llvm-project/lld/ELF/SymbolTable.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

113 lines
4.0 KiB
C
Raw Normal View History

//===- SymbolTable.h --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_SYMBOL_TABLE_H
#define LLD_ELF_SYMBOL_TABLE_H
#include "Symbols.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/Compiler.h"
namespace lld::elf {
struct Ctx;
2022-02-07 21:53:34 -08:00
class InputFile;
class SharedFile;
2022-02-07 21:53:34 -08:00
[LLD][ELF] Cortex-M Security Extensions (CMSE) Support This commit provides linker support for Cortex-M Security Extensions (CMSE). The specification for this feature can be found in ARM v8-M Security Extensions: Requirements on Development Tools. The linker synthesizes a security gateway veneer in a special section; `.gnu.sgstubs`, when it finds non-local symbols `__acle_se_<entry>` and `<entry>`, defined relative to the same text section and having the same address. The address of `<entry>` is retargeted to the starting address of the linker-synthesized security gateway veneer in section `.gnu.sgstubs`. In summary, the linker translates input: ``` .text entry: __acle_se_entry: [entry_code] ``` into: ``` .section .gnu.sgstubs entry: SG B.W __acle_se_entry .text __acle_se_entry: [entry_code] ``` If addresses of `__acle_se_<entry>` and `<entry>` are not equal, the linker considers that `<entry>` already defines a secure gateway veneer so does not synthesize one. If `--out-implib=<out.lib>` is specified, the linker writes the list of secure gateway veneers into a CMSE import library `<out.lib>`. The CMSE import library will have 3 sections: `.symtab`, `.strtab`, `.shstrtab`. For every secure gateway veneer <entry> at address `<addr>`, `.symtab` contains a `SHN_ABS` symbol `<entry>` with value `<addr>`. If `--in-implib=<in.lib>` is specified, the linker reads the existing CMSE import library `<in.lib>` and preserves the entry function addresses in the resulting executable and new import library. Reviewed By: MaskRay, peter.smith Differential Revision: https://reviews.llvm.org/D139092
2023-07-06 10:45:10 +01:00
struct ArmCmseEntryFunction {
Symbol *acleSeSym;
Symbol *sym;
};
// SymbolTable is a bucket of all known symbols, including defined,
// undefined, or lazy symbols (the last one is symbols in archive
// files whose archive members are not yet loaded).
//
// We put all symbols of all files to a SymbolTable, and the
// SymbolTable selects the "best" symbols if there are name
// conflicts. For example, obviously, a defined symbol is better than
// an undefined symbol. Or, if there's a conflict between a lazy and a
// undefined, it'll read an archive member to read a real definition
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 04:55:03 +00:00
// to replace the lazy symbol. The logic is implemented in the
// add*() functions, which are called by input files as they are parsed. There
// is one add* function per symbol type.
class SymbolTable {
public:
SymbolTable(Ctx &ctx) : ctx(ctx) {}
ArrayRef<Symbol *> getSymbols() const { return symVector; }
void wrap(Symbol *sym, Symbol *real, Symbol *wrap);
Symbol *insert(StringRef name);
ELF: New symbol table design. This patch implements a new design for the symbol table that stores SymbolBodies within a memory region of the Symbol object. Symbols are mutated by constructing SymbolBodies in place over existing SymbolBodies, rather than by mutating pointers. As mentioned in the initial proposal [1], this memory layout helps reduce the cache miss rate by improving memory locality. Performance numbers: old(s) new(s) Without debug info: chrome 7.178 6.432 (-11.5%) LLVMgold.so 0.505 0.502 (-0.5%) clang 0.954 0.827 (-15.4%) llvm-as 0.052 0.045 (-15.5%) With debug info: scylla 5.695 5.613 (-1.5%) clang 14.396 14.143 (-1.8%) Performance counter results show that the fewer required indirections is indeed the cause of the improved performance. For example, when linking chrome, stalled cycles decreases from 14,556,444,002 to 12,959,238,310, and instructions per cycle increases from 0.78 to 0.83. We are also executing many fewer instructions (15,516,401,933 down to 15,002,434,310), probably because we spend less time allocating SymbolBodies. The new mechanism by which symbols are added to the symbol table is by calling add* functions on the SymbolTable. In this patch, I handle local symbols by storing them inside "unparented" SymbolBodies. This is suboptimal, but if we do want to try to avoid allocating these SymbolBodies, we can probably do that separately. I also removed a few members from the SymbolBody class that were only being used to pass information from the input file to the symbol table. This patch implements the new design for the ELF linker only. I intend to prepare a similar patch for the COFF linker. [1] http://lists.llvm.org/pipermail/llvm-dev/2016-April/098832.html Differential Revision: http://reviews.llvm.org/D19752 llvm-svn: 268178
2016-05-01 04:55:03 +00:00
template <typename T> Symbol *addSymbol(const T &newSym) {
Symbol *sym = insert(newSym.getName());
2024-10-11 23:34:43 -07:00
sym->resolve(ctx, newSym);
return sym;
}
2024-10-11 23:34:43 -07:00
Symbol *addAndCheckDuplicate(Ctx &, const Defined &newSym);
void scanVersionScript();
Symbol *find(StringRef name);
void handleDynamicList();
Symbol *addUnusedUndefined(StringRef name,
uint8_t binding = llvm::ELF::STB_GLOBAL);
// Set of .so files to not link the same shared object file more than once.
