llvm-project/flang/lib/semantics/assignment.cpp

496 lines
18 KiB
C++
Raw Normal View History

//===-- lib/semantics/assignment.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "assignment.h"
#include "pointer-assignment.h"
#include "flang/common/idioms.h"
#include "flang/common/restorer.h"
#include "flang/evaluate/characteristics.h"
#include "flang/evaluate/expression.h"
#include "flang/evaluate/fold.h"
#include "flang/evaluate/tools.h"
#include "flang/parser/message.h"
#include "flang/parser/parse-tree-visitor.h"
#include "flang/parser/parse-tree.h"
#include "flang/semantics/expression.h"
#include "flang/semantics/symbol.h"
#include "flang/semantics/tools.h"
#include <optional>
#include <set>
#include <string>
#include <type_traits>
using namespace Fortran::parser::literals;
namespace Fortran::semantics {
using ControlExpr = evaluate::Expr<evaluate::SubscriptInteger>;
using MaskExpr = evaluate::Expr<evaluate::LogicalResult>;
// The context tracks some number of active FORALL statements/constructs
// and some number of active WHERE statements/constructs. WHERE can nest
// in FORALL but not vice versa. Pointer assignments are allowed in
// FORALL but not in WHERE. These constraints are manifest in the grammar
// and don't need to be rechecked here, since errors cannot appear in the
// parse tree.
struct Control {
Symbol *name;
ControlExpr lower, upper, step;
};
struct ForallContext {
explicit ForallContext(const ForallContext *that) : outer{that} {}
std::optional<int> GetActiveIntKind(const parser::CharBlock &name) const {
const auto iter{activeNames.find(name)};
if (iter != activeNames.cend()) {
return {integerKind};
} else if (outer) {
return outer->GetActiveIntKind(name);
} else {
return std::nullopt;
}
}
const ForallContext *outer{nullptr};
std::optional<parser::CharBlock> constructName;
int integerKind;
std::vector<Control> control;
std::optional<MaskExpr> maskExpr;
std::set<parser::CharBlock> activeNames;
};
struct WhereContext {
WhereContext(MaskExpr &&x, const WhereContext *o, const ForallContext *f)
: outer{o}, forall{f}, thisMaskExpr{std::move(x)} {}
const WhereContext *outer{nullptr};
const ForallContext *forall{nullptr}; // innermost enclosing FORALL
std::optional<parser::CharBlock> constructName;
MaskExpr thisMaskExpr; // independent of outer WHERE, if any
MaskExpr cumulativeMaskExpr{thisMaskExpr};
};
class AssignmentContext {
public:
explicit AssignmentContext(SemanticsContext &c) : context_{c} {}
AssignmentContext(const AssignmentContext &c, WhereContext &w)
: context_{c.context_}, where_{&w} {}
AssignmentContext(const AssignmentContext &c, ForallContext &f)
: context_{c.context_}, forall_{&f} {}
[flang] Create framework for checking statement semantics Add `SemanticsVisitor` as the visitor class to perform statement semantics checks. Its template parameters are "checker" classes that perform the checks. They have `Enter` and `Leave` functions that are called for the corresponding parse tree nodes (`Enter` before the children, `Leave` after). Unlike `Pre` and `Post` in visitors they cannot prevent the parse tree walker from visiting child nodes. Existing checks have been incorporated into this framework: - `ExprChecker` replaces `AnalyzeExpressions()` - `AssignmentChecker` replaces `AnalyzeAssignments()` - `DoConcurrentChecker` replaces `CheckDoConcurrentConstraints()` Adding a new checker requires: - defining the checker class: - with BaseChecker as virtual base class - constructible from `SemanticsContext` - with Enter/Leave functions for nodes of interest - add the checker class to the template parameters of `StatementSemantics` Because these checkers and also `ResolveNamesVisitor` require tracking the current statement source location, that has been moved into `SemanticsContext`. `ResolveNamesVisitor` and `SemanticsVisitor` update the location when `Statement` nodes are encountered, making it available for error messages. `AnalyzeKindSelector()` now has access to the current statement through the context and so no longer needs to have it passed in. Test `assign01.f90` was added to verify that `AssignmentChecker` is actually doing something. Original-commit: flang-compiler/f18@3a222c36731029fabf026e5301dc60f0587595be Reviewed-on: https://github.com/flang-compiler/f18/pull/315 Tree-same-pre-rewrite: false
