llvm-project/llvm/utils/TableGen/CodeEmitterGen.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

614 lines
21 KiB
C++
Raw Normal View History

//===- CodeEmitterGen.cpp - Code Emitter Generator ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// CodeEmitterGen uses the descriptions of instructions and their fields to
// construct an automated code emitter: a function called
// getBinaryCodeForInstr() that, given a MCInst, returns the value of the
// instruction - either as an uint64_t or as an APInt, depending on the
// maximum bit width of all Inst definitions.
//
// In addition, it generates another function called getOperandBitOffset()
// that, given a MCInst and an operand index, returns the minimum of indices of
// all bits that carry some portion of the respective operand. When the target's
// encodeInstruction() stores the instruction in a little-endian byte order, the
// returned value is the offset of the start of the operand in the encoded
// instruction. Other targets might need to adjust the returned value according
// to their encodeInstruction() implementation.
//
//===----------------------------------------------------------------------===//
#include "Common/CodeGenHwModes.h"
#include "Common/CodeGenInstruction.h"
#include "Common/CodeGenTarget.h"
#include "Common/InfoByHwMode.h"
#include "Common/VarLenCodeEmitterGen.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <cstdint>
#include <map>
#include <set>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
namespace {
class CodeEmitterGen {
RecordKeeper &Records;
public:
CodeEmitterGen(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &o);
private:
int getVariableBit(const std::string &VarName, BitsInit *BI, int bit);
std::pair<std::string, std::string>
getInstructionCases(Record *R, CodeGenTarget &Target);
void addInstructionCasesForEncoding(Record *R, const Record *EncodingDef,
CodeGenTarget &Target, std::string &Case,
std::string &BitOffsetCase);
bool addCodeToMergeInOperand(Record *R, BitsInit *BI,
const std::string &VarName, std::string &Case,
std::string &BitOffsetCase,
CodeGenTarget &Target);
void emitInstructionBaseValues(
raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
CodeGenTarget &Target, unsigned HwMode = DefaultMode);
void
emitCaseMap(raw_ostream &o,
const std::map<std::string, std::vector<std::string>> &CaseMap);
unsigned BitWidth = 0u;
bool UseAPInt = false;
};
2006-07-13 22:17:08 +00:00
// If the VarBitInit at position 'bit' matches the specified variable then
// return the variable bit position. Otherwise return -1.
int CodeEmitterGen::getVariableBit(const std::string &VarName, BitsInit *BI,
int bit) {
if (VarBitInit *VBI = dyn_cast<VarBitInit>(BI->getBit(bit))) {
if (VarInit *VI = dyn_cast<VarInit>(VBI->getBitVar()))
if (VI->getName() == VarName)
return VBI->getBitNum();
} else if (VarInit *VI = dyn_cast<VarInit>(BI->getBit(bit))) {
if (VI->getName() == VarName)
return 0;
}
2010-10-07 16:56:28 +00:00
return -1;
2010-10-07 16:56:28 +00:00
}
// Returns true if it succeeds, false if an error.
bool CodeEmitterGen::addCodeToMergeInOperand(Record *R, BitsInit *BI,
const std::string &VarName,
std::string &Case,
std::string &BitOffsetCase,
CodeGenTarget &Target) {
CodeGenInstruction &CGI = Target.getInstruction(R);
// Determine if VarName actually contributes to the Inst encoding.
int bit = BI->getNumBits() - 1;
// Scan for a bit that this contributed to.
for (; bit >= 0;) {
if (getVariableBit(VarName, BI, bit) != -1)
break;
--bit;
}
// If we found no bits, ignore this value, otherwise emit the call to get the
// operand encoding.
if (bit < 0)
return true;
// If the operand matches by name, reference according to that
// operand number. Non-matching operands are assumed to be in
// order.
unsigned OpIdx;
std::pair<unsigned, unsigned> SubOp;
if (CGI.Operands.hasSubOperandAlias(VarName, SubOp)) {
OpIdx = CGI.Operands[SubOp.first].MIOperandNo + SubOp.second;
} else if (CGI.Operands.hasOperandNamed(VarName, OpIdx)) {
// Get the machine operand number for the indicated operand.
