llvm-project/clang/lib/Sema/SemaTemplateVariadic.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1503 lines
55 KiB
C++
Raw Normal View History

//===------- SemaTemplateVariadic.cpp - C++ Variadic Templates ------------===/
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//===----------------------------------------------------------------------===/
//
// This file implements semantic analysis for C++0x variadic templates.
//===----------------------------------------------------------------------===/
#include "TypeLocBuilder.h"
#include "clang/AST/DynamicRecursiveASTVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/TypeLoc.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/ParsedTemplate.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaInternal.h"
#include "clang/Sema/Template.h"
#include "llvm/Support/SaveAndRestore.h"
#include <optional>
using namespace clang;
//----------------------------------------------------------------------------
// Visitor that collects unexpanded parameter packs
//----------------------------------------------------------------------------
namespace {
/// A class that collects unexpanded parameter packs.
class CollectUnexpandedParameterPacksVisitor
: public DynamicRecursiveASTVisitor {
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded;
bool InLambdaOrBlock = false;
unsigned DepthLimit = (unsigned)-1;
#ifndef NDEBUG
bool ContainsIntermediatePacks = false;
#endif
void addUnexpanded(NamedDecl *ND, SourceLocation Loc = SourceLocation()) {
if (auto *VD = dyn_cast<VarDecl>(ND)) {
// For now, the only problematic case is a generic lambda's templated
// call operator, so we don't need to look for all the other ways we
// could have reached a dependent parameter pack.
auto *FD = dyn_cast<FunctionDecl>(VD->getDeclContext());
auto *FTD = FD ? FD->getDescribedFunctionTemplate() : nullptr;
if (FTD && FTD->getTemplateParameters()->getDepth() >= DepthLimit)
return;
} else if (ND->isTemplateParameterPack() &&
getDepthAndIndex(ND).first >= DepthLimit) {
return;
}
Unexpanded.push_back({ND, Loc});
}
void addUnexpanded(const TemplateTypeParmType *T,
SourceLocation Loc = SourceLocation()) {
if (T->getDepth() < DepthLimit)
Unexpanded.push_back({T, Loc});
}
public:
explicit CollectUnexpandedParameterPacksVisitor(
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded)
: Unexpanded(Unexpanded) {
ShouldWalkTypesOfTypeLocs = false;
// We need this so we can find e.g. attributes on lambdas.
ShouldVisitImplicitCode = true;
}
//------------------------------------------------------------------------
// Recording occurrences of (unexpanded) parameter packs.
//------------------------------------------------------------------------
/// Record occurrences of template type parameter packs.
bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) override {
if (TL.getTypePtr()->isParameterPack())
addUnexpanded(TL.getTypePtr(), TL.getNameLoc());
return true;
}
/// Record occurrences of template type parameter packs
/// when we don't have proper source-location information for
/// them.
///
/// Ideally, this routine would never be used.
bool VisitTemplateTypeParmType(TemplateTypeParmType *T) override {
if (T->isParameterPack())
addUnexpanded(T);
return true;
}
/// Record occurrences of function and non-type template
/// parameter packs in an expression.
bool VisitDeclRefExpr(DeclRefExpr *E) override {
if (E->getDecl()->isParameterPack())
addUnexpanded(E->getDecl(), E->getLocation());
return true;
}
/// Record occurrences of template template parameter packs.
bool TraverseTemplateName(TemplateName Template) override {
if (auto *TTP = dyn_cast_or_null<TemplateTemplateParmDecl>(
Template.getAsTemplateDecl())) {
if (TTP->isParameterPack())
addUnexpanded(TTP);
}
#ifndef NDEBUG
ContainsIntermediatePacks |=
(bool)Template.getAsSubstTemplateTemplateParmPack();
#endif
return DynamicRecursiveASTVisitor::TraverseTemplateName(Template);
}
/// Suppress traversal into Objective-C container literal
/// elements that are pack expansions.
bool TraverseObjCDictionaryLiteral(ObjCDictionaryLiteral *E) override {
if (!E->containsUnexpandedParameterPack())
return true;
for (unsigned I = 0, N = E->getNumElements(); I != N; ++I) {
ObjCDictionaryElement Element = E->getKeyValueElement(I);
if (Element.isPackExpansion())
continue;
TraverseStmt(Element.Key);
TraverseStmt(Element.Value);
}
return true;
}
//------------------------------------------------------------------------
// Pruning the search for unexpanded parameter packs.
//------------------------------------------------------------------------
/// Suppress traversal into statements and expressions that
/// do not contain unexpanded parameter packs.
bool TraverseStmt(Stmt *S) override {
Expr *E = dyn_cast_or_null<Expr>(S);
if ((E && E->containsUnexpandedParameterPack()) || InLambdaOrBlock)
return DynamicRecursiveASTVisitor::TraverseStmt(S);
return true;
}
/// Suppress traversal into types that do not contain
/// unexpanded parameter packs.
bool TraverseType(QualType T) override {
if ((!T.isNull() && T->containsUnexpandedParameterPack()) ||
InLambdaOrBlock)
return DynamicRecursiveASTVisitor::TraverseType(T);
return true;
}
/// Suppress traversal into types with location information
/// that do not contain unexpanded parameter packs.
bool TraverseTypeLoc(TypeLoc TL) override {
if ((!TL.getType().isNull() &&
TL.getType()->containsUnexpandedParameterPack()) ||
InLambdaOrBlock)
return DynamicRecursiveASTVisitor::TraverseTypeLoc(TL);
return true;
}
/// Suppress traversal of parameter packs.
bool TraverseDecl(Decl *D) override {
// A function parameter pack is a pack expansion, so cannot contain
// an unexpanded parameter pack. Likewise for a template parameter
// pack that contains any references to other packs.
if (D && D->isParameterPack())
return true;
return DynamicRecursiveASTVisitor::TraverseDecl(D);
}
/// Suppress traversal of pack-expanded attributes.
bool TraverseAttr(Attr *A) override {
if (A->isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseAttr(A);
}
/// Suppress traversal of pack expansion expressions and types.
///@{
bool TraversePackExpansionType(PackExpansionType *T) override {
return true;
}
bool TraversePackExpansionTypeLoc(PackExpansionTypeLoc TL) override {
return true;
}
bool TraversePackExpansionExpr(PackExpansionExpr *E) override {
return true;
}
bool TraverseCXXFoldExpr(CXXFoldExpr *E) override { return true; }
bool TraversePackIndexingExpr(PackIndexingExpr *E) override {
return DynamicRecursiveASTVisitor::TraverseStmt(E->getIndexExpr());
}
bool TraversePackIndexingType(PackIndexingType *E) override {
return DynamicRecursiveASTVisitor::TraverseStmt(E->getIndexExpr());
}
bool TraversePackIndexingTypeLoc(PackIndexingTypeLoc TL) override {
return DynamicRecursiveASTVisitor::TraverseStmt(TL.getIndexExpr());
}
///@}
/// Suppress traversal of using-declaration pack expansion.
bool
TraverseUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *D) override {
if (D->isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseUnresolvedUsingValueDecl(D);
}
/// Suppress traversal of using-declaration pack expansion.
bool TraverseUnresolvedUsingTypenameDecl(
UnresolvedUsingTypenameDecl *D) override {
if (D->isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseUnresolvedUsingTypenameDecl(D);
}
/// Suppress traversal of template argument pack expansions.
bool TraverseTemplateArgument(const TemplateArgument &Arg) override {
if (Arg.isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseTemplateArgument(Arg);
}
/// Suppress traversal of template argument pack expansions.
bool
TraverseTemplateArgumentLoc(const TemplateArgumentLoc &ArgLoc) override {
if (ArgLoc.getArgument().isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseTemplateArgumentLoc(ArgLoc);
}
/// Suppress traversal of base specifier pack expansions.
bool TraverseCXXBaseSpecifier(const CXXBaseSpecifier &Base) override {
if (Base.isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseCXXBaseSpecifier(Base);
}
/// Suppress traversal of mem-initializer pack expansions.
bool TraverseConstructorInitializer(CXXCtorInitializer *Init) override {
if (Init->isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseConstructorInitializer(Init);
}
/// Note whether we're traversing a lambda containing an unexpanded
/// parameter pack. In this case, the unexpanded pack can occur anywhere,
/// including all the places where we normally wouldn't look. Within a
/// lambda, we don't propagate the 'contains unexpanded parameter pack' bit
/// outside an expression.
bool TraverseLambdaExpr(LambdaExpr *Lambda) override {
// The ContainsUnexpandedParameterPack bit on a lambda is always correct,
// even if it's contained within another lambda.
if (!Lambda->containsUnexpandedParameterPack())
return true;
SaveAndRestore _(InLambdaOrBlock, true);
unsigned OldDepthLimit = DepthLimit;
if (auto *TPL = Lambda->getTemplateParameterList())
DepthLimit = TPL->getDepth();
DynamicRecursiveASTVisitor::TraverseLambdaExpr(Lambda);
DepthLimit = OldDepthLimit;
return true;
}
/// Analogously for blocks.
bool TraverseBlockExpr(BlockExpr *Block) override {
if (!Block->containsUnexpandedParameterPack())
return true;
SaveAndRestore _(InLambdaOrBlock, true);
DynamicRecursiveASTVisitor::TraverseBlockExpr(Block);
return true;
}
/// Suppress traversal within pack expansions in lambda captures.
bool TraverseLambdaCapture(LambdaExpr *Lambda, const LambdaCapture *C,
Expr *Init) override {
if (C->isPackExpansion())
return true;
return DynamicRecursiveASTVisitor::TraverseLambdaCapture(Lambda, C, Init);
}
#ifndef NDEBUG
bool TraverseFunctionParmPackExpr(FunctionParmPackExpr *) override {
ContainsIntermediatePacks = true;
return true;
}
bool TraverseSubstNonTypeTemplateParmPackExpr(
SubstNonTypeTemplateParmPackExpr *) override {
ContainsIntermediatePacks = true;
return true;
}
bool VisitSubstTemplateTypeParmPackType(
SubstTemplateTypeParmPackType *) override {
ContainsIntermediatePacks = true;
return true;
}
bool VisitSubstTemplateTypeParmPackTypeLoc(
SubstTemplateTypeParmPackTypeLoc) override {
ContainsIntermediatePacks = true;
return true;
}
bool containsIntermediatePacks() const { return ContainsIntermediatePacks; }
#endif
};
}
/// Determine whether it's possible for an unexpanded parameter pack to
/// be valid in this location. This only happens when we're in a declaration
/// that is nested within an expression that could be expanded, such as a
/// lambda-expression within a function call.
///
/// This is conservatively correct, but may claim that some unexpanded packs are
/// permitted when they are not.
bool Sema::isUnexpandedParameterPackPermitted() {
for (auto *SI : FunctionScopes)
if (isa<sema::LambdaScopeInfo>(SI))
return true;
return false;
}
/// Diagnose all of the unexpanded parameter packs in the given
/// vector.
bool
Sema::DiagnoseUnexpandedParameterPacks(SourceLocation Loc,
UnexpandedParameterPackContext UPPC,
ArrayRef<UnexpandedParameterPack> Unexpanded) {
if (Unexpanded.empty())
return false;
// If we are within a lambda expression and referencing a pack that is not
// declared within the lambda itself, that lambda contains an unexpanded
// parameter pack, and we are done. Analogously for blocks.
// FIXME: Store 'Unexpanded' on the lambda so we don't need to recompute it
// later.
SmallVector<UnexpandedParameterPack, 4> ParamPackReferences;
if (sema::CapturingScopeInfo *CSI = getEnclosingLambdaOrBlock()) {
for (auto &Pack : Unexpanded) {
auto DeclaresThisPack = [&](NamedDecl *LocalPack) {
if (auto *TTPT = Pack.first.dyn_cast<const TemplateTypeParmType *>()) {
auto *TTPD = dyn_cast<TemplateTypeParmDecl>(LocalPack);
return TTPD && TTPD->getTypeForDecl() == TTPT;
}
return declaresSameEntity(cast<NamedDecl *>(Pack.first), LocalPack);
};
if (llvm::any_of(CSI->LocalPacks, DeclaresThisPack))
ParamPackReferences.push_back(Pack);
}
if (ParamPackReferences.empty()) {
// Construct in lambda only references packs declared outside the lambda.
// That's OK for now, but the lambda itself is considered to contain an
// unexpanded pack in this case, which will require expansion outside the
// lambda.
// We do not permit pack expansion that would duplicate a statement
// expression, not even within a lambda.
// FIXME: We could probably support this for statement expressions that
// do not contain labels.
// FIXME: This is insufficient to detect this problem; consider
// f( ({ bad: 0; }) + pack ... );
bool EnclosingStmtExpr = false;
for (unsigned N = FunctionScopes.size(); N; --N) {
sema::FunctionScopeInfo *Func = FunctionScopes[N-1];
if (llvm::any_of(
Func->CompoundScopes,
[](sema::CompoundScopeInfo &CSI) { return CSI.IsStmtExpr; })) {
EnclosingStmtExpr = true;
break;
}
// Coumpound-statements outside the lambda are OK for now; we'll check
// for those when we finish handling the lambda.
if (Func == CSI)
break;
}
if (!EnclosingStmtExpr) {
CSI->ContainsUnexpandedParameterPack = true;
return false;
}
} else {
Unexpanded = ParamPackReferences;
}
}
SmallVector<SourceLocation, 4> Locations;
SmallVector<IdentifierInfo *, 4> Names;
llvm::SmallPtrSet<IdentifierInfo *, 4> NamesKnown;
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
IdentifierInfo *Name = nullptr;
if (const TemplateTypeParmType *TTP
= Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>())
Name = TTP->getIdentifier();
else if (NamedDecl *ND = Unexpanded[I].first.dyn_cast<NamedDecl *>())
Name = ND->getIdentifier();
if (Name && NamesKnown.insert(Name).second)
Names.push_back(Name);
if (Unexpanded[I].second.isValid())
Locations.push_back(Unexpanded[I].second);
}
auto DB = Diag(Loc, diag::err_unexpanded_parameter_pack)
<< (int)UPPC << (int)Names.size();
for (size_t I = 0, E = std::min(Names.size(), (size_t)2); I != E; ++I)
DB << Names[I];
for (unsigned I = 0, N = Locations.size(); I != N; ++I)
DB << SourceRange(Locations[I]);
return true;
}
bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TypeSourceInfo *T,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
if (!T->getType()->containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(
T->getTypeLoc());
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(Expr *E,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
if (!E->containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor Visitor(Unexpanded);
Visitor.TraverseStmt(E);
#ifndef NDEBUG
// The expression might contain a type/subexpression that has been substituted
// but has the expansion held off, e.g. a FunctionParmPackExpr which a larger
// CXXFoldExpr would expand. It's only possible when expanding a lambda as a
// pattern of a fold expression, so don't fire on an empty result in that
// case.
bool LambdaReferencingOuterPacks =
getEnclosingLambdaOrBlock() && Visitor.containsIntermediatePacks();
assert((!Unexpanded.empty() || LambdaReferencingOuterPacks) &&
"Unable to find unexpanded parameter packs");
#endif
return DiagnoseUnexpandedParameterPacks(E->getBeginLoc(), UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPackInRequiresExpr(RequiresExpr *RE) {
if (!RE->containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(RE);
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
// We only care about unexpanded references to the RequiresExpr's own
// parameter packs.
auto Parms = RE->getLocalParameters();
llvm::SmallPtrSet<NamedDecl*, 8> ParmSet(Parms.begin(), Parms.end());
SmallVector<UnexpandedParameterPack, 2> UnexpandedParms;
for (auto Parm : Unexpanded)
if (ParmSet.contains(Parm.first.dyn_cast<NamedDecl *>()))
UnexpandedParms.push_back(Parm);
if (UnexpandedParms.empty())
return false;
return DiagnoseUnexpandedParameterPacks(RE->getBeginLoc(), UPPC_Requirement,
UnexpandedParms);
}
bool Sema::DiagnoseUnexpandedParameterPack(const CXXScopeSpec &SS,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
if (!SS.getScopeRep() ||
!SS.getScopeRep()->containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseNestedNameSpecifier(SS.getScopeRep());
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(SS.getRange().getBegin(),
UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(const DeclarationNameInfo &NameInfo,
UnexpandedParameterPackContext UPPC) {
// C++0x [temp.variadic]p5:
// An appearance of a name of a parameter pack that is not expanded is
// ill-formed.
switch (NameInfo.getName().getNameKind()) {
case DeclarationName::Identifier:
case DeclarationName::ObjCZeroArgSelector:
case DeclarationName::ObjCOneArgSelector:
case DeclarationName::ObjCMultiArgSelector:
case DeclarationName::CXXOperatorName:
case DeclarationName::CXXLiteralOperatorName:
case DeclarationName::CXXUsingDirective:
case DeclarationName::CXXDeductionGuideName:
return false;
case DeclarationName::CXXConstructorName:
case DeclarationName::CXXDestructorName:
case DeclarationName::CXXConversionFunctionName:
2010-12-16 17:19:19 +00:00
// FIXME: We shouldn't need this null check!
if (TypeSourceInfo *TSInfo = NameInfo.getNamedTypeInfo())
return DiagnoseUnexpandedParameterPack(NameInfo.getLoc(), TSInfo, UPPC);
if (!NameInfo.getName().getCXXNameType()->containsUnexpandedParameterPack())
return false;
break;
}
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseType(NameInfo.getName().getCXXNameType());
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(NameInfo.getLoc(), UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(SourceLocation Loc,
TemplateName Template,
UnexpandedParameterPackContext UPPC) {
if (Template.isNull() || !Template.containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateName(Template);
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(Loc, UPPC, Unexpanded);
}
bool Sema::DiagnoseUnexpandedParameterPack(TemplateArgumentLoc Arg,
UnexpandedParameterPackContext UPPC) {
if (Arg.getArgument().isNull() ||
!Arg.getArgument().containsUnexpandedParameterPack())
return false;
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateArgumentLoc(Arg);
assert(!Unexpanded.empty() && "Unable to find unexpanded parameter packs");
return DiagnoseUnexpandedParameterPacks(Arg.getLocation(), UPPC, Unexpanded);
}
void Sema::collectUnexpandedParameterPacks(TemplateArgument Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateArgument(Arg);
}
void Sema::collectUnexpandedParameterPacks(TemplateArgumentLoc Arg,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseTemplateArgumentLoc(Arg);
}
void Sema::collectUnexpandedParameterPacks(QualType T,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(T);
}
void Sema::collectUnexpandedParameterPacks(TypeLoc TL,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseTypeLoc(TL);
}
void Sema::collectUnexpandedParameterPacks(
NestedNameSpecifierLoc NNS,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseNestedNameSpecifierLoc(NNS);
}
void Sema::collectUnexpandedParameterPacks(
const DeclarationNameInfo &NameInfo,
SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded)
.TraverseDeclarationNameInfo(NameInfo);
}
void Sema::collectUnexpandedParameterPacks(
Expr *E, SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseStmt(E);
}
ParsedTemplateArgument
Sema::ActOnPackExpansion(const ParsedTemplateArgument &Arg,
SourceLocation EllipsisLoc) {
if (Arg.isInvalid())
return Arg;
switch (Arg.getKind()) {
case ParsedTemplateArgument::Type: {
TypeResult Result = ActOnPackExpansion(Arg.getAsType(), EllipsisLoc);
if (Result.isInvalid())
return ParsedTemplateArgument();
return ParsedTemplateArgument(Arg.getKind(), Result.get().getAsOpaquePtr(),
Arg.getLocation());
}
case ParsedTemplateArgument::NonType: {
ExprResult Result = ActOnPackExpansion(Arg.getAsExpr(), EllipsisLoc);
if (Result.isInvalid())
return ParsedTemplateArgument();
return ParsedTemplateArgument(Arg.getKind(), Result.get(),
Arg.getLocation());
}
case ParsedTemplateArgument::Template:
if (!Arg.getAsTemplate().get().containsUnexpandedParameterPack()) {
SourceRange R(Arg.getLocation());
if (Arg.getScopeSpec().isValid())
R.setBegin(Arg.getScopeSpec().getBeginLoc());
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< R;
return ParsedTemplateArgument();
}
return Arg.getTemplatePackExpansion(EllipsisLoc);
}
llvm_unreachable("Unhandled template argument kind?");
}
TypeResult Sema::ActOnPackExpansion(ParsedType Type,
SourceLocation EllipsisLoc) {
TypeSourceInfo *TSInfo;
GetTypeFromParser(Type, &TSInfo);
if (!TSInfo)
return true;
TypeSourceInfo *TSResult =
CheckPackExpansion(TSInfo, EllipsisLoc, std::nullopt);
if (!TSResult)
return true;
return CreateParsedType(TSResult->getType(), TSResult);
}
TypeSourceInfo *Sema::CheckPackExpansion(TypeSourceInfo *Pattern,
SourceLocation EllipsisLoc,
UnsignedOrNone NumExpansions) {
// Create the pack expansion type and source-location information.
QualType Result = CheckPackExpansion(Pattern->getType(),
Pattern->getTypeLoc().getSourceRange(),
EllipsisLoc, NumExpansions);
if (Result.isNull())
return nullptr;
TypeLocBuilder TLB;
TLB.pushFullCopy(Pattern->getTypeLoc());
PackExpansionTypeLoc TL = TLB.push<PackExpansionTypeLoc>(Result);
TL.setEllipsisLoc(EllipsisLoc);
return TLB.getTypeSourceInfo(Context, Result);
}
QualType Sema::CheckPackExpansion(QualType Pattern, SourceRange PatternRange,
SourceLocation EllipsisLoc,
UnsignedOrNone NumExpansions) {
// C++11 [temp.variadic]p5:
// The pattern of a pack expansion shall name one or more
// parameter packs that are not expanded by a nested pack
// expansion.
//
// A pattern containing a deduced type can't occur "naturally" but arises in
// the desugaring of an init-capture pack.
if (!Pattern->containsUnexpandedParameterPack() &&
!Pattern->getContainedDeducedType()) {
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< PatternRange;
return QualType();
}
return Context.getPackExpansionType(Pattern, NumExpansions,
/*ExpectPackInType=*/false);
}
ExprResult Sema::ActOnPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc) {
return CheckPackExpansion(Pattern, EllipsisLoc, std::nullopt);
}
ExprResult Sema::CheckPackExpansion(Expr *Pattern, SourceLocation EllipsisLoc,
UnsignedOrNone NumExpansions) {
if (!Pattern)
return ExprError();
// C++0x [temp.variadic]p5:
// The pattern of a pack expansion shall name one or more
// parameter packs that are not expanded by a nested pack
// expansion.
if (!Pattern->containsUnexpandedParameterPack()) {
Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< Pattern->getSourceRange();
CorrectDelayedTyposInExpr(Pattern);
return ExprError();
}
// Create the pack expansion expression and source-location information.
return new (Context) PackExpansionExpr(Pattern, EllipsisLoc, NumExpansions);
}
bool Sema::CheckParameterPacksForExpansion(
SourceLocation EllipsisLoc, SourceRange PatternRange,
ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs, bool &ShouldExpand,
bool &RetainExpansion, UnsignedOrNone &NumExpansions) {
ShouldExpand = true;
RetainExpansion = false;
std::pair<IdentifierInfo *, SourceLocation> FirstPack;
bool HaveFirstPack = false;
UnsignedOrNone NumPartialExpansions = std::nullopt;
SourceLocation PartiallySubstitutedPackLoc;
typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
for (UnexpandedParameterPack ParmPack : Unexpanded) {
// Compute the depth and index for this parameter pack.
unsigned Depth = 0, Index = 0;
IdentifierInfo *Name;
bool IsVarDeclPack = false;
FunctionParmPackExpr *BindingPack = nullptr;
if (const TemplateTypeParmType *TTP =
ParmPack.first.dyn_cast<const TemplateTypeParmType *>()) {
Depth = TTP->getDepth();
Index = TTP->getIndex();
Name = TTP->getIdentifier();
} else {
NamedDecl *ND = cast<NamedDecl *>(ParmPack.first);
if (isa<VarDecl>(ND))
IsVarDeclPack = true;
else if (isa<BindingDecl>(ND)) {
// Find the instantiated BindingDecl and check it for a resolved pack.
llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation =
CurrentInstantiationScope->findInstantiationOf(ND);
Decl *B = cast<Decl *>(*Instantiation);
Expr *BindingExpr = cast<BindingDecl>(B)->getBinding();
BindingPack = cast_if_present<FunctionParmPackExpr>(BindingExpr);
if (!BindingPack) {
ShouldExpand = false;
continue;
}
} else
std::tie(Depth, Index) = getDepthAndIndex(ND);
Name = ND->getIdentifier();
}
// Determine the size of this argument pack.
unsigned NewPackSize, PendingPackExpansionSize = 0;
if (IsVarDeclPack) {
// Figure out whether we're instantiating to an argument pack or not.
llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation =
CurrentInstantiationScope->findInstantiationOf(
cast<NamedDecl *>(ParmPack.first));
if (isa<DeclArgumentPack *>(*Instantiation)) {
// We could expand this function parameter pack.
NewPackSize = cast<DeclArgumentPack *>(*Instantiation)->size();
} else {
// We can't expand this function parameter pack, so we can't expand
// the pack expansion.
ShouldExpand = false;
continue;
}
} else if (BindingPack) {
NewPackSize = BindingPack->getNumExpansions();
} else {
// If we don't have a template argument at this depth/index, then we
// cannot expand the pack expansion. Make a note of this, but we still
// want to check any parameter packs we *do* have arguments for.
if (Depth >= TemplateArgs.getNumLevels() ||
!TemplateArgs.hasTemplateArgument(Depth, Index)) {
ShouldExpand = false;
continue;
}
// Determine the size of the argument pack.
ArrayRef<TemplateArgument> Pack =
TemplateArgs(Depth, Index).getPackAsArray();
NewPackSize = Pack.size();
PendingPackExpansionSize =
llvm::count_if(Pack, [](const TemplateArgument &TA) {
if (!TA.isPackExpansion())
return false;
if (TA.getKind() == TemplateArgument::Type)
return !TA.getAsType()
->castAs<PackExpansionType>()
->getNumExpansions();
if (TA.getKind() == TemplateArgument::Expression)
return !cast<PackExpansionExpr>(TA.getAsExpr())
->getNumExpansions();
return !TA.getNumTemplateExpansions();
});
}
// C++0x [temp.arg.explicit]p9:
// Template argument deduction can extend the sequence of template
// arguments corresponding to a template parameter pack, even when the
// sequence contains explicitly specified template arguments.
if (!IsVarDeclPack && CurrentInstantiationScope) {
if (NamedDecl *PartialPack =
CurrentInstantiationScope->getPartiallySubstitutedPack()) {
unsigned PartialDepth, PartialIndex;
std::tie(PartialDepth, PartialIndex) = getDepthAndIndex(PartialPack);
if (PartialDepth == Depth && PartialIndex == Index) {
RetainExpansion = true;
// We don't actually know the new pack size yet.
NumPartialExpansions = NewPackSize;
PartiallySubstitutedPackLoc = ParmPack.second;
continue;
}
}
}
if (!NumExpansions) {
// This is the first pack we've seen for which we have an argument.
// Record it.
NumExpansions = NewPackSize;
FirstPack.first = Name;
FirstPack.second = ParmPack.second;
HaveFirstPack = true;
continue;
}
if (NewPackSize != *NumExpansions) {
// In some cases, we might be handling packs with unexpanded template
// arguments. For example, this can occur when substituting into a type
// alias declaration that uses its injected template parameters as
// arguments:
//
// template <class... Outer> struct S {
// template <class... Inner> using Alias = S<void(Outer, Inner)...>;
// };
//
// Consider an instantiation attempt like 'S<int>::Alias<Pack...>', where
// Pack comes from another template parameter. 'S<int>' is first
// instantiated, expanding the outer pack 'Outer' to <int>. The alias
// declaration is accordingly substituted, leaving the template arguments
// as unexpanded
// '<Pack...>'.
//
// Since we have no idea of the size of '<Pack...>' until its expansion,
// we shouldn't assume its pack size for validation. However if we are
// certain that there are extra arguments beyond unexpanded packs, in
// which case the pack size is already larger than the previous expansion,
// we can complain that before instantiation.
unsigned LeastNewPackSize = NewPackSize - PendingPackExpansionSize;
if (PendingPackExpansionSize && LeastNewPackSize <= *NumExpansions) {
ShouldExpand = false;
continue;
}
// C++0x [temp.variadic]p5:
// All of the parameter packs expanded by a pack expansion shall have
// the same number of arguments specified.
if (HaveFirstPack)
Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict)
<< FirstPack.first << Name << *NumExpansions
<< (LeastNewPackSize != NewPackSize) << LeastNewPackSize
<< SourceRange(FirstPack.second) << SourceRange(ParmPack.second);
else
Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_multilevel)
<< Name << *NumExpansions << (LeastNewPackSize != NewPackSize)
<< LeastNewPackSize << SourceRange(ParmPack.second);
return true;
}
}
// If we're performing a partial expansion but we also have a full expansion,
// expand to the number of common arguments. For example, given:
//
// template<typename ...T> struct A {
// template<typename ...U> void f(pair<T, U>...);
// };
//
// ... a call to 'A<int, int>().f<int>' should expand the pack once and
// retain an expansion.
if (NumPartialExpansions) {
if (NumExpansions && *NumExpansions < *NumPartialExpansions) {
NamedDecl *PartialPack =
CurrentInstantiationScope->getPartiallySubstitutedPack();
Diag(EllipsisLoc, diag::err_pack_expansion_length_conflict_partial)
<< PartialPack << *NumPartialExpansions << *NumExpansions
<< SourceRange(PartiallySubstitutedPackLoc);
return true;
}
NumExpansions = NumPartialExpansions;
}
return false;
}
UnsignedOrNone Sema::getNumArgumentsInExpansionFromUnexpanded(
[Clang] Fix Handling of Init Capture with Parameter Packs in LambdaScopeForCallOperatorInstantiationRAII (#100766) This PR addresses issues related to the handling of `init capture` with parameter packs in Clang's `LambdaScopeForCallOperatorInstantiationRAII`. Previously, `addInstantiatedCapturesToScope` would add `init capture` containing packs to the scope using the type of the `init capture` to determine the expanded pack size. However, this approach resulted in a pack size of 0 because `getType()->containsUnexpandedParameterPack()` returns `false`. After extensive testing, it appears that the correct pack size can only be inferred from `getInit`. But `getInit` may reference parameters and `init capture` from an outer lambda, as shown in the following example: ```cpp auto L = [](auto... z) { return [... w = z](auto... y) { // ... }; }; ``` To address this, `addInstantiatedCapturesToScope` in `LambdaScopeForCallOperatorInstantiationRAII` should be called last. Additionally, `addInstantiatedCapturesToScope` has been modified to only add `init capture` to the scope. The previous implementation incorrectly called `MakeInstantiatedLocalArgPack` for other non-init captures containing packs, resulting in a pack size of 0. ### Impact This patch affects scenarios where `LambdaScopeForCallOperatorInstantiationRAII` is passed with `ShouldAddDeclsFromParentScope = false`, preventing the correct addition of the current lambda's `init capture` to the scope. There are two main scenarios for `ShouldAddDeclsFromParentScope = false`: 1. **Constraints**: Sometimes constraints are instantiated in place rather than delayed. In this case, `LambdaScopeForCallOperatorInstantiationRAII` does not need to add `init capture` to the scope. 2. **`noexcept` Expressions**: The expressions inside `noexcept` have already been transformed, and the packs referenced within have been expanded. Only `RebuildLambdaInfo` needs to add the expanded captures to the scope, without requiring `addInstantiatedCapturesToScope` from `LambdaScopeForCallOperatorInstantiationRAII`. ### Considerations An alternative approach could involve adding a data structure within the lambda to record the expanded size of the `init capture` pack. However, this would increase the lambda's size and require extensive modifications. This PR is a prerequisite for implmenting https://github.com/llvm/llvm-project/issues/61426
2024-08-09 23:13:11 +08:00
llvm::ArrayRef<UnexpandedParameterPack> Unexpanded,
const MultiLevelTemplateArgumentList &TemplateArgs) {
UnsignedOrNone Result = std::nullopt;
for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
// Compute the depth and index for this parameter pack.
unsigned Depth;
unsigned Index;
if (const TemplateTypeParmType *TTP =
Unexpanded[I].first.dyn_cast<const TemplateTypeParmType *>()) {
Depth = TTP->getDepth();
Index = TTP->getIndex();
} else {
NamedDecl *ND = cast<NamedDecl *>(Unexpanded[I].first);
if (isa<VarDecl>(ND)) {
// Function parameter pack or init-capture pack.
typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
llvm::PointerUnion<Decl *, DeclArgumentPack *> *Instantiation =
CurrentInstantiationScope->findInstantiationOf(
cast<NamedDecl *>(Unexpanded[I].first));
if (isa<Decl *>(*Instantiation))
// The pattern refers to an unexpanded pack. We're not ready to expand
// this pack yet.
return std::nullopt;
unsigned Size = cast<DeclArgumentPack *>(*Instantiation)->size();
assert((!Result || *Result == Size) && "inconsistent pack sizes");
Result = Size;
continue;
}
std::tie(Depth, Index) = getDepthAndIndex(ND);
}
if (Depth >= TemplateArgs.getNumLevels() ||
!TemplateArgs.hasTemplateArgument(Depth, Index))
// The pattern refers to an unknown template argument. We're not ready to
// expand this pack yet.
return std::nullopt;
// Determine the size of the argument pack.
unsigned Size = TemplateArgs(Depth, Index).pack_size();
assert((!Result || *Result == Size) && "inconsistent pack sizes");
Result = Size;
}
return Result;
}
UnsignedOrNone Sema::getNumArgumentsInExpansion(
[Clang] Fix Handling of Init Capture with Parameter Packs in LambdaScopeForCallOperatorInstantiationRAII (#100766) This PR addresses issues related to the handling of `init capture` with parameter packs in Clang's `LambdaScopeForCallOperatorInstantiationRAII`. Previously, `addInstantiatedCapturesToScope` would add `init capture` containing packs to the scope using the type of the `init capture` to determine the expanded pack size. However, this approach resulted in a pack size of 0 because `getType()->containsUnexpandedParameterPack()` returns `false`. After extensive testing, it appears that the correct pack size can only be inferred from `getInit`. But `getInit` may reference parameters and `init capture` from an outer lambda, as shown in the following example: ```cpp auto L = [](auto... z) { return [... w = z](auto... y) { // ... }; }; ``` To address this, `addInstantiatedCapturesToScope` in `LambdaScopeForCallOperatorInstantiationRAII` should be called last. Additionally, `addInstantiatedCapturesToScope` has been modified to only add `init capture` to the scope. The previous implementation incorrectly called `MakeInstantiatedLocalArgPack` for other non-init captures containing packs, resulting in a pack size of 0. ### Impact This patch affects scenarios where `LambdaScopeForCallOperatorInstantiationRAII` is passed with `ShouldAddDeclsFromParentScope = false`, preventing the correct addition of the current lambda's `init capture` to the scope. There are two main scenarios for `ShouldAddDeclsFromParentScope = false`: 1. **Constraints**: Sometimes constraints are instantiated in place rather than delayed. In this case, `LambdaScopeForCallOperatorInstantiationRAII` does not need to add `init capture` to the scope. 2. **`noexcept` Expressions**: The expressions inside `noexcept` have already been transformed, and the packs referenced within have been expanded. Only `RebuildLambdaInfo` needs to add the expanded captures to the scope, without requiring `addInstantiatedCapturesToScope` from `LambdaScopeForCallOperatorInstantiationRAII`. ### Considerations An alternative approach could involve adding a data structure within the lambda to record the expanded size of the `init capture` pack. However, this would increase the lambda's size and require extensive modifications. This PR is a prerequisite for implmenting https://github.com/llvm/llvm-project/issues/61426
2024-08-09 23:13:11 +08:00
QualType T, const MultiLevelTemplateArgumentList &TemplateArgs) {
QualType Pattern = cast<PackExpansionType>(T)->getPattern();
SmallVector<UnexpandedParameterPack, 2> Unexpanded;
CollectUnexpandedParameterPacksVisitor(Unexpanded).TraverseType(Pattern);
return getNumArgumentsInExpansionFromUnexpanded(Unexpanded, TemplateArgs);
}
bool Sema::containsUnexpandedParameterPacks(Declarator &D) {
const DeclSpec &DS = D.getDeclSpec();
switch (DS.getTypeSpecType()) {
case TST_typename_pack_indexing:
case TST_typename:
case TST_typeof_unqualType:
case TST_typeofType:
#define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case TST_##Trait:
#include "clang/Basic/TransformTypeTraits.def"
case TST_atomic: {
QualType T = DS.getRepAsType().get();
if (!T.isNull() && T->containsUnexpandedParameterPack())
return true;
break;
}
case TST_typeof_unqualExpr:
case TST_typeofExpr:
case TST_decltype:
case TST_bitint:
if (DS.getRepAsExpr() &&
DS.getRepAsExpr()->containsUnexpandedParameterPack())
return true;
break;
case TST_unspecified:
case TST_void:
case TST_char:
case TST_wchar:
case TST_char8:
case TST_char16:
case TST_char32:
case TST_int:
case TST_int128:
case TST_half:
case TST_float:
case TST_double:
case TST_Accum:
[Fixed Point Arithmetic] Addition of the remaining fixed point types and their saturated equivalents This diff includes changes for the remaining _Fract and _Sat fixed point types. ``` signed short _Fract s_short_fract; signed _Fract s_fract; signed long _Fract s_long_fract; unsigned short _Fract u_short_fract; unsigned _Fract u_fract; unsigned long _Fract u_long_fract; // Aliased fixed point types short _Accum short_accum; _Accum accum; long _Accum long_accum; short _Fract short_fract; _Fract fract; long _Fract long_fract; // Saturated fixed point types _Sat signed short _Accum sat_s_short_accum; _Sat signed _Accum sat_s_accum; _Sat signed long _Accum sat_s_long_accum; _Sat unsigned short _Accum sat_u_short_accum; _Sat unsigned _Accum sat_u_accum; _Sat unsigned long _Accum sat_u_long_accum; _Sat signed short _Fract sat_s_short_fract; _Sat signed _Fract sat_s_fract; _Sat signed long _Fract sat_s_long_fract; _Sat unsigned short _Fract sat_u_short_fract; _Sat unsigned _Fract sat_u_fract; _Sat unsigned long _Fract sat_u_long_fract; // Aliased saturated fixed point types _Sat short _Accum sat_short_accum; _Sat _Accum sat_accum; _Sat long _Accum sat_long_accum; _Sat short _Fract sat_short_fract; _Sat _Fract sat_fract; _Sat long _Fract sat_long_fract; ``` This diff only allows for declaration of these fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. Differential Revision: https://reviews.llvm.org/D46911 llvm-svn: 334718
2018-06-14 14:53:51 +00:00
case TST_Fract:
case TST_Float16:
case TST_float128:
case TST_ibm128:
case TST_bool:
case TST_decimal32:
case TST_decimal64:
case TST_decimal128:
case TST_enum:
case TST_union:
case TST_struct:
case TST_interface:
case TST_class:
case TST_auto:
case TST_auto_type:
case TST_decltype_auto:
case TST_BFloat16:
#define GENERIC_IMAGE_TYPE(ImgType, Id) case TST_##ImgType##_t:
#include "clang/Basic/OpenCLImageTypes.def"
[HLSL] Implement intangible AST type (#97362) HLSL has a set of intangible types which are described in in the [draft HLSL Specification (**[Basic.types]**)](https://microsoft.github.io/hlsl-specs/specs/hlsl.pdf): There are special implementation-defined types such as handle types, which fall into a category of standard intangible types. Intangible types are types that have no defined object representation or value representation, as such the size is unknown at compile time. A class type T is an intangible class type if it contains an base classes or members of intangible class type, standard intangible type, or arrays of such types. Standard intangible types and intangible class types are collectively called intangible types([9](https://microsoft.github.io/hlsl-specs/specs/hlsl.html#Intangible)). This PR implements one standard intangible type `__hlsl_resource_t` and sets up the infrastructure that will make it easier to add more in the future, such as samplers or raytracing payload handles. The HLSL intangible types are declared in `clang/include/clang/Basic/HLSLIntangibleTypes.def` and this file is included with related macro definition in most places that require edits when a new type is added. The new types are added as keywords and not typedefs to make sure they cannot be redeclared, and they can only be declared in builtin implicit headers. The `__hlsl_resource_t` type represents a handle to a memory resource and it is going to be used in builtin HLSL buffer types like this: template <typename T> class RWBuffer { [[hlsl::contained_type(T)]] [[hlsl::is_rov(false)]] [[hlsl::resource_class(uav)]] __hlsl_resource_t Handle; }; Part 1/3 of llvm/llvm-project#90631. --------- Co-authored-by: Justin Bogner <mail@justinbogner.com>
2024-08-05 10:50:34 -07:00
#define HLSL_INTANGIBLE_TYPE(Name, Id, SingletonId) case TST_##Name:
#include "clang/Basic/HLSLIntangibleTypes.def"
case TST_unknown_anytype:
case TST_error:
break;
}
for (unsigned I = 0, N = D.getNumTypeObjects(); I != N; ++I) {
const DeclaratorChunk &Chunk = D.getTypeObject(I);
switch (Chunk.Kind) {
case DeclaratorChunk::Pointer:
case DeclaratorChunk::Reference:
case DeclaratorChunk::Paren:
case DeclaratorChunk::Pipe:
case DeclaratorChunk::BlockPointer:
// These declarator chunks cannot contain any parameter packs.
break;
case DeclaratorChunk::Array:
if (Chunk.Arr.NumElts &&
Chunk.Arr.NumElts->containsUnexpandedParameterPack())
return true;
break;
case DeclaratorChunk::Function:
for (unsigned i = 0, e = Chunk.Fun.NumParams; i != e; ++i) {
ParmVarDecl *Param = cast<ParmVarDecl>(Chunk.Fun.Params[i].Param);
QualType ParamTy = Param->getType();
assert(!ParamTy.isNull() && "Couldn't parse type?");
if (ParamTy->containsUnexpandedParameterPack()) return true;
}
if (Chunk.Fun.getExceptionSpecType() == EST_Dynamic) {
for (unsigned i = 0; i != Chunk.Fun.getNumExceptions(); ++i) {
if (Chunk.Fun.Exceptions[i]
.Ty.get()
->containsUnexpandedParameterPack())
return true;
}
} else if (isComputedNoexcept(Chunk.Fun.getExceptionSpecType()) &&
Chunk.Fun.NoexceptExpr->containsUnexpandedParameterPack())
return true;
if (Chunk.Fun.hasTrailingReturnType()) {
QualType T = Chunk.Fun.getTrailingReturnType().get();
2018-07-20 08:19:20 +00:00
if (!T.isNull() && T->containsUnexpandedParameterPack())
return true;
}
break;
case DeclaratorChunk::MemberPointer:
if (Chunk.Mem.Scope().getScopeRep() &&
Chunk.Mem.Scope().getScopeRep()->containsUnexpandedParameterPack())
return true;
break;
}
}
2018-07-20 08:19:20 +00:00
if (Expr *TRC = D.getTrailingRequiresClause())
if (TRC->containsUnexpandedParameterPack())
return true;
return false;
}
namespace {
// Callback to only accept typo corrections that refer to parameter packs.
class ParameterPackValidatorCCC final : public CorrectionCandidateCallback {
public:
bool ValidateCandidate(const TypoCorrection &candidate) override {
NamedDecl *ND = candidate.getCorrectionDecl();
return ND && ND->isParameterPack();
}
std::unique_ptr<CorrectionCandidateCallback> clone() override {
return std::make_unique<ParameterPackValidatorCCC>(*this);
}
};
}
ExprResult Sema::ActOnSizeofParameterPackExpr(Scope *S,
SourceLocation OpLoc,
IdentifierInfo &Name,
SourceLocation NameLoc,
SourceLocation RParenLoc) {
// C++0x [expr.sizeof]p5:
// The identifier in a sizeof... expression shall name a parameter pack.
LookupResult R(*this, &Name, NameLoc, LookupOrdinaryName);
LookupName(R, S);
NamedDecl *ParameterPack = nullptr;
switch (R.getResultKind()) {
case LookupResult::Found:
ParameterPack = R.getFoundDecl();
break;
case LookupResult::NotFound:
case LookupResult::NotFoundInCurrentInstantiation: {
ParameterPackValidatorCCC CCC{};
if (TypoCorrection Corrected =
CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, nullptr,
CCC, CTK_ErrorRecovery)) {
diagnoseTypo(Corrected,
PDiag(diag::err_sizeof_pack_no_pack_name_suggest) << &Name,
PDiag(diag::note_parameter_pack_here));
ParameterPack = Corrected.getCorrectionDecl();
}
break;
}
case LookupResult::FoundOverloaded:
case LookupResult::FoundUnresolvedValue:
break;
2018-07-20 08:19:20 +00:00
case LookupResult::Ambiguous:
DiagnoseAmbiguousLookup(R);
return ExprError();
}
2018-07-20 08:19:20 +00:00
if (!ParameterPack || !ParameterPack->isParameterPack()) {
Diag(NameLoc, diag::err_expected_name_of_pack) << &Name;
return ExprError();
}
MarkAnyDeclReferenced(OpLoc, ParameterPack, true);
return SizeOfPackExpr::Create(Context, OpLoc, ParameterPack, NameLoc,
RParenLoc);
}
static bool isParameterPack(Expr *PackExpression) {
if (auto *D = dyn_cast<DeclRefExpr>(PackExpression); D) {
ValueDecl *VD = D->getDecl();
return VD->isParameterPack();
}
return false;
}
ExprResult Sema::ActOnPackIndexingExpr(Scope *S, Expr *PackExpression,
SourceLocation EllipsisLoc,
SourceLocation LSquareLoc,
Expr *IndexExpr,
SourceLocation RSquareLoc) {
bool isParameterPack = ::isParameterPack(PackExpression);
if (!isParameterPack) {
if (!PackExpression->containsErrors()) {
CorrectDelayedTyposInExpr(IndexExpr);
Diag(PackExpression->getBeginLoc(), diag::err_expected_name_of_pack)
<< PackExpression;
}
return ExprError();
}
ExprResult Res =
BuildPackIndexingExpr(PackExpression, EllipsisLoc, IndexExpr, RSquareLoc);
if (!Res.isInvalid())
Diag(Res.get()->getBeginLoc(), getLangOpts().CPlusPlus26
? diag::warn_cxx23_pack_indexing
: diag::ext_pack_indexing);
return Res;
}
ExprResult Sema::BuildPackIndexingExpr(Expr *PackExpression,
SourceLocation EllipsisLoc,
Expr *IndexExpr,
SourceLocation RSquareLoc,
ArrayRef<Expr *> ExpandedExprs,
bool FullySubstituted) {
std::optional<int64_t> Index;
if (!IndexExpr->isInstantiationDependent()) {
llvm::APSInt Value(Context.getIntWidth(Context.getSizeType()));
ExprResult Res = CheckConvertedConstantExpression(
IndexExpr, Context.getSizeType(), Value, CCEK_ArrayBound);
if (!Res.isUsable())
return ExprError();
Index = Value.getExtValue();
IndexExpr = Res.get();
}
if (Index && FullySubstituted) {
if (*Index < 0 || *Index >= int64_t(ExpandedExprs.size())) {
Diag(PackExpression->getBeginLoc(), diag::err_pack_index_out_of_bound)
<< *Index << PackExpression << ExpandedExprs.size();
return ExprError();
}
}
return PackIndexingExpr::Create(getASTContext(), EllipsisLoc, RSquareLoc,
PackExpression, IndexExpr, Index,
ExpandedExprs, FullySubstituted);
}
TemplateArgumentLoc Sema::getTemplateArgumentPackExpansionPattern(
TemplateArgumentLoc OrigLoc, SourceLocation &Ellipsis,
UnsignedOrNone &NumExpansions) const {
const TemplateArgument &Argument = OrigLoc.getArgument();
assert(Argument.isPackExpansion());
switch (Argument.getKind()) {
case TemplateArgument::Type: {
// FIXME: We shouldn't ever have to worry about missing
// type-source info!
TypeSourceInfo *ExpansionTSInfo = OrigLoc.getTypeSourceInfo();
if (!ExpansionTSInfo)
ExpansionTSInfo = Context.getTrivialTypeSourceInfo(Argument.getAsType(),
Ellipsis);
PackExpansionTypeLoc Expansion =
ExpansionTSInfo->getTypeLoc().castAs<PackExpansionTypeLoc>();
Ellipsis = Expansion.getEllipsisLoc();
TypeLoc Pattern = Expansion.getPatternLoc();
NumExpansions = Expansion.getTypePtr()->getNumExpansions();
// We need to copy the TypeLoc because TemplateArgumentLocs store a
// TypeSourceInfo.
// FIXME: Find some way to avoid the copy?
TypeLocBuilder TLB;
TLB.pushFullCopy(Pattern);
TypeSourceInfo *PatternTSInfo =
TLB.getTypeSourceInfo(Context, Pattern.getType());
return TemplateArgumentLoc(TemplateArgument(Pattern.getType()),
PatternTSInfo);
}
case TemplateArgument::Expression: {
PackExpansionExpr *Expansion
= cast<PackExpansionExpr>(Argument.getAsExpr());
Expr *Pattern = Expansion->getPattern();
Ellipsis = Expansion->getEllipsisLoc();
NumExpansions = Expansion->getNumExpansions();
return TemplateArgumentLoc(
TemplateArgument(Pattern, Argument.isCanonicalExpr()), Pattern);
}
case TemplateArgument::TemplateExpansion:
Ellipsis = OrigLoc.getTemplateEllipsisLoc();
NumExpansions = Argument.getNumTemplateExpansions();
return TemplateArgumentLoc(Context, Argument.getPackExpansionPattern(),
OrigLoc.getTemplateQualifierLoc(),
OrigLoc.getTemplateNameLoc());
case TemplateArgument::Declaration:
case TemplateArgument::NullPtr:
case TemplateArgument::Template:
case TemplateArgument::Integral:
[c++20] P1907R1: Support for generalized non-type template arguments of scalar type. (#78041) Previously committed as 9e08e51a20d0d2b1c5724bb17e969d036fced4cd, and reverted because a dependency commit was reverted, then committed again as 4b574008aef5a7235c1f894ab065fe300d26e786 and reverted again because "dependency commit" 5a391d38ac6c561ba908334d427f26124ed9132e was reverted. But it doesn't seem that 5a391d38ac6c was a real dependency for this. This commit incorporates 4b574008aef5a7235c1f894ab065fe300d26e786 and 18e093faf726d15f210ab4917142beec51848258 by Richard Smith (@zygoloid), with some minor fixes, most notably: - `UncommonValue` renamed to `StructuralValue` - `VK_PRValue` instead of `VK_RValue` as default kind in lvalue and member pointer handling branch in `BuildExpressionFromNonTypeTemplateArgumentValue`; - handling of `StructuralValue` in `IsTypeDeclaredInsideVisitor`; - filling in `SugaredConverted` along with `CanonicalConverted` parameter in `Sema::CheckTemplateArgument`; - minor cleanup in `TemplateInstantiator::transformNonTypeTemplateParmRef`; - `TemplateArgument` constructors refactored; - `ODRHash` calculation for `UncommonValue`; - USR generation for `UncommonValue`; - more correct MS compatibility mangling algorithm (tested on MSVC ver. 19.35; toolset ver. 143); - IR emitting fixed on using a subobject as a template argument when the corresponding template parameter is used in an lvalue context; - `noundef` attribute and opaque pointers in `template-arguments` test; - analysis for C++17 mode is turned off for templates in `warn-bool-conversion` test; in C++17 and C++20 mode, array reference used as a template argument of pointer type produces template argument of UncommonValue type, and `BuildExpressionFromNonTypeTemplateArgumentValue` makes `OpaqueValueExpr` for it, and `DiagnoseAlwaysNonNullPointer` cannot see through it; despite of "These cases should not warn" comment, I'm not sure about correct behavior; I'd expect a suggestion to replace `if` by `if constexpr`; - `temp.arg.nontype/p1.cpp` and `dr18xx.cpp` tests fixed.
2024-01-21 23:28:57 +03:00
case TemplateArgument::StructuralValue:
case TemplateArgument::Pack:
case TemplateArgument::Null:
return TemplateArgumentLoc();
}
llvm_unreachable("Invalid TemplateArgument Kind!");
}
UnsignedOrNone Sema::getFullyPackExpandedSize(TemplateArgument Arg) {
assert(Arg.containsUnexpandedParameterPack());
// If this is a substituted pack, grab that pack. If not, we don't know
// the size yet.
// FIXME: We could find a size in more cases by looking for a substituted
// pack anywhere within this argument, but that's not necessary in the common
// case for 'sizeof...(A)' handling.
TemplateArgument Pack;
switch (Arg.getKind()) {
case TemplateArgument::Type:
if (auto *Subst = Arg.getAsType()->getAs<SubstTemplateTypeParmPackType>())
Pack = Subst->getArgumentPack();
else
return std::nullopt;
break;
case TemplateArgument::Expression:
if (auto *Subst =
dyn_cast<SubstNonTypeTemplateParmPackExpr>(Arg.getAsExpr()))
Pack = Subst->getArgumentPack();
else if (auto *Subst = dyn_cast<FunctionParmPackExpr>(Arg.getAsExpr())) {
for (ValueDecl *PD : *Subst)
if (PD->isParameterPack())
return std::nullopt;
return Subst->getNumExpansions();
} else
return std::nullopt;
break;
case TemplateArgument::Template:
if (SubstTemplateTemplateParmPackStorage *Subst =
Arg.getAsTemplate().getAsSubstTemplateTemplateParmPack())
Pack = Subst->getArgumentPack();
else
return std::nullopt;
break;
case TemplateArgument::Declaration:
case TemplateArgument::NullPtr:
case TemplateArgument::TemplateExpansion:
case TemplateArgument::Integral:
[c++20] P1907R1: Support for generalized non-type template arguments of scalar type. (#78041) Previously committed as 9e08e51a20d0d2b1c5724bb17e969d036fced4cd, and reverted because a dependency commit was reverted, then committed again as 4b574008aef5a7235c1f894ab065fe300d26e786 and reverted again because "dependency commit" 5a391d38ac6c561ba908334d427f26124ed9132e was reverted. But it doesn't seem that 5a391d38ac6c was a real dependency for this. This commit incorporates 4b574008aef5a7235c1f894ab065fe300d26e786 and 18e093faf726d15f210ab4917142beec51848258 by Richard Smith (@zygoloid), with some minor fixes, most notably: - `UncommonValue` renamed to `StructuralValue` - `VK_PRValue` instead of `VK_RValue` as default kind in lvalue and member pointer handling branch in `BuildExpressionFromNonTypeTemplateArgumentValue`; - handling of `StructuralValue` in `IsTypeDeclaredInsideVisitor`; - filling in `SugaredConverted` along with `CanonicalConverted` parameter in `Sema::CheckTemplateArgument`; - minor cleanup in `TemplateInstantiator::transformNonTypeTemplateParmRef`; - `TemplateArgument` constructors refactored; - `ODRHash` calculation for `UncommonValue`; - USR generation for `UncommonValue`; - more correct MS compatibility mangling algorithm (tested on MSVC ver. 19.35; toolset ver. 143); - IR emitting fixed on using a subobject as a template argument when the corresponding template parameter is used in an lvalue context; - `noundef` attribute and opaque pointers in `template-arguments` test; - analysis for C++17 mode is turned off for templates in `warn-bool-conversion` test; in C++17 and C++20 mode, array reference used as a template argument of pointer type produces template argument of UncommonValue type, and `BuildExpressionFromNonTypeTemplateArgumentValue` makes `OpaqueValueExpr` for it, and `DiagnoseAlwaysNonNullPointer` cannot see through it; despite of "These cases should not warn" comment, I'm not sure about correct behavior; I'd expect a suggestion to replace `if` by `if constexpr`; - `temp.arg.nontype/p1.cpp` and `dr18xx.cpp` tests fixed.
2024-01-21 23:28:57 +03:00
case TemplateArgument::StructuralValue:
case TemplateArgument::Pack:
case TemplateArgument::Null:
return std::nullopt;
}
// Check that no argument in the pack is itself a pack expansion.
for (TemplateArgument Elem : Pack.pack_elements()) {
// There's no point recursing in this case; we would have already
// expanded this pack expansion into the enclosing pack if we could.
if (Elem.isPackExpansion())
return std::nullopt;
// Don't guess the size of unexpanded packs. The pack within a template
// argument may have yet to be of a PackExpansion type before we see the
// ellipsis in the annotation stage.
//
// This doesn't mean we would invalidate the optimization: Arg can be an
// unexpanded pack regardless of Elem's dependence. For instance,
// A TemplateArgument that contains either a SubstTemplateTypeParmPackType
// or SubstNonTypeTemplateParmPackExpr is always considered Unexpanded, but
// the underlying TemplateArgument thereof may not.
if (Elem.containsUnexpandedParameterPack())
return std::nullopt;
}
return Pack.pack_size();
}
static void CheckFoldOperand(Sema &S, Expr *E) {
if (!E)
return;
E = E->IgnoreImpCasts();
auto *OCE = dyn_cast<CXXOperatorCallExpr>(E);
if ((OCE && OCE->isInfixBinaryOp()) || isa<BinaryOperator>(E) ||
isa<AbstractConditionalOperator>(E)) {
S.Diag(E->getExprLoc(), diag::err_fold_expression_bad_operand)
<< E->getSourceRange()
<< FixItHint::CreateInsertion(E->getBeginLoc(), "(")
<< FixItHint::CreateInsertion(E->getEndLoc(), ")");
}
}
ExprResult Sema::ActOnCXXFoldExpr(Scope *S, SourceLocation LParenLoc, Expr *LHS,
tok::TokenKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc) {
// LHS and RHS must be cast-expressions. We allow an arbitrary expression
// in the parser and reduce down to just cast-expressions here.
CheckFoldOperand(*this, LHS);
CheckFoldOperand(*this, RHS);
auto DiscardOperands = [&] {
CorrectDelayedTyposInExpr(LHS);
CorrectDelayedTyposInExpr(RHS);
};
// [expr.prim.fold]p3:
// In a binary fold, op1 and op2 shall be the same fold-operator, and
// either e1 shall contain an unexpanded parameter pack or e2 shall contain
// an unexpanded parameter pack, but not both.
if (LHS && RHS &&
LHS->containsUnexpandedParameterPack() ==
RHS->containsUnexpandedParameterPack()) {
DiscardOperands();
return Diag(EllipsisLoc,
LHS->containsUnexpandedParameterPack()
? diag::err_fold_expression_packs_both_sides
: diag::err_pack_expansion_without_parameter_packs)
<< LHS->getSourceRange() << RHS->getSourceRange();
}
// [expr.prim.fold]p2:
// In a unary fold, the cast-expression shall contain an unexpanded
// parameter pack.
if (!LHS || !RHS) {
Expr *Pack = LHS ? LHS : RHS;
assert(Pack && "fold expression with neither LHS nor RHS");
if (!Pack->containsUnexpandedParameterPack()) {
DiscardOperands();
return Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
<< Pack->getSourceRange();
}
}
BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Operator);
// Perform first-phase name lookup now.
UnresolvedLookupExpr *ULE = nullptr;
{
UnresolvedSet<16> Functions;
LookupBinOp(S, EllipsisLoc, Opc, Functions);
if (!Functions.empty()) {
DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(
BinaryOperator::getOverloadedOperator(Opc));
ExprResult Callee = CreateUnresolvedLookupExpr(
/*NamingClass*/ nullptr, NestedNameSpecifierLoc(),
DeclarationNameInfo(OpName, EllipsisLoc), Functions);
if (Callee.isInvalid())
return ExprError();
ULE = cast<UnresolvedLookupExpr>(Callee.get());
}
}
return BuildCXXFoldExpr(ULE, LParenLoc, LHS, Opc, EllipsisLoc, RHS, RParenLoc,
std::nullopt);
}
ExprResult Sema::BuildCXXFoldExpr(UnresolvedLookupExpr *Callee,
SourceLocation LParenLoc, Expr *LHS,
BinaryOperatorKind Operator,
SourceLocation EllipsisLoc, Expr *RHS,
SourceLocation RParenLoc,
UnsignedOrNone NumExpansions) {
return new (Context)
CXXFoldExpr(Context.DependentTy, Callee, LParenLoc, LHS, Operator,
EllipsisLoc, RHS, RParenLoc, NumExpansions);
}
ExprResult Sema::BuildEmptyCXXFoldExpr(SourceLocation EllipsisLoc,
BinaryOperatorKind Operator) {
// [temp.variadic]p9:
// If N is zero for a unary fold-expression, the value of the expression is
// && -> true
// || -> false
// , -> void()
// if the operator is not listed [above], the instantiation is ill-formed.
//
// Note that we need to use something like int() here, not merely 0, to
// prevent the result from being a null pointer constant.
QualType ScalarType;
switch (Operator) {
case BO_LOr:
return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_false);
case BO_LAnd:
return ActOnCXXBoolLiteral(EllipsisLoc, tok::kw_true);
case BO_Comma:
ScalarType = Context.VoidTy;
break;
default:
return Diag(EllipsisLoc, diag::err_fold_expression_empty)
<< BinaryOperator::getOpcodeStr(Operator);
}
return new (Context) CXXScalarValueInitExpr(
ScalarType, Context.getTrivialTypeSourceInfo(ScalarType, EllipsisLoc),
EllipsisLoc);
}