2019-03-05 16:52:50 -08:00
bool operator==(const AssignmentContext &x) const { return this == &x; }
void Analyze(const parser::AssignmentStmt &);
void Analyze(const parser::PointerAssignmentStmt &);
void Analyze(const parser::WhereStmt &);
void Analyze(const parser::WhereConstruct &);
void Analyze(const parser::ForallStmt &);
void Analyze(const parser::ForallConstruct &);
void Analyze(const parser::ForallConstructStmt &);
void Analyze(const parser::ConcurrentHeader &);
template<typename A> void Analyze(const parser::UnlabeledStatement<A> &stmt) {
context_.set_location(stmt.source);
[flang] Create framework for checking statement semantics Add `SemanticsVisitor` as the visitor class to perform statement semantics checks. Its template parameters are "checker" classes that perform the checks. They have `Enter` and `Leave` functions that are called for the corresponding parse tree nodes (`Enter` before the children, `Leave` after). Unlike `Pre` and `Post` in visitors they cannot prevent the parse tree walker from visiting child nodes. Existing checks have been incorporated into this framework: - `ExprChecker` replaces `AnalyzeExpressions()` - `AssignmentChecker` replaces `AnalyzeAssignments()` - `DoConcurrentChecker` replaces `CheckDoConcurrentConstraints()` Adding a new checker requires: - defining the checker class: - with BaseChecker as virtual base class - constructible from `SemanticsContext` - with Enter/Leave functions for nodes of interest - add the checker class to the template parameters of `StatementSemantics` Because these checkers and also `ResolveNamesVisitor` require tracking the current statement source location, that has been moved into `SemanticsContext`. `ResolveNamesVisitor` and `SemanticsVisitor` update the location when `Statement` nodes are encountered, making it available for error messages. `AnalyzeKindSelector()` now has access to the current statement through the context and so no longer needs to have it passed in. Test `assign01.f90` was added to verify that `AssignmentChecker` is actually doing something. Original-commit: flang-compiler/f18@3a222c36731029fabf026e5301dc60f0587595be Reviewed-on: https://github.com/flang-compiler/f18/pull/315 Tree-same-pre-rewrite: false
2019-03-05 16:52:50 -08:00
Analyze(stmt.statement);
}
template<typename A> void Analyze(const common::Indirection<A> &x) {
Analyze(x.value());
}
template<typename A> std::enable_if_t<UnionTrait<A>> Analyze(const A &x) {
std::visit([&](const auto &y) { Analyze(y); }, x.u);
}
template<typename A> void Analyze(const std::list<A> &list) {
for (const auto &elem : list) {
Analyze(elem);
}
}
template<typename A> void Analyze(const std::optional<A> &x) {
if (x) {
Analyze(*x);
}
}
private:
void Analyze(const parser::WhereConstruct::MaskedElsewhere &);
void Analyze(const parser::MaskedElsewhereStmt &);
void Analyze(const parser::WhereConstruct::Elsewhere &);
int GetIntegerKind(const std::optional<parser::IntegerTypeSpec> &);
void CheckForImpureCall(const SomeExpr &);
void CheckForImpureCall(const SomeExpr *);
void CheckForPureContext(const SomeExpr &lhs, const SomeExpr &rhs,
parser::CharBlock rhsSource, bool isPointerAssignment);
MaskExpr GetMask(const parser::LogicalExpr &, bool defaultValue = true);
template<typename... A>
parser::Message *Say(parser::CharBlock at, A &&... args) {
return &context_.Say(at, std::forward<A>(args)...);
}
SemanticsContext &context_;
WhereContext *where_{nullptr};
ForallContext *forall_{nullptr};
};
void AssignmentContext::Analyze(const parser::AssignmentStmt &stmt) {
// Assignment statement analysis is in expression.cpp where user-defined
// assignments can be recognized and replaced.