OpIdx = CGI.Operands[OpIdx].MIOperandNo;
} else {
PrintError(R, Twine("No operand named ") + VarName + " in record " +
R->getName());
return false;
}
if (CGI.Operands.isFlatOperandNotEmitted(OpIdx)) {
PrintError(R,
"Operand " + VarName + " used but also marked as not emitted!");
return false;
}
std::pair<unsigned, unsigned> SO = CGI.Operands.getSubOperandNumber(OpIdx);
std::string &EncoderMethodName =
CGI.Operands[SO.first].EncoderMethodNames[SO.second];
if (UseAPInt)
Case += " op.clearAllBits();\n";
Case += " // op: " + VarName + "\n";
// If the source operand has a custom encoder, use it.
if (!EncoderMethodName.empty()) {
if (UseAPInt) {
Case += " " + EncoderMethodName + "(MI, " + utostr(OpIdx);
Case += ", op";
} else {
Case += " op = " + EncoderMethodName + "(MI, " + utostr(OpIdx);
}
Case += ", Fixups, STI);\n";
} else {
if (UseAPInt) {
Case +=
" getMachineOpValue(MI, MI.getOperand(" + utostr(OpIdx) + ")";
Case += ", op, Fixups, STI";
} else {
Case += " op = getMachineOpValue(MI, MI.getOperand(" +
utostr(OpIdx) + ")";
Case += ", Fixups, STI";
}
Case += ");\n";
}
// Precalculate the number of lits this variable contributes to in the
// operand. If there is a single lit (consecutive range of bits) we can use a
// destructive sequence on APInt that reduces memory allocations.
int numOperandLits = 0;
for (int tmpBit = bit; tmpBit >= 0;) {
int varBit = getVariableBit(VarName, BI, tmpBit);
// If this bit isn't from a variable, skip it.
if (varBit == -1) {
--tmpBit;
continue;
}
// Figure out the consecutive range of bits covered by this operand, in
// order to generate better encoding code.
int beginVarBit = varBit;
int N = 1;
for (--tmpBit; tmpBit >= 0;) {
varBit = getVariableBit(VarName, BI, tmpBit);
if (varBit == -1 || varBit != (beginVarBit - N))
break;
++N;
--tmpBit;
}
++numOperandLits;
}
unsigned BitOffset = -1;
for (; bit >= 0;) {
int varBit = getVariableBit(VarName, BI, bit);
// If this bit isn't from a variable, skip it.
if (varBit == -1) {
--bit;
continue;
}
2011-01-27 23:08:52 +00:00
// Figure out the consecutive range of bits covered by this operand, in
// order to generate better encoding code.
int beginInstBit = bit;
int beginVarBit = varBit;
int N = 1;
for (--bit; bit >= 0;) {
varBit = getVariableBit(VarName, BI, bit);
if (varBit == -1 || varBit != (beginVarBit - N))
break;
++N;
--bit;
}
std::string maskStr;
int opShift;
unsigned loBit = beginVarBit - N + 1;
unsigned hiBit = loBit + N;
unsigned loInstBit = beginInstBit - N + 1;
BitOffset = loInstBit;
if (UseAPInt) {
std::string extractStr;
if (N >= 64) {
extractStr = "op.extractBits(" + itostr(hiBit - loBit) + ", " +
itostr(loBit) + ")";
Case += " Value.insertBits(" + extractStr + ", " +
itostr(loInstBit) + ");\n";
} else {
extractStr = "op.extractBitsAsZExtValue(" + itostr(hiBit - loBit) +
", " + itostr(loBit) + ")";
Case += " Value.insertBits(" + extractStr + ", " +
itostr(loInstBit) + ", " + itostr(hiBit - loBit) + ");\n";
}
} else {
uint64_t opMask = ~(uint64_t)0 >> (64 - N);
opShift = beginVarBit - N + 1;
opMask <<= opShift;
maskStr = "UINT64_C(" + utostr(opMask) + ")";
opShift = beginInstBit - beginVarBit;
if (numOperandLits == 1) {
Case += " op &= " + maskStr + ";\n";
if (opShift > 0) {
Case += " op <<= " + itostr(opShift) + ";\n";
} else if (opShift < 0) {
Case += " op >>= " + itostr(-opShift) + ";\n";
}
Case += " Value |= op;\n";
} else {
if (opShift > 0) {
Case += " Value |= (op & " + maskStr + ") << " +
itostr(opShift) + ";\n";
} else if (opShift < 0) {
Case += " Value |= (op & " + maskStr + ") >> " +
itostr(-opShift) + ";\n";
} else {
Case += " Value |= (op & " + maskStr + ");\n";
}
}
}
}
if (BitOffset != (unsigned)-1) {
BitOffsetCase += " case " + utostr(OpIdx) + ":\n";
BitOffsetCase += " // op: " + VarName + "\n";
BitOffsetCase += " return " + utostr(BitOffset) + ";\n";
}
return true;
}
std::pair<std::string, std::string>
CodeEmitterGen::getInstructionCases(Record *R, CodeGenTarget &Target) {
std::string Case, BitOffsetCase;
auto append = [&](const std::string &S) {
Case += S;
BitOffsetCase += S;
};
if (const RecordVal *RV = R->getValue("EncodingInfos")) {
if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
const CodeGenHwModes &HWM = Target.getHwModes();
EncodingInfoByHwMode EBM(DI->getDef(), HWM);
// Invoke the interface to obtain the HwMode ID controlling the
// EncodingInfo for the current subtarget. This interface will
// mask off irrelevant HwMode IDs.
