llvm-project/clang/lib/Frontend/CompilerInvocation.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

4698 lines
188 KiB
C++
Raw Normal View History

//===- CompilerInvocation.cpp ---------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/Frontend/CompilerInvocation.h"
#include "TestModuleFileExtension.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/CommentOptions.h"
#include "clang/Basic/DebugInfoOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/DiagnosticDriver.h"
#include "clang/Basic/DiagnosticOptions.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/LangStandard.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Sanitizers.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Basic/Version.h"
#include "clang/Basic/Visibility.h"
#include "clang/Basic/XRayInstr.h"
#include "clang/Config/config.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Options.h"
#include "clang/Frontend/CommandLineSourceLoc.h"
#include "clang/Frontend/DependencyOutputOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Frontend/MigratorOptions.h"
#include "clang/Frontend/PreprocessorOutputOptions.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/CodeCompleteOptions.h"
#include "clang/Serialization/ASTBitCodes.h"
#include "clang/Serialization/ModuleFileExtension.h"
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/CachedHashString.h"
#include "llvm/ADT/DenseSet.h"
[FPEnv] Use single enum to represent rounding mode Now compiler defines 5 sets of constants to represent rounding mode. These are: 1. `llvm::APFloatBase::roundingMode`. It specifies all 5 rounding modes defined by IEEE-754 and is used in `APFloat` implementation. 2. `clang::LangOptions::FPRoundingModeKind`. It specifies 4 of 5 IEEE-754 rounding modes and a special value for dynamic rounding mode. It is used in clang frontend. 3. `llvm::fp::RoundingMode`. Defines the same values as `clang::LangOptions::FPRoundingModeKind` but in different order. It is used to specify rounding mode in in IR and functions that operate IR. 4. Rounding mode representation used by `FLT_ROUNDS` (C11, 5.2.4.2.2p7). Besides constants for rounding mode it also uses a special value to indicate error. It is convenient to use in intrinsic functions, as it represents platform-independent representation for rounding mode. In this role it is used in some pending patches. 5. Values like `FE_DOWNWARD` and other, which specify rounding mode in library calls `fesetround` and `fegetround`. Often they represent bits of some control register, so they are target-dependent. The same names (not values) and a special name `FE_DYNAMIC` are used in `#pragma STDC FENV_ROUND`. The first 4 sets of constants are target independent and could have the same numerical representation. It would simplify conversion between the representations. Also now `clang::LangOptions::FPRoundingModeKind` and `llvm::fp::RoundingMode` do not contain the value for IEEE-754 rounding direction `roundTiesToAway`, although it is supported natively on some targets. This change defines all the rounding mode type via one `llvm::RoundingMode`, which also contains rounding mode for IEEE rounding direction `roundTiesToAway`. Differential Revision: https://reviews.llvm.org/D77379
2020-03-26 14:51:09 +07:00
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/Linker/Linker.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Option/Arg.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Option/OptSpecifier.h"
#include "llvm/Option/OptTable.h"
#include "llvm/Option/Option.h"
#include "llvm/ProfileData/InstrProfReader.h"
#include "llvm/Remarks/HotnessThresholdParser.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/HashBuilder.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/Regex.h"
#include "llvm/Support/VersionTuple.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <fstream>
#include <memory>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
using namespace clang;
using namespace driver;
using namespace options;
using namespace llvm::opt;
//===----------------------------------------------------------------------===//
// Helpers.
//===----------------------------------------------------------------------===//
// Parse misexpect tolerance argument value.
// Valid option values are integers in the range [0, 100)
inline Expected<Optional<uint64_t>> parseToleranceOption(StringRef Arg) {
int64_t Val;
if (Arg.getAsInteger(10, Val))
return llvm::createStringError(llvm::inconvertibleErrorCode(),
"Not an integer: %s", Arg.data());
return Val;
}
//===----------------------------------------------------------------------===//
// Initialization.