if (const evaluate::Assignment * asst{GetAssignment(stmt)}) {
if (const auto *intrinsicAsst{
std::get_if<evaluate::Assignment::IntrinsicAssignment>(&asst->u)}) {
CheckForImpureCall(intrinsicAsst->lhs);
CheckForImpureCall(intrinsicAsst->rhs);
if (forall_) {
// TODO: Warn if some name in forall_->activeNames or its outer
// contexts does not appear on LHS
}
CheckForPureContext(intrinsicAsst->lhs, intrinsicAsst->rhs,
std::get<parser::Expr>(stmt.t).source, false /* not => */);
}
}
// TODO: Fortran 2003 ALLOCATABLE assignment semantics (automatic
// (re)allocation of LHS array when unallocated or nonconformable)
}
void AssignmentContext::Analyze(const parser::PointerAssignmentStmt &stmt) {
using PointerAssignment = evaluate::Assignment::PointerAssignment;
CHECK(!where_);
const evaluate::Assignment *assign{GetAssignment(stmt)};
if (!assign) {
return;
}
const auto &ptrAssign{std::get<PointerAssignment>(assign->u)};
const SomeExpr &lhs{ptrAssign.lhs};
const SomeExpr &rhs{ptrAssign.rhs};
CheckForImpureCall(lhs);
CheckForImpureCall(rhs);
std::visit(
common::visitors{
[&](const PointerAssignment::BoundsSpec &bounds) {
for (const auto &bound : bounds) {
CheckForImpureCall(SomeExpr{bound});
}
},
[&](const PointerAssignment::BoundsRemapping &bounds) {
for (const auto &bound : bounds) {
CheckForImpureCall(SomeExpr{bound.first});
CheckForImpureCall(SomeExpr{bound.second});
}
},
},
ptrAssign.bounds);
if (forall_) {
// TODO: Warn if some name in forall_->activeNames or its outer
// contexts does not appear on LHS
}
CheckForPureContext(lhs, rhs, std::get<parser::Expr>(stmt.t).source,
true /* isPointerAssignment */);
auto restorer{context_.foldingContext().messages().SetLocation(
context_.location().value())};
CheckPointerAssignment(context_.foldingContext(), ptrAssign);
}
void AssignmentContext::Analyze(const parser::WhereStmt &stmt) {
WhereContext where{
GetMask(std::get<parser::LogicalExpr>(stmt.t)), where_, forall_};
AssignmentContext nested{*this, where};
nested.Analyze(std::get<parser::AssignmentStmt>(stmt.t));
}
// N.B. Construct name matching is checked during label resolution.
void AssignmentContext::Analyze(const parser::WhereConstruct &construct) {
const auto &whereStmt{
std::get<parser::Statement<parser::WhereConstructStmt>>(construct.t)};
WhereContext where{
GetMask(std::get<parser::LogicalExpr>(whereStmt.statement.t)), where_,
forall_};
if (const auto &name{
std::get<std::optional<parser::Name>>(whereStmt.statement.t)}) {
where.constructName = name->source;
}
AssignmentContext nested{*this, where};
nested.Analyze(std::get<std::list<parser::WhereBodyConstruct>>(construct.t));
nested.Analyze(std::get<std::list<parser::WhereConstruct::MaskedElsewhere>>(
construct.t));
nested.Analyze(
std::get<std::optional<parser::WhereConstruct::Elsewhere>>(construct.t));
}
void AssignmentContext::Analyze(const parser::ForallStmt &stmt) {
CHECK(!where_);
ForallContext forall{forall_};
AssignmentContext nested{*this, forall};
nested.Analyze(
std::get<common::Indirection<parser::ConcurrentHeader>>(stmt.t));
nested.Analyze(
std::get<parser::UnlabeledStatement<parser::ForallAssignmentStmt>>(
stmt.t));
}
// N.B. Construct name matching is checked during label resolution;
// index name distinction is checked during name resolution.