append(" unsigned HwMode = "
"STI.getHwMode(MCSubtargetInfo::HwMode_EncodingInfo);\n");
Case += " switch (HwMode) {\n";
Case += " default: llvm_unreachable(\"Unknown hardware mode!\"); "
"break;\n";
for (auto &[ModeId, Encoding] : EBM) {
if (ModeId == DefaultMode) {
Case +=
" case " + itostr(DefaultMode) + ": InstBitsByHw = InstBits";
} else {
Case += " case " + itostr(ModeId) +
": InstBitsByHw = InstBits_" +
std::string(HWM.getMode(ModeId).Name);
}
Case += "; break;\n";
}
Case += " };\n";
// We need to remodify the 'Inst' value from the table we found above.
if (UseAPInt) {
int NumWords = APInt::getNumWords(BitWidth);
Case += " Inst = APInt(" + itostr(BitWidth);
Case += ", ArrayRef(InstBitsByHw + opcode * " + itostr(NumWords) +
", " + itostr(NumWords);
Case += "));\n";
Case += " Value = Inst;\n";
} else {
Case += " Value = InstBitsByHw[opcode];\n";
}
append(" switch (HwMode) {\n");
append(" default: llvm_unreachable(\"Unhandled HwMode\");\n");
for (auto &[ModeId, Encoding] : EBM) {
append(" case " + itostr(ModeId) + ": {\n");
addInstructionCasesForEncoding(R, Encoding, Target, Case,
BitOffsetCase);
append(" break;\n");
append(" }\n");
}
append(" }\n");
return std::pair(std::move(Case), std::move(BitOffsetCase));
}
}
addInstructionCasesForEncoding(R, R, Target, Case, BitOffsetCase);
return std::pair(std::move(Case), std::move(BitOffsetCase));
}
void CodeEmitterGen::addInstructionCasesForEncoding(
Record *R, const Record *EncodingDef, CodeGenTarget &Target,
std::string &Case, std::string &BitOffsetCase) {
BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
[TableGen] Optionally forbid overlap between named and positional operands There are currently two schemes for mapping instruction operands to instruction-format variables for generating the instruction encoders and decoders for the assembler and disassembler respectively: a) to map by name and b) to map by position. In the long run, we'd like to remove the position-based scheme and use only name-based mapping. Unfortunately, the name-based scheme currently cannot deal with complex operands (those with suboperands), and so we currently must use the position-based scheme for those. On the other hand, the position-based scheme cannot deal with (register) variables that are split into multiple ranges. An upcoming commit to the PowerPC backend (adding VSX support) will require this capability. While we could teach the position-based scheme to handle that, since we'd like to move away from the position-based mapping generally, it seems silly to teach it new tricks now. What makes more sense is to allow for partial transitioning: use the name-based mapping when possible, and only use the position-based scheme when necessary. Now the problem is that mixing the two sensibly was not possible: the position-based mapping would map based on position, but would not skip those variables that were mapped by name. Instead, the two sets of assignments would overlap. However, I cannot currently change the current behavior, because there are some backends that rely on it [I think mistakenly, but I'll send a message to llvmdev about that]. So I've added a new TableGen bit variable: noNamedPositionallyEncodedOperands, that can be used to cause the position-based mapping to skip variables mapped by name. llvm-svn: 203767
2014-03-13 07:57:54 +00:00
// Loop over all of the fields in the instruction, determining which are the
// operands to the instruction.
bool Success = true;
size_t OrigBitOffsetCaseSize = BitOffsetCase.size();
BitOffsetCase += " switch (OpNum) {\n";
size_t BitOffsetCaseSizeBeforeLoop = BitOffsetCase.size();
for (const RecordVal &RV : EncodingDef->getValues()) {
// Ignore fixed fields in the record, we're looking for values like:
// bits<5> RST = { ?, ?, ?, ?, ? };
if (RV.isNonconcreteOK() || RV.getValue()->isComplete())
continue;
Success &= addCodeToMergeInOperand(R, BI, std::string(RV.getName()), Case,
BitOffsetCase, Target);
}
// Avoid empty switches.