llvm::DenseMap<llvm::CachedHashStringRef, SharedFile *> soNames;
// Comdat groups define "link once" sections. If two comdat groups have the
// same name, only one of them is linked, and the other is ignored. This map
// is used to uniquify them.
llvm::DenseMap<llvm::CachedHashStringRef, const InputFile *> comdatGroups;
[LLD][ELF] Cortex-M Security Extensions (CMSE) Support This commit provides linker support for Cortex-M Security Extensions (CMSE). The specification for this feature can be found in ARM v8-M Security Extensions: Requirements on Development Tools. The linker synthesizes a security gateway veneer in a special section; `.gnu.sgstubs`, when it finds non-local symbols `__acle_se_<entry>` and `<entry>`, defined relative to the same text section and having the same address. The address of `<entry>` is retargeted to the starting address of the linker-synthesized security gateway veneer in section `.gnu.sgstubs`. In summary, the linker translates input: ``` .text entry: __acle_se_entry: [entry_code] ``` into: ``` .section .gnu.sgstubs entry: SG B.W __acle_se_entry .text __acle_se_entry: [entry_code] ``` If addresses of `__acle_se_<entry>` and `<entry>` are not equal, the linker considers that `<entry>` already defines a secure gateway veneer so does not synthesize one. If `--out-implib=<out.lib>` is specified, the linker writes the list of secure gateway veneers into a CMSE import library `<out.lib>`. The CMSE import library will have 3 sections: `.symtab`, `.strtab`, `.shstrtab`. For every secure gateway veneer <entry> at address `<addr>`, `.symtab` contains a `SHN_ABS` symbol `<entry>` with value `<addr>`. If `--in-implib=<in.lib>` is specified, the linker reads the existing CMSE import library `<in.lib>` and preserves the entry function addresses in the resulting executable and new import library. Reviewed By: MaskRay, peter.smith Differential Revision: https://reviews.llvm.org/D139092
2023-07-06 10:45:10 +01:00
// The Map of __acle_se_<sym>, <sym> pairs found in the input objects.
// Key is the <sym> name.
llvm::SmallMapVector<StringRef, ArmCmseEntryFunction, 1> cmseSymMap;
// Map of symbols defined in the Arm CMSE import library. The linker must
// preserve the addresses in the output objects.
llvm::StringMap<Defined *> cmseImportLib;
// True if <sym> from the input Arm CMSE import library is written to the
// output Arm CMSE import library.
llvm::StringMap<bool> inCMSEOutImpLib;
private:
SmallVector<Symbol *, 0> findByVersion(SymbolVersion ver);
SmallVector<Symbol *, 0> findAllByVersion(SymbolVersion ver,
bool includeNonDefault);
llvm::StringMap<SmallVector<Symbol *, 0>> &getDemangledSyms();
bool assignExactVersion(SymbolVersion ver, uint16_t versionId,
StringRef versionName, bool includeNonDefault);
void assignWildcardVersion(SymbolVersion ver, uint16_t versionId,
bool includeNonDefault);
Ctx &ctx;
// Global symbols and a map from symbol name to the index. The order is not
// defined. We can use an arbitrary order, but it has to be deterministic even
// when cross linking.
llvm::DenseMap<llvm::CachedHashStringRef, int> symMap;
SmallVector<Symbol *, 0> symVector;
// A map from demangled symbol names to their symbol objects.
// This mapping is 1:N because two symbols with different versions
// can have the same name. We use this map to handle "extern C++ {}"
// directive in version scripts.
std::optional<llvm::StringMap<SmallVector<Symbol *, 0>>> demangledSyms;
};
} // namespace lld::elf
#endif