//===----------------------------------------------------------------------===//
CompilerInvocationRefBase::CompilerInvocationRefBase()
: LangOpts(new LangOptions()), TargetOpts(new TargetOptions()),
DiagnosticOpts(new DiagnosticOptions()),
HeaderSearchOpts(new HeaderSearchOptions()),
PreprocessorOpts(new PreprocessorOptions()),
AnalyzerOpts(new AnalyzerOptions()) {}
CompilerInvocationRefBase::CompilerInvocationRefBase(
const CompilerInvocationRefBase &X)
: LangOpts(new LangOptions(*X.getLangOpts())),
TargetOpts(new TargetOptions(X.getTargetOpts())),
DiagnosticOpts(new DiagnosticOptions(X.getDiagnosticOpts())),
HeaderSearchOpts(new HeaderSearchOptions(X.getHeaderSearchOpts())),
PreprocessorOpts(new PreprocessorOptions(X.getPreprocessorOpts())),
AnalyzerOpts(new AnalyzerOptions(*X.getAnalyzerOpts())) {}
CompilerInvocationRefBase::CompilerInvocationRefBase(
CompilerInvocationRefBase &&X) = default;
CompilerInvocationRefBase &
CompilerInvocationRefBase::operator=(CompilerInvocationRefBase X) {
LangOpts.swap(X.LangOpts);
TargetOpts.swap(X.TargetOpts);
DiagnosticOpts.swap(X.DiagnosticOpts);
HeaderSearchOpts.swap(X.HeaderSearchOpts);
PreprocessorOpts.swap(X.PreprocessorOpts);
AnalyzerOpts.swap(X.AnalyzerOpts);
return *this;
}
CompilerInvocationRefBase &
CompilerInvocationRefBase::operator=(CompilerInvocationRefBase &&X) = default;
CompilerInvocationRefBase::~CompilerInvocationRefBase() = default;
//===----------------------------------------------------------------------===//
// Normalizers
//===----------------------------------------------------------------------===//
#define SIMPLE_ENUM_VALUE_TABLE
#include "clang/Driver/Options.inc"
#undef SIMPLE_ENUM_VALUE_TABLE
static llvm::Optional<bool> normalizeSimpleFlag(OptSpecifier Opt,
unsigned TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
if (Args.hasArg(Opt))
return true;
return None;
}
static Optional<bool> normalizeSimpleNegativeFlag(OptSpecifier Opt, unsigned,
const ArgList &Args,
DiagnosticsEngine &) {
if (Args.hasArg(Opt))
return false;
return None;
}
/// The tblgen-erated code passes in a fifth parameter of an arbitrary type, but
/// denormalizeSimpleFlags never looks at it. Avoid bloating compile-time with
/// unnecessary template instantiations and just ignore it with a variadic
/// argument.
static void denormalizeSimpleFlag(SmallVectorImpl<const char *> &Args,
const char *Spelling,
CompilerInvocation::StringAllocator,
Option::OptionClass, unsigned, /*T*/...) {
Args.push_back(Spelling);
}
template <typename T> static constexpr bool is_uint64_t_convertible() {
return !std::is_same<T, uint64_t>::value &&
llvm::is_integral_or_enum<T>::value;
}
template <typename T,
std::enable_if_t<!is_uint64_t_convertible<T>(), bool> = false>
static auto makeFlagToValueNormalizer(T Value) {
return [Value](OptSpecifier Opt, unsigned, const ArgList &Args,
DiagnosticsEngine &) -> Optional<T> {
if (Args.hasArg(Opt))
return Value;
return None;
};
}
template <typename T,
std::enable_if_t<is_uint64_t_convertible<T>(), bool> = false>
static auto makeFlagToValueNormalizer(T Value) {
return makeFlagToValueNormalizer(uint64_t(Value));
}
static auto makeBooleanOptionNormalizer(bool Value, bool OtherValue,
OptSpecifier OtherOpt) {
return [Value, OtherValue, OtherOpt](OptSpecifier Opt, unsigned,
const ArgList &Args,
DiagnosticsEngine &) -> Optional<bool> {
if (const Arg *A = Args.getLastArg(Opt, OtherOpt)) {
return A->getOption().matches(Opt) ? Value : OtherValue;
}
return None;
};
}
static auto makeBooleanOptionDenormalizer(bool Value) {
return [Value](SmallVectorImpl<const char *> &Args, const char *Spelling,
CompilerInvocation::StringAllocator, Option::OptionClass,
unsigned, bool KeyPath) {
if (KeyPath == Value)
Args.push_back(Spelling);
};
}
static void denormalizeStringImpl(SmallVectorImpl<const char *> &Args,
const char *Spelling,
CompilerInvocation::StringAllocator SA,
Option::OptionClass OptClass, unsigned,
const Twine &Value) {
switch (OptClass) {
case Option::SeparateClass:
case Option::JoinedOrSeparateClass:
case Option::JoinedAndSeparateClass:
Args.push_back(Spelling);
Args.push_back(SA(Value));
break;
case Option::JoinedClass:
case Option::CommaJoinedClass:
Args.push_back(SA(Twine(Spelling) + Value));
break;
default:
llvm_unreachable("Cannot denormalize an option with option class "
"incompatible with string denormalization.");
}
}
template <typename T>
static void
denormalizeString(SmallVectorImpl<const char *> &Args, const char *Spelling,
CompilerInvocation::StringAllocator SA,
Option::OptionClass OptClass, unsigned TableIndex, T Value) {
denormalizeStringImpl(Args, Spelling, SA, OptClass, TableIndex, Twine(Value));
}
static Optional<SimpleEnumValue>
findValueTableByName(const SimpleEnumValueTable &Table, StringRef Name) {
for (int I = 0, E = Table.Size; I != E; ++I)
if (Name == Table.Table[I].Name)
return Table.Table[I];
return None;
}
static Optional<SimpleEnumValue>
findValueTableByValue(const SimpleEnumValueTable &Table, unsigned Value) {
for (int I = 0, E = Table.Size; I != E; ++I)
if (Value == Table.Table[I].Value)
return Table.Table[I];
return None;
}
static llvm::Optional<unsigned> normalizeSimpleEnum(OptSpecifier Opt,
unsigned TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
assert(TableIndex < SimpleEnumValueTablesSize);
const SimpleEnumValueTable &Table = SimpleEnumValueTables[TableIndex];
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return None;
StringRef ArgValue = Arg->getValue();
if (auto MaybeEnumVal = findValueTableByName(Table, ArgValue))
return MaybeEnumVal->Value;
Diags.Report(diag::err_drv_invalid_value)
<< Arg->getAsString(Args) << ArgValue;
return None;
}
static void denormalizeSimpleEnumImpl(SmallVectorImpl<const char *> &Args,
const char *Spelling,
CompilerInvocation::StringAllocator SA,
Option::OptionClass OptClass,
unsigned TableIndex, unsigned Value) {
assert(TableIndex < SimpleEnumValueTablesSize);
const SimpleEnumValueTable &Table = SimpleEnumValueTables[TableIndex];
if (auto MaybeEnumVal = findValueTableByValue(Table, Value)) {
denormalizeString(Args, Spelling, SA, OptClass, TableIndex,
MaybeEnumVal->Name);
} else {
llvm_unreachable("The simple enum value was not correctly defined in "
"the tablegen option description");
}
}
template <typename T>
static void denormalizeSimpleEnum(SmallVectorImpl<const char *> &Args,
const char *Spelling,
CompilerInvocation::StringAllocator SA,
Option::OptionClass OptClass,
unsigned TableIndex, T Value) {
return denormalizeSimpleEnumImpl(Args, Spelling, SA, OptClass, TableIndex,
static_cast<unsigned>(Value));
}
static Optional<std::string> normalizeString(OptSpecifier Opt, int TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return None;
return std::string(Arg->getValue());
}
template <typename IntTy>
static Optional<IntTy> normalizeStringIntegral(OptSpecifier Opt, int,
const ArgList &Args,
DiagnosticsEngine &Diags) {
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return None;
IntTy Res;
if (StringRef(Arg->getValue()).getAsInteger(0, Res)) {
Diags.Report(diag::err_drv_invalid_int_value)
<< Arg->getAsString(Args) << Arg->getValue();
return None;
}
return Res;
}
static Optional<std::vector<std::string>>
normalizeStringVector(OptSpecifier Opt, int, const ArgList &Args,
DiagnosticsEngine &) {
return Args.getAllArgValues(Opt);
}
static void denormalizeStringVector(SmallVectorImpl<const char *> &Args,
const char *Spelling,
CompilerInvocation::StringAllocator SA,
Option::OptionClass OptClass,
unsigned TableIndex,
const std::vector<std::string> &Values) {
switch (OptClass) {
case Option::CommaJoinedClass: {
std::string CommaJoinedValue;
if (!Values.empty()) {
CommaJoinedValue.append(Values.front());
for (const std::string &Value : llvm::drop_begin(Values, 1)) {
CommaJoinedValue.append(",");
CommaJoinedValue.append(Value);
}
}
denormalizeString(Args, Spelling, SA, Option::OptionClass::JoinedClass,
TableIndex, CommaJoinedValue);
break;
}
case Option::JoinedClass:
case Option::SeparateClass:
case Option::JoinedOrSeparateClass:
for (const std::string &Value : Values)
denormalizeString(Args, Spelling, SA, OptClass, TableIndex, Value);
break;
default:
llvm_unreachable("Cannot denormalize an option with option class "
"incompatible with string vector denormalization.");
}
}
static Optional<std::string> normalizeTriple(OptSpecifier Opt, int TableIndex,
const ArgList &Args,
DiagnosticsEngine &Diags) {
auto *Arg = Args.getLastArg(Opt);
if (!Arg)
return None;
return llvm::Triple::normalize(Arg->getValue());
}
template <typename T, typename U>
static T mergeForwardValue(T KeyPath, U Value) {
return static_cast<T>(Value);
}
template <typename T, typename U> static T mergeMaskValue(T KeyPath, U Value) {
return KeyPath | Value;
}
template <typename T> static T extractForwardValue(T KeyPath) {
return KeyPath;
}
template <typename T, typename U, U Value>
static T extractMaskValue(T KeyPath) {
return ((KeyPath & Value) == Value) ? static_cast<T>(Value) : T();
}
#define PARSE_OPTION_WITH_MARSHALLING( \
ARGS, DIAGS, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX) \
if ((FLAGS)&options::CC1Option) { \
KEYPATH = MERGER(KEYPATH, DEFAULT_VALUE); \
if (IMPLIED_CHECK) \
KEYPATH = MERGER(KEYPATH, IMPLIED_VALUE); \
if (SHOULD_PARSE) \
if (auto MaybeValue = NORMALIZER(OPT_##ID, TABLE_INDEX, ARGS, DIAGS)) \
KEYPATH = \
MERGER(KEYPATH, static_cast<decltype(KEYPATH)>(*MaybeValue)); \
}
// Capture the extracted value as a lambda argument to avoid potential issues
// with lifetime extension of the reference.
#define GENERATE_OPTION_WITH_MARSHALLING( \
ARGS, STRING_ALLOCATOR, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, \
TABLE_INDEX) \
if ((FLAGS)&options::CC1Option) { \
[&](const auto &Extracted) { \
if (ALWAYS_EMIT || \
(Extracted != \
static_cast<decltype(KEYPATH)>((IMPLIED_CHECK) ? (IMPLIED_VALUE) \
: (DEFAULT_VALUE)))) \
DENORMALIZER(ARGS, SPELLING, STRING_ALLOCATOR, Option::KIND##Class, \
TABLE_INDEX, Extracted); \
}(EXTRACTOR(KEYPATH)); \
}
static StringRef GetInputKindName(InputKind IK);
static bool FixupInvocation(CompilerInvocation &Invocation,
DiagnosticsEngine &Diags, const ArgList &Args,
InputKind IK) {
unsigned NumErrorsBefore = Diags.getNumErrors();
LangOptions &LangOpts = *Invocation.getLangOpts();
CodeGenOptions &CodeGenOpts = Invocation.getCodeGenOpts();
TargetOptions &TargetOpts = Invocation.getTargetOpts();
FrontendOptions &FrontendOpts = Invocation.getFrontendOpts();
CodeGenOpts.XRayInstrumentFunctions = LangOpts.XRayInstrument;
CodeGenOpts.XRayAlwaysEmitCustomEvents = LangOpts.XRayAlwaysEmitCustomEvents;
CodeGenOpts.XRayAlwaysEmitTypedEvents = LangOpts.XRayAlwaysEmitTypedEvents;
CodeGenOpts.DisableFree = FrontendOpts.DisableFree;
FrontendOpts.GenerateGlobalModuleIndex = FrontendOpts.UseGlobalModuleIndex;
if (FrontendOpts.ShowStats)
CodeGenOpts.ClearASTBeforeBackend = false;
LangOpts.SanitizeCoverage = CodeGenOpts.hasSanitizeCoverage();
LangOpts.ForceEmitVTables = CodeGenOpts.ForceEmitVTables;
LangOpts.SpeculativeLoadHardening = CodeGenOpts.SpeculativeLoadHardening;
LangOpts.CurrentModule = LangOpts.ModuleName;
llvm::Triple T(TargetOpts.Triple);
llvm::Triple::ArchType Arch = T.getArch();
CodeGenOpts.CodeModel = TargetOpts.CodeModel;
if (LangOpts.getExceptionHandling() !=
LangOptions::ExceptionHandlingKind::None &&
T.isWindowsMSVCEnvironment())
Diags.Report(diag::err_fe_invalid_exception_model)
<< static_cast<unsigned>(LangOpts.getExceptionHandling()) << T.str();
if (LangOpts.AppleKext && !LangOpts.CPlusPlus)
Diags.Report(diag::warn_c_kext);
if (Args.hasArg(OPT_fconcepts_ts))
Diags.Report(diag::warn_fe_concepts_ts_flag);
if (LangOpts.NewAlignOverride &&
!llvm::isPowerOf2_32(LangOpts.NewAlignOverride)) {
Arg *A = Args.getLastArg(OPT_fnew_alignment_EQ);
Diags.Report(diag::err_fe_invalid_alignment)
<< A->getAsString(Args) << A->getValue();
LangOpts.NewAlignOverride = 0;
}
// Prevent the user from specifying both -fsycl-is-device and -fsycl-is-host.
if (LangOpts.SYCLIsDevice && LangOpts.SYCLIsHost)
Diags.Report(diag::err_drv_argument_not_allowed_with) << "-fsycl-is-device"
<< "-fsycl-is-host";
if (Args.hasArg(OPT_fgnu89_inline) && LangOpts.CPlusPlus)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< "-fgnu89-inline" << GetInputKindName(IK);
if (Args.hasArg(OPT_fgpu_allow_device_init) && !LangOpts.HIP)
Diags.Report(diag::warn_ignored_hip_only_option)
<< Args.getLastArg(OPT_fgpu_allow_device_init)->getAsString(Args);
if (Args.hasArg(OPT_gpu_max_threads_per_block_EQ) && !LangOpts.HIP)
Diags.Report(diag::warn_ignored_hip_only_option)
<< Args.getLastArg(OPT_gpu_max_threads_per_block_EQ)->getAsString(Args);
// When these options are used, the compiler is allowed to apply
// optimizations that may affect the final result. For example
// (x+y)+z is transformed to x+(y+z) but may not give the same
// final result; it's not value safe.
// Another example can be to simplify x/x to 1.0 but x could be 0.0, INF
// or NaN. Final result may then differ. An error is issued when the eval
// method is set with one of these options.
if (Args.hasArg(OPT_ffp_eval_method_EQ)) {
if (LangOpts.ApproxFunc)
Diags.Report(diag::err_incompatible_fp_eval_method_options) << 0;
if (LangOpts.AllowFPReassoc)
Diags.Report(diag::err_incompatible_fp_eval_method_options) << 1;
if (LangOpts.AllowRecip)
Diags.Report(diag::err_incompatible_fp_eval_method_options) << 2;
}
// -cl-strict-aliasing needs to emit diagnostic in the case where CL > 1.0.
// This option should be deprecated for CL > 1.0 because
// this option was added for compatibility with OpenCL 1.0.
if (Args.getLastArg(OPT_cl_strict_aliasing) &&
(LangOpts.getOpenCLCompatibleVersion() > 100))
Diags.Report(diag::warn_option_invalid_ocl_version)
<< LangOpts.getOpenCLVersionString()
<< Args.getLastArg(OPT_cl_strict_aliasing)->getAsString(Args);
if (Arg *A = Args.getLastArg(OPT_fdefault_calling_conv_EQ)) {
auto DefaultCC = LangOpts.getDefaultCallingConv();
bool emitError = (DefaultCC == LangOptions::DCC_FastCall ||
DefaultCC == LangOptions::DCC_StdCall) &&
Arch != llvm::Triple::x86;
emitError |= (DefaultCC == LangOptions::DCC_VectorCall ||
DefaultCC == LangOptions::DCC_RegCall) &&
!T.isX86();
if (emitError)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << T.getTriple();
}
return Diags.getNumErrors() == NumErrorsBefore;
}
//===----------------------------------------------------------------------===//
// Deserialization (from args)
//===----------------------------------------------------------------------===//
static unsigned getOptimizationLevel(ArgList &Args, InputKind IK,
DiagnosticsEngine &Diags) {
unsigned DefaultOpt = llvm::CodeGenOpt::None;
if ((IK.getLanguage() == Language::OpenCL ||
IK.getLanguage() == Language::OpenCLCXX) &&
!Args.hasArg(OPT_cl_opt_disable))
DefaultOpt = llvm::CodeGenOpt::Default;
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O0))
return llvm::CodeGenOpt::None;
if (A->getOption().matches(options::OPT_Ofast))
return llvm::CodeGenOpt::Aggressive;
assert(A->getOption().matches(options::OPT_O));
StringRef S(A->getValue());
if (S == "s" || S == "z")
return llvm::CodeGenOpt::Default;
if (S == "g")
return llvm::CodeGenOpt::Less;
return getLastArgIntValue(Args, OPT_O, DefaultOpt, Diags);
}
return DefaultOpt;
}
static unsigned getOptimizationLevelSize(ArgList &Args) {
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O)) {
switch (A->getValue()[0]) {
default:
return 0;
case 's':
return 1;
case 'z':
return 2;
}
}
}
return 0;
}
static void GenerateArg(SmallVectorImpl<const char *> &Args,
llvm::opt::OptSpecifier OptSpecifier,
CompilerInvocation::StringAllocator SA) {
Option Opt = getDriverOptTable().getOption(OptSpecifier);
denormalizeSimpleFlag(Args, SA(Opt.getPrefix() + Opt.getName()), SA,
Option::OptionClass::FlagClass, 0);
}
static void GenerateArg(SmallVectorImpl<const char *> &Args,
llvm::opt::OptSpecifier OptSpecifier,
const Twine &Value,
CompilerInvocation::StringAllocator SA) {
Option Opt = getDriverOptTable().getOption(OptSpecifier);
denormalizeString(Args, SA(Opt.getPrefix() + Opt.getName()), SA,
Opt.getKind(), 0, Value);
}
// Parse command line arguments into CompilerInvocation.
using ParseFn =
llvm::function_ref<bool(CompilerInvocation &, ArrayRef<const char *>,
DiagnosticsEngine &, const char *)>;
// Generate command line arguments from CompilerInvocation.
using GenerateFn = llvm::function_ref<void(
CompilerInvocation &, SmallVectorImpl<const char *> &,
CompilerInvocation::StringAllocator)>;
// May perform round-trip of command line arguments. By default, the round-trip
// is enabled in assert builds. This can be overwritten at run-time via the
// "-round-trip-args" and "-no-round-trip-args" command line flags.
// During round-trip, the command line arguments are parsed into a dummy
// instance of CompilerInvocation which is used to generate the command line
// arguments again. The real CompilerInvocation instance is then created by
// parsing the generated arguments, not the original ones.
static bool RoundTrip(ParseFn Parse, GenerateFn Generate,
CompilerInvocation &RealInvocation,
CompilerInvocation &DummyInvocation,
ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags, const char *Argv0) {
#ifndef NDEBUG
bool DoRoundTripDefault = true;
#else
bool DoRoundTripDefault = false;
#endif
bool DoRoundTrip = DoRoundTripDefault;
for (const auto *Arg : CommandLineArgs) {
if (Arg == StringRef("-round-trip-args"))
DoRoundTrip = true;
if (Arg == StringRef("-no-round-trip-args"))
DoRoundTrip = false;
}
// If round-trip was not requested, simply run the parser with the real
// invocation diagnostics.
if (!DoRoundTrip)
return Parse(RealInvocation, CommandLineArgs, Diags, Argv0);
// Serializes quoted (and potentially escaped) arguments.
auto SerializeArgs = [](ArrayRef<const char *> Args) {
std::string Buffer;
llvm::raw_string_ostream OS(Buffer);
for (const char *Arg : Args) {
llvm::sys::printArg(OS, Arg, /*Quote=*/true);
OS << ' ';
}
OS.flush();
return Buffer;
};
// Setup a dummy DiagnosticsEngine.
DiagnosticsEngine DummyDiags(new DiagnosticIDs(), new DiagnosticOptions());
DummyDiags.setClient(new TextDiagnosticBuffer());
// Run the first parse on the original arguments with the dummy invocation and
// diagnostics.
if (!Parse(DummyInvocation, CommandLineArgs, DummyDiags, Argv0) ||
DummyDiags.getNumWarnings() != 0) {
// If the first parse did not succeed, it must be user mistake (invalid
// command line arguments). We won't be able to generate arguments that
// would reproduce the same result. Let's fail again with the real
// invocation and diagnostics, so all side-effects of parsing are visible.
unsigned NumWarningsBefore = Diags.getNumWarnings();
auto Success = Parse(RealInvocation, CommandLineArgs, Diags, Argv0);
if (!Success || Diags.getNumWarnings() != NumWarningsBefore)
return Success;
// Parse with original options and diagnostics succeeded even though it
// shouldn't have. Something is off.
Diags.Report(diag::err_cc1_round_trip_fail_then_ok);
Diags.Report(diag::note_cc1_round_trip_original)
<< SerializeArgs(CommandLineArgs);
return false;
}
// Setup string allocator.
llvm::BumpPtrAllocator Alloc;
llvm::StringSaver StringPool(Alloc);
auto SA = [&StringPool](const Twine &Arg) {
return StringPool.save(Arg).data();
};
// Generate arguments from the dummy invocation. If Generate is the
// inverse of Parse, the newly generated arguments must have the same
// semantics as the original.
SmallVector<const char *> GeneratedArgs1;
Generate(DummyInvocation, GeneratedArgs1, SA);
// Run the second parse, now on the generated arguments, and with the real
// invocation and diagnostics. The result is what we will end up using for the
// rest of compilation, so if Generate is not inverse of Parse, something down
// the line will break.
bool Success2 = Parse(RealInvocation, GeneratedArgs1, Diags, Argv0);
// The first parse on original arguments succeeded, but second parse of
// generated arguments failed. Something must be wrong with the generator.
if (!Success2) {
Diags.Report(diag::err_cc1_round_trip_ok_then_fail);
Diags.Report(diag::note_cc1_round_trip_generated)
<< 1 << SerializeArgs(GeneratedArgs1);
return false;
}
// Generate arguments again, this time from the options we will end up using
// for the rest of the compilation.
SmallVector<const char *> GeneratedArgs2;
Generate(RealInvocation, GeneratedArgs2, SA);
// Compares two lists of generated arguments.
auto Equal = [](const ArrayRef<const char *> A,
const ArrayRef<const char *> B) {
return std::equal(A.begin(), A.end(), B.begin(), B.end(),
[](const char *AElem, const char *BElem) {
return StringRef(AElem) == StringRef(BElem);
});
};
// If we generated different arguments from what we assume are two
// semantically equivalent CompilerInvocations, the Generate function may
// be non-deterministic.
if (!Equal(GeneratedArgs1, GeneratedArgs2)) {
Diags.Report(diag::err_cc1_round_trip_mismatch);
Diags.Report(diag::note_cc1_round_trip_generated)
<< 1 << SerializeArgs(GeneratedArgs1);
Diags.Report(diag::note_cc1_round_trip_generated)
<< 2 << SerializeArgs(GeneratedArgs2);
return false;
}
Diags.Report(diag::remark_cc1_round_trip_generated)
<< 1 << SerializeArgs(GeneratedArgs1);
Diags.Report(diag::remark_cc1_round_trip_generated)
<< 2 << SerializeArgs(GeneratedArgs2);
return Success2;
}
static void addDiagnosticArgs(ArgList &Args, OptSpecifier Group,
OptSpecifier GroupWithValue,
std::vector<std::string> &Diagnostics) {
for (auto *A : Args.filtered(Group)) {
if (A->getOption().getKind() == Option::FlagClass) {
// The argument is a pure flag (such as OPT_Wall or OPT_Wdeprecated). Add
// its name (minus the "W" or "R" at the beginning) to the diagnostics.
Diagnostics.push_back(
std::string(A->getOption().getName().drop_front(1)));
} else if (A->getOption().matches(GroupWithValue)) {
// This is -Wfoo= or -Rfoo=, where foo is the name of the diagnostic
// group. Add only the group name to the diagnostics.
Diagnostics.push_back(
std::string(A->getOption().getName().drop_front(1).rtrim("=-")));
} else {
// Otherwise, add its value (for OPT_W_Joined and similar).
Diagnostics.push_back(A->getValue());
}
}
}
// Parse the Static Analyzer configuration. If \p Diags is set to nullptr,
// it won't verify the input.
static void parseAnalyzerConfigs(AnalyzerOptions &AnOpts,
DiagnosticsEngine *Diags);
static void getAllNoBuiltinFuncValues(ArgList &Args,
std::vector<std::string> &Funcs) {
std::vector<std::string> Values = Args.getAllArgValues(OPT_fno_builtin_);
2021-12-17 20:55:10 -08:00
auto BuiltinEnd = llvm::partition(Values, Builtin::Context::isBuiltinFunc);
Funcs.insert(Funcs.end(), Values.begin(), BuiltinEnd);
}
static void GenerateAnalyzerArgs(AnalyzerOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA) {
const AnalyzerOptions *AnalyzerOpts = &Opts;
#define ANALYZER_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef ANALYZER_OPTION_WITH_MARSHALLING
if (Opts.AnalysisConstraintsOpt != RangeConstraintsModel) {
switch (Opts.AnalysisConstraintsOpt) {
#define ANALYSIS_CONSTRAINTS(NAME, CMDFLAG, DESC, CREATFN) \
case NAME##Model: \
GenerateArg(Args, OPT_analyzer_constraints, CMDFLAG, SA); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis constraint.");
}
}
if (Opts.AnalysisDiagOpt != PD_HTML) {
switch (Opts.AnalysisDiagOpt) {
#define ANALYSIS_DIAGNOSTICS(NAME, CMDFLAG, DESC, CREATFN) \
case PD_##NAME: \
GenerateArg(Args, OPT_analyzer_output, CMDFLAG, SA); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis diagnostic client.");
}
}
if (Opts.AnalysisPurgeOpt != PurgeStmt) {
switch (Opts.AnalysisPurgeOpt) {
#define ANALYSIS_PURGE(NAME, CMDFLAG, DESC) \
case NAME: \
GenerateArg(Args, OPT_analyzer_purge, CMDFLAG, SA); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis purge mode.");
}
}
if (Opts.InliningMode != NoRedundancy) {
switch (Opts.InliningMode) {
#define ANALYSIS_INLINING_MODE(NAME, CMDFLAG, DESC) \
case NAME: \
GenerateArg(Args, OPT_analyzer_inlining_mode, CMDFLAG, SA); \
break;
#include "clang/StaticAnalyzer/Core/Analyses.def"
default:
llvm_unreachable("Tried to generate unknown analysis inlining mode.");
}
}
for (const auto &CP : Opts.CheckersAndPackages) {
OptSpecifier Opt =
CP.second ? OPT_analyzer_checker : OPT_analyzer_disable_checker;
GenerateArg(Args, Opt, CP.first, SA);
}
AnalyzerOptions ConfigOpts;
parseAnalyzerConfigs(ConfigOpts, nullptr);
for (const auto &C : Opts.Config) {
// Don't generate anything that came from parseAnalyzerConfigs. It would be
// redundant and may not be valid on the command line.
auto Entry = ConfigOpts.Config.find(C.getKey());
if (Entry != ConfigOpts.Config.end() && Entry->getValue() == C.getValue())
continue;
GenerateArg(Args, OPT_analyzer_config, C.getKey() + "=" + C.getValue(), SA);
}
// Nothing to generate for FullCompilerInvocation.
}
static bool ParseAnalyzerArgs(AnalyzerOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
AnalyzerOptions *AnalyzerOpts = &Opts;
#define ANALYZER_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef ANALYZER_OPTION_WITH_MARSHALLING
if (Args.hasArg(OPT_analyzer_store))
Diags.Report(diag::warn_analyzer_deprecated_option) << "-analyzer-store"
<< "clang-16";
if (Args.hasArg(OPT_analyzer_opt_analyze_nested_blocks))
Reland "[analyzer] Deprecate the unused 'analyzer-opt-analyze-nested-blocks' cc1 flag" It was previously reverted by 8406839d1926486de900c7cabeea9f841bd3edf2. --- This flag was introduced by https://github.com/llvm/llvm-project/commit/6818991d7165f68fe196922d9e5c6648dd57cc47 commit 6818991d7165f68fe196922d9e5c6648dd57cc47 Author: Ted Kremenek <kremenek@apple.com> Date: Mon Dec 7 22:06:12 2009 +0000 Add clang-cc option '-analyzer-opt-analyze-nested-blocks' to treat block literals as an entry point for analyzer checks. The last reference was removed by this commit: https://github.com/llvm/llvm-project/commit/5c32dfc5fb1cfcff8ae3671284e17daa8da3a188 commit 5c32dfc5fb1cfcff8ae3671284e17daa8da3a188 Author: Anna Zaks <ganna@apple.com> Date: Fri Dec 21 01:19:15 2012 +0000 [analyzer] Add blocks and ObjC messages to the call graph. This paves the road for constructing a better function dependency graph. If we analyze a function before the functions it calls and inlines, there is more opportunity for optimization. Note, we add call edges to the called methods that correspond to function definitions (declarations with bodies). Consequently, we should remove this dead flag. However, this arises a couple of burning questions. - Should the `cc1` frontend still accept this flag - to keep tools/users passing this flag directly to `cc1` (which is unsupported, unadvertised) working. - If we should remain backward compatible, how long? - How can we get rid of deprecated and obsolete flags at some point? Reviewed By: martong Differential Revision: https://reviews.llvm.org/D126067
2022-06-14 10:22:37 +02:00
Diags.Report(diag::warn_analyzer_deprecated_option)
<< "-analyzer-opt-analyze-nested-blocks"
<< "clang-16";
if (Arg *A = Args.getLastArg(OPT_analyzer_constraints)) {
StringRef Name = A->getValue();
AnalysisConstraints Value = llvm::StringSwitch<AnalysisConstraints>(Name)
#define ANALYSIS_CONSTRAINTS(NAME, CMDFLAG, DESC, CREATFN) \
.Case(CMDFLAG, NAME##Model)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NumConstraints);
if (Value == NumConstraints) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
#ifndef LLVM_WITH_Z3
if (Value == AnalysisConstraints::Z3ConstraintsModel) {
Diags.Report(diag::err_analyzer_not_built_with_z3);
}
#endif // LLVM_WITH_Z3
Opts.AnalysisConstraintsOpt = Value;
}
}
if (Arg *A = Args.getLastArg(OPT_analyzer_output)) {
StringRef Name = A->getValue();
AnalysisDiagClients Value = llvm::StringSwitch<AnalysisDiagClients>(Name)
#define ANALYSIS_DIAGNOSTICS(NAME, CMDFLAG, DESC, CREATFN) \
.Case(CMDFLAG, PD_##NAME)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NUM_ANALYSIS_DIAG_CLIENTS);
if (Value == NUM_ANALYSIS_DIAG_CLIENTS) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
Opts.AnalysisDiagOpt = Value;
}
}
if (Arg *A = Args.getLastArg(OPT_analyzer_purge)) {
StringRef Name = A->getValue();
AnalysisPurgeMode Value = llvm::StringSwitch<AnalysisPurgeMode>(Name)
#define ANALYSIS_PURGE(NAME, CMDFLAG, DESC) \
.Case(CMDFLAG, NAME)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NumPurgeModes);
if (Value == NumPurgeModes) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
Opts.AnalysisPurgeOpt = Value;
}
}
if (Arg *A = Args.getLastArg(OPT_analyzer_inlining_mode)) {
StringRef Name = A->getValue();
AnalysisInliningMode Value = llvm::StringSwitch<AnalysisInliningMode>(Name)
#define ANALYSIS_INLINING_MODE(NAME, CMDFLAG, DESC) \
.Case(CMDFLAG, NAME)
#include "clang/StaticAnalyzer/Core/Analyses.def"
.Default(NumInliningModes);
if (Value == NumInliningModes) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << Name;
} else {
Opts.InliningMode = Value;
}
}
Opts.CheckersAndPackages.clear();
for (const Arg *A :
Args.filtered(OPT_analyzer_checker, OPT_analyzer_disable_checker)) {
A->claim();
bool IsEnabled = A->getOption().getID() == OPT_analyzer_checker;
// We can have a list of comma separated checker names, e.g:
// '-analyzer-checker=cocoa,unix'
StringRef CheckerAndPackageList = A->getValue();
SmallVector<StringRef, 16> CheckersAndPackages;
CheckerAndPackageList.split(CheckersAndPackages, ",");
for (const StringRef &CheckerOrPackage : CheckersAndPackages)
2020-01-29 02:48:15 +01:00
Opts.CheckersAndPackages.emplace_back(std::string(CheckerOrPackage),
IsEnabled);
}
// Go through the analyzer configuration options.
for (const auto *A : Args.filtered(OPT_analyzer_config)) {
// We can have a list of comma separated config names, e.g:
// '-analyzer-config key1