if (BitOffsetCase.size() == BitOffsetCaseSizeBeforeLoop)
BitOffsetCase.resize(OrigBitOffsetCaseSize);
else
BitOffsetCase += " }\n";
if (!Success) {
// Dump the record, so we can see what's going on...
std::string E;
raw_string_ostream S(E);
S << "Dumping record for previous error:\n";
S << *R;
PrintNote(E);
}
StringRef PostEmitter = R->getValueAsString("PostEncoderMethod");
if (!PostEmitter.empty()) {
Case += " Value = ";
Case += PostEmitter;
Case += "(MI, Value";
Case += ", STI";
Case += ");\n";
}
}
static void emitInstBits(raw_ostream &OS, const APInt &Bits) {
for (unsigned I = 0; I < Bits.getNumWords(); ++I)
OS << ((I > 0) ? ", " : "") << "UINT64_C(" << utostr(Bits.getRawData()[I])
<< ")";
}
void CodeEmitterGen::emitInstructionBaseValues(
raw_ostream &o, ArrayRef<const CodeGenInstruction *> NumberedInstructions,
CodeGenTarget &Target, unsigned HwMode) {
const CodeGenHwModes &HWM = Target.getHwModes();
if (HwMode == DefaultMode)
o << " static const uint64_t InstBits[] = {\n";
else
o << " static const uint64_t InstBits_"
<< HWM.getModeName(HwMode, /*IncludeDefault=*/true) << "[] = {\n";
for (const CodeGenInstruction *CGI : NumberedInstructions) {
Record *R = CGI->TheDef;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo")) {
o << " ";
emitInstBits(o, APInt(BitWidth, 0));
o << ",\n";
continue;
}
const Record *EncodingDef = R;
if (const RecordVal *RV = R->getValue("EncodingInfos")) {
if (auto *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
EncodingInfoByHwMode EBM(DI->getDef(), HWM);
if (EBM.hasMode(HwMode)) {
EncodingDef = EBM.get(HwMode);
} else {
// If the HwMode does not match, then Encoding '0'
// should be generated.
APInt Value(BitWidth, 0);
o << " ";
emitInstBits(o, Value);
o << "," << '\t' << "// " << R->getName() << "\n";
continue;
}
}
}
BitsInit *BI = EncodingDef->getValueAsBitsInit("Inst");
// Start by filling in fixed values.
APInt Value(BitWidth, 0);
for (unsigned i = 0, e = BI->getNumBits(); i != e; ++i) {
if (auto *B = dyn_cast<BitInit>(BI->getBit(i)); B && B->getValue())
Value.setBit(i);
}
o << " ";
emitInstBits(o, Value);
o << "," << '\t' << "// " << R->getName() << "\n";
}
o << " UINT64_C(0)\n };\n";
}
void CodeEmitterGen::emitCaseMap(
raw_ostream &o,
const std::map<std::string, std::vector<std::string>> &CaseMap) {
std::map<std::string, std::vector<std::string>>::const_iterator IE, EE;
for (IE = CaseMap.begin(), EE = CaseMap.end(); IE != EE; ++IE) {
const std::string &Case = IE->first;
const std::vector<std::string> &InstList = IE->second;
for (int i = 0, N = InstList.size(); i < N; i++) {
if (i)
o << "\n";
o << " case " << InstList[i] << ":";
}
o << " {\n";
o << Case;
o << " break;\n"
<< " }\n";
}
}
void CodeEmitterGen::run(raw_ostream &o) {
emitSourceFileHeader("Machine Code Emitter", o);
CodeGenTarget Target(Records);
std::vector<Record *> Insts = Records.getAllDerivedDefinitions("Instruction");
2010-10-07 16:56:28 +00:00
// For little-endian instruction bit encodings, reverse the bit order
Target.reverseBitsForLittleEndianEncoding();
2010-10-07 16:56:28 +00:00
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
Target.getInstructionsByEnumValue();
if (Target.hasVariableLengthEncodings()) {
emitVarLenCodeEmitter(Records, o);
} else {
const CodeGenHwModes &HWM = Target.getHwModes();
// The set of HwModes used by instruction encodings.