void AssignmentContext::Analyze(const parser::ForallConstruct &construct) {
CHECK(!where_);
ForallContext forall{forall_};
AssignmentContext nested{*this, forall};
nested.Analyze(
std::get<parser::Statement<parser::ForallConstructStmt>>(construct.t));
nested.Analyze(std::get<std::list<parser::ForallBodyConstruct>>(construct.t));
}
void AssignmentContext::Analyze(const parser::ForallConstructStmt &stmt) {
Analyze(std::get<common::Indirection<parser::ConcurrentHeader>>(stmt.t));
}
void AssignmentContext::Analyze(
const parser::WhereConstruct::MaskedElsewhere &elsewhere) {
CHECK(where_);
Analyze(
std::get<parser::Statement<parser::MaskedElsewhereStmt>>(elsewhere.t));
Analyze(std::get<std::list<parser::WhereBodyConstruct>>(elsewhere.t));
}
void AssignmentContext::Analyze(const parser::MaskedElsewhereStmt &elsewhere) {
MaskExpr mask{GetMask(std::get<parser::LogicalExpr>(elsewhere.t))};
MaskExpr copyCumulative{where_->cumulativeMaskExpr};
MaskExpr notOldMask{evaluate::LogicalNegation(std::move(copyCumulative))};
if (!evaluate::AreConformable(notOldMask, mask)) {
context_.Say("mask of ELSEWHERE statement is not conformable with "
"the prior mask(s) in its WHERE construct"_err_en_US);
}
MaskExpr copyMask{mask};
where_->cumulativeMaskExpr =
evaluate::BinaryLogicalOperation(evaluate::LogicalOperator::Or,
std::move(where_->cumulativeMaskExpr), std::move(copyMask));
where_->thisMaskExpr = evaluate::BinaryLogicalOperation(
evaluate::LogicalOperator::And, std::move(notOldMask), std::move(mask));
if (where_->outer &&
!evaluate::AreConformable(
where_->outer->thisMaskExpr, where_->thisMaskExpr)) {
context_.Say("effective mask of ELSEWHERE statement is not conformable "
"with the mask of the surrounding WHERE construct"_err_en_US);
}
}
void AssignmentContext::Analyze(
const parser::WhereConstruct::Elsewhere &elsewhere) {
MaskExpr copyCumulative{DEREF(where_).cumulativeMaskExpr};
where_->thisMaskExpr = evaluate::LogicalNegation(std::move(copyCumulative));
Analyze(std::get<std::list<parser::WhereBodyConstruct>>(elsewhere.t));
}
void AssignmentContext::Analyze(const parser::ConcurrentHeader &header) {
DEREF(forall_).integerKind = GetIntegerKind(
std::get<std::optional<parser::IntegerTypeSpec>>(header.t));
for (const auto &control :
std::get<std::list<parser::ConcurrentControl>>(header.t)) {
[flang] Continue semantic checking after name resolution error When an error occurs in name resolution, continue semantic processing in order to detect other errors. This means we can no longer assume that every `parser::Name` has a symbol even after name resolution completes. In `RewriteMutator`, only report internal error for unresolved symbol if there have been no fatal errors. Add `Error` flag to `Symbol` to indicate that an error occcurred related to it. Once we report an error about a symbol we should avoid reporting any more to prevent cascading errors. Add `HasError()` and `SetError()` to simplify working with this flag. Change some places that we assume that a `parser::Name` has a non-null symbol. There are probably more. `resolve-names.cc`: Set the `Error` flag when we report a fatal error related to a symbol. (This requires making some symbols non-const.) Remove `CheckScalarIntegerType()` as `ExprChecker` will take care of those constraints if they are expressed in the parse tree. One exception to that is the name in a `ConcurrentControl`. Explicitly perform that check using `EvaluateExpr()` and constraint classes so we get consistent error messages. In expression analysis, when a constraint is violated (like `Scalar<>` or `Integer<>`), reset the wrapped expression so that we don't assume it is valid. A `GenericExprWrapper` holding a std::nullopt indicates error. Change `EnforceTypeConstraint()` to return false when the constraint fails to enable this. check-do-concurrent.cc: Reorganize the Gather*VariableNames functions into one to simplify the task of filtering out unresolved names. Remove `CheckNoDuplicates()` and `CheckNoCollisions()` as those checks is already done in name resolution when the names are added to the scope. Original-commit: flang-compiler/f18@bcdb679405906575f36d3314f17da89e3e89d45c Reviewed-on: https://github.com/flang-compiler/f18/pull/429 Tree-same-pre-rewrite: false
2019-04-25 13:18:33 -07:00
const parser::Name &name{std::get<parser::Name>(control.t)};
bool inserted{forall_->activeNames.insert(name.source).second};
CHECK(inserted || context_.HasError(name));
CheckForImpureCall(GetExpr(std::get<1>(control.t)));
CheckForImpureCall(GetExpr(std::get<2>(control.t)));
if (const auto &stride{std::get<3>(control.t)}) {
CheckForImpureCall(GetExpr(*stride));
}
}
if (const auto &mask{
std::get<std::optional<parser::ScalarLogicalExpr>>(header.t)}) {
CheckForImpureCall(GetExpr(*mask));
}
}
int AssignmentContext::GetIntegerKind(
const std::optional<parser::IntegerTypeSpec> &spec) {
std::optional<parser::KindSelector> empty;
evaluate::Expr<evaluate::SubscriptInteger> kind{AnalyzeKindSelector(
context_, TypeCategory::Integer, spec ? spec->v : empty)};
if (auto value{evaluate::ToInt64(kind)}) {
return static_cast<int>(*value);
} else {
context_.Say("Kind of INTEGER type must be a constant value"_err_en_US);
return context_.GetDefaultKind(TypeCategory::Integer);
}
}
[flang] Create framework for checking statement semantics Add `SemanticsVisitor` as the visitor class to perform statement semantics checks. Its template parameters are "checker" classes that perform the checks. They have `Enter` and `Leave` functions that are called for the corresponding parse tree nodes (`Enter` before the children, `Leave` after). Unlike `Pre` and `Post` in visitors they cannot prevent the parse tree walker from visiting child nodes. Existing checks have been incorporated into this framework: - `ExprChecker` replaces `AnalyzeExpressions()` - `AssignmentChecker` replaces `AnalyzeAssignments()` - `DoConcurrentChecker` replaces `CheckDoConcurrentConstraints()` Adding a new checker requires: - defining the checker class: - with BaseChecker as virtual base class - constructible from `SemanticsContext` - with Enter/Leave functions for nodes of interest - add the checker class to the template parameters of `StatementSemantics` Because these checkers and also `ResolveNamesVisitor` require tracking the current statement source location, that has been moved into `SemanticsContext`. `ResolveNamesVisitor` and `SemanticsVisitor` update the location when `Statement` nodes are encountered, making it available for error messages. `AnalyzeKindSelector()` now has access to the current statement through the context and so no longer needs to have it passed in. Test `assign01.f90` was added to verify that `AssignmentChecker` is actually doing something. Original-commit: flang-compiler/f18@3a222c36731029fabf026e5301dc60f0587595be Reviewed-on: https://github.com/flang-compiler/f18/pull/315 Tree-same-pre-rewrite: false
2019-03-05 16:52:50 -08:00
void AssignmentContext::CheckForImpureCall(const SomeExpr &expr) {
if (forall_) {
const auto &intrinsics{context_.foldingContext().intrinsics()};
if (auto bad{FindImpureCall(intrinsics, expr)}) {
context_.Say(
"Impure procedure '%s' may not be referenced in a FORALL"_err_en_US,
*bad);
}
}
}
void AssignmentContext::CheckForImpureCall(const SomeExpr *expr) {
if (expr) {
CheckForImpureCall(*expr);
}
}
// C1594 checks
static bool IsPointerDummyOfPureFunction(const Symbol &x) {
return IsPointerDummy(x) && FindPureProcedureContaining(x.owner()) &&
x.owner().symbol() && IsFunction(*x.owner().symbol());
}
static const char *WhyBaseObjectIsSuspicious(
const Symbol &x, const Scope &scope) {
// See C1594, first paragraph. These conditions enable checks on both
// left-hand and right-hand sides in various circumstances.
if (IsHostAssociated(x, scope)) {
return "host-associated";
} else if (IsUseAssociated(x, scope)) {
return "USE-associated";
} else if (IsPointerDummyOfPureFunction(x)) {
return "a POINTER dummy argument of a pure function";
} else if (IsIntentIn(x)) {
return "an INTENT(IN) dummy argument";
} else if (FindCommonBlockContaining(x)) {
return "in a COMMON block";
} else {
return nullptr;
}
}
// Checks C1594(1,2)
void CheckDefinabilityInPureScope(parser::ContextualMessages &messages,
const Symbol &lhs, const Scope &context, const Scope &pure) {
if (pure.symbol()) {
if (const char *why{WhyBaseObjectIsSuspicious(lhs, context)}) {
evaluate::SayWithDeclaration(messages, lhs,
"Pure subprogram '%s' may not define '%s' because it is %s"_err_en_US,
pure.symbol()->name(), lhs.name(), why);
}
}
}
static std::optional<std::string> GetPointerComponentDesignatorName(
const SomeExpr &expr) {
if (const auto *derived{
evaluate::GetDerivedTypeSpec(evaluate::DynamicType::From(expr))}) {
UltimateComponentIterator ultimates{*derived};
if (auto pointer{
std::find_if(ultimates.begin(), ultimates.end(), IsPointer)}) {
return pointer.BuildResultDesignatorName();
}
}
return std::nullopt;
}
// Checks C1594(5,6)
void CheckCopyabilityInPureScope(parser::ContextualMessages &messages,
const SomeExpr &expr, const Scope &scope) {
if (const Symbol * base{GetFirstSymbol(expr)}) {
if (const char *why{WhyBaseObjectIsSuspicious(*base, scope)}) {
if (auto pointer{GetPointerComponentDesignatorName(expr)}) {
evaluate::SayWithDeclaration(messages, *base,
"A pure subprogram may not copy the value of '%s' because it is %s and has the POINTER component '%s'"_err_en_US,
base->name(), why, *pointer);
}
}
}
}
void AssignmentContext::CheckForPureContext(const SomeExpr &lhs,
const SomeExpr &rhs, parser::CharBlock source, bool isPointerAssignment) {
const Scope &scope{context_.FindScope(source)};
if (const Scope * pure{FindPureProcedureContaining(scope)}) {
parser::ContextualMessages messages{
context_.location().value(), &context_.messages()};
if (evaluate::ExtractCoarrayRef(lhs)) {
messages.Say(
"A pure subprogram may not define a coindexed object"_err_en_US);
} else if (const Symbol * base{GetFirstSymbol(lhs)}) {
if (const auto *assoc{base->detailsIf<AssocEntityDetails>()}) {
if (auto dataRef{ExtractDataRef(assoc->expr())}) {
// ASSOCIATE(a=>x) -- check x, not a, for "a=..."
CheckDefinabilityInPureScope(
messages, dataRef->GetFirstSymbol(), scope, *pure);
}
} else {
CheckDefinabilityInPureScope(messages, *base, scope, *pure);
}
}
if (isPointerAssignment) {
if (const Symbol * base{GetFirstSymbol(rhs)}) {
if (const char *why{
WhyBaseObjectIsSuspicious(*base, scope)}) { // C1594(3)
evaluate::SayWithDeclaration(messages, *base,
"A pure subprogram may not use '%s' as the target of pointer assignment because it is %s"_err_en_US,
base->name(), why);
}
}
} else {
if (auto type{evaluate::DynamicType::From(lhs)}) {
// C1596 checks for polymorphic deallocation in a pure subprogram
// due to automatic reallocation on assignment
if (type->IsPolymorphic()) {
context_.Say(
"Deallocation of polymorphic object is not permitted in a pure subprogram"_err_en_US);
}
if (const DerivedTypeSpec * derived{GetDerivedTypeSpec(type)}) {
if (auto bad{FindPolymorphicAllocatableNonCoarrayUltimateComponent(
*derived)}) {
evaluate::SayWithDeclaration(messages, *bad,
"Deallocation of polymorphic non-coarray component '%s' is not permitted in a pure subprogram"_err_en_US,
bad.BuildResultDesignatorName());
} else {
CheckCopyabilityInPureScope(messages, rhs, scope);
}
}
}
}
}
}
MaskExpr AssignmentContext::GetMask(
const parser::LogicalExpr &logicalExpr, bool defaultValue) {
MaskExpr mask{defaultValue};
if (const SomeExpr * expr{GetExpr(logicalExpr)}) {
CheckForImpureCall(*expr);
auto *logical{std::get_if<evaluate::Expr<evaluate::SomeLogical>>(&expr->u)};
mask = evaluate::ConvertTo(mask, common::Clone(DEREF(logical)));
}
return mask;
}
void AnalyzeConcurrentHeader(
SemanticsContext &context, const parser::ConcurrentHeader &header) {
AssignmentContext{context}.Analyze(header);
}
AssignmentChecker::~AssignmentChecker() {}
AssignmentChecker::AssignmentChecker(SemanticsContext &context)
: context_{new AssignmentContext{context}} {}
void AssignmentChecker::Enter(const parser::AssignmentStmt &x) {
context_.value().Analyze(x);
}
void AssignmentChecker::Enter(const parser::PointerAssignmentStmt &x) {
context_.value().Analyze(x);
}
void AssignmentChecker::Enter(const parser::WhereStmt &x) {
context_.value().Analyze(x);
}
void AssignmentChecker::Enter(const parser::WhereConstruct &x) {
context_.value().Analyze(x);
}
void AssignmentChecker::Enter(const parser::ForallStmt &x) {
context_.value().Analyze(x);
}
void AssignmentChecker::Enter(const parser::ForallConstruct &x) {
context_.value().Analyze(x);
}
}
template class Fortran::common::Indirection<
Fortran::semantics::AssignmentContext>;