does not apply to FP instructions; it's not a flag This is one step closer to being able to retire "no-nans-fp-math" and "no-infs-fp-math". The one remaining situation where we have no way to represent no-nans/infs is for loads (if we wanted to solve this we could introduce !nofpclass metadata, following along with noundef/!noundef). This is to help simplify the GPU builtin math library distribution. Currently the library code has explicit finite math only checks, read from global constants the compiler driver needs to set based on the compiler flags during linking. We end up having to internalize the library into each translation unit in case different linked modules have different math flags. By propagating known-not-nan and known-not-infinity information, we can automatically prune the edge case handling in most functions if the function is only reached from fast math uses.
2022-12-06 13:04:15 -05:00
FPClassTest getNoFPClass() const;
std::string getAsString(bool InAttrGrp) const;
Type *getAttributeType(Attribute::AttrKind Kind) const;
using iterator = const Attribute *;
iterator begin() const { return getTrailingObjects<Attribute>(); }
iterator end() const { return begin() + NumAttrs; }
void Profile(FoldingSetNodeID &ID) const {
Profile(ID, ArrayRef(begin(), end()));
}
static void Profile(FoldingSetNodeID &ID, ArrayRef<Attribute> AttrList) {
for (const auto &Attr : AttrList)
Attr.Profile(ID);
}
};
//===----------------------------------------------------------------------===//
/// \class
/// This class represents a set of attributes that apply to the function,
/// return type, and parameters.
class AttributeListImpl final
: public FoldingSetNode,
private TrailingObjects<AttributeListImpl, AttributeSet> {
friend class AttributeList;
friend TrailingObjects;
private:
unsigned NumAttrSets; ///< Number of entries in this set.
/// Available enum function attributes.
AttributeBitSet AvailableFunctionAttrs;
/// Union of enum attributes available at any index.
AttributeBitSet AvailableSomewhereAttrs;
// Helper fn for TrailingObjects class.
size_t numTrailingObjects(OverloadToken<AttributeSet>) { return NumAttrSets; }
public:
AttributeListImpl(ArrayRef<AttributeSet> Sets);
// AttributesSetImpt is uniqued, these should not be available.
AttributeListImpl(const AttributeListImpl &) = delete;
AttributeListImpl &operator=(const AttributeListImpl &) = delete;
/// Return true if the AttributeSet or the FunctionIndex has an
/// enum attribute of the given kind.
bool hasFnAttribute(Attribute::AttrKind Kind) const {
return AvailableFunctionAttrs.hasAttribute(Kind);
}
/// Return true if the specified attribute is set for at least one
/// parameter or for the return value. If Index is not nullptr, the index
/// of a parameter with the specified attribute is provided.
bool hasAttrSomewhere(Attribute::AttrKind Kind,
unsigned *Index = nullptr) const;
using iterator = const AttributeSet *;
iterator begin() const { return getTrailingObjects<AttributeSet>(); }
iterator end() const { return begin() + NumAttrSets; }
void Profile(FoldingSetNodeID &ID) const;
static void Profile(FoldingSetNodeID &ID, ArrayRef<AttributeSet> Nodes);
void dump() const;
};
static_assert(std::is_trivially_destructible<AttributeListImpl>::value,
"AttributeListImpl should be trivially destructible");
} // end namespace llvm
#endif // LLVM_LIB_IR_ATTRIBUTEIMPL_H