std::set<unsigned> HwModes;
BitWidth = 0;
for (const CodeGenInstruction *CGI : NumberedInstructions) {
Record *R = CGI->TheDef;
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
if (const RecordVal *RV = R->getValue("EncodingInfos")) {
if (DefInit *DI = dyn_cast_or_null<DefInit>(RV->getValue())) {
EncodingInfoByHwMode EBM(DI->getDef(), HWM);
for (auto &KV : EBM) {
BitsInit *BI = KV.second->getValueAsBitsInit("Inst");
BitWidth = std::max(BitWidth, BI->getNumBits());
HwModes.insert(KV.first);
}
continue;
}
}
BitsInit *BI = R->getValueAsBitsInit("Inst");
BitWidth = std::max(BitWidth, BI->getNumBits());
}
UseAPInt = BitWidth > 64;
// Emit function declaration
if (UseAPInt) {
o << "void " << Target.getName()
<< "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " APInt &Inst,\n"
<< " APInt &Scratch,\n"
<< " const MCSubtargetInfo &STI) const {\n";
} else {
o << "uint64_t " << Target.getName();
o << "MCCodeEmitter::getBinaryCodeForInstr(const MCInst &MI,\n"
<< " SmallVectorImpl<MCFixup> &Fixups,\n"
<< " const MCSubtargetInfo &STI) const {\n";
}
// Emit instruction base values
emitInstructionBaseValues(o, NumberedInstructions, Target, DefaultMode);
if (!HwModes.empty()) {
// Emit table for instrs whose encodings are controlled by HwModes.
for (unsigned HwMode : HwModes) {
if (HwMode == DefaultMode)
continue;
emitInstructionBaseValues(o, NumberedInstructions, Target, HwMode);
}
// This pointer will be assigned to the HwMode table later.
o << " const uint64_t *InstBitsByHw;\n";
}
// Map to accumulate all the cases.
std::map<std::string, std::vector<std::string>> CaseMap;
std::map<std::string, std::vector<std::string>> BitOffsetCaseMap;
// Construct all cases statement for each opcode
for (Record *R : Insts) {
if (R->getValueAsString("Namespace") == "TargetOpcode" ||
R->getValueAsBit("isPseudo"))
continue;
std::string InstName =
(R->getValueAsString("Namespace") + "::" + R->getName()).str();
std::string Case, BitOffsetCase;
std::tie(Case, BitOffsetCase) = getInstructionCases(R, Target);
CaseMap[Case].push_back(InstName);
BitOffsetCaseMap[BitOffsetCase].push_back(std::move(InstName));
}
// Emit initial function code
if (UseAPInt) {
int NumWords = APInt::getNumWords(BitWidth);
o << " const unsigned opcode = MI.getOpcode();\n"
<< " if (Scratch.getBitWidth() != " << BitWidth << ")\n"
<< " Scratch = Scratch.zext(" << BitWidth << ");\n"
<< " Inst = APInt(" << BitWidth << ", ArrayRef(InstBits + opcode * "
<< NumWords << ", " << NumWords << "));\n"
<< " APInt &Value = Inst;\n"
<< " APInt &op = Scratch;\n"
<< " switch (opcode) {\n";
} else {
o << " const unsigned opcode = MI.getOpcode();\n"
<< " uint64_t Value = InstBits[opcode];\n"
<< " uint64_t op = 0;\n"
<< " (void)op; // suppress warning\n"
<< " switch (opcode) {\n";
}
// Emit each case statement
emitCaseMap(o, CaseMap);
// Default case: unhandled opcode
o << " default:\n"
<< " std::string msg;\n"
<< " raw_string_ostream Msg(msg);\n"
<< " Msg << \"Not supported instr: \" << MI;\n"
<< " report_fatal_error(Msg.str().c_str());\n"
<< " }\n";
if (UseAPInt)
o << " Inst = Value;\n";
else
o << " return Value;\n";
o << "}\n\n";
o << "#ifdef GET_OPERAND_BIT_OFFSET\n"
<< "#undef GET_OPERAND_BIT_OFFSET\n\n"
<< "uint32_t " << Target.getName()
<< "MCCodeEmitter::getOperandBitOffset(const MCInst &MI,\n"
<< " unsigned OpNum,\n"
<< " const MCSubtargetInfo &STI) const {\n"
<< " switch (MI.getOpcode()) {\n";
emitCaseMap(o, BitOffsetCaseMap);
o << " }\n"
<< " std::string msg;\n"
<< " raw_string_ostream Msg(msg);\n"
<< " Msg << \"Not supported instr[opcode]: \" << MI << \"[\" << OpNum "
"<< \"]\";\n"
<< " report_fatal_error(Msg.str().c_str());\n"
<< "}\n\n"
<< "#endif // GET_OPERAND_BIT_OFFSET\n\n";
}
}
} // end anonymous namespace
static TableGen::Emitter::OptClass<CodeEmitterGen>
X("gen-emitter", "Generate machine code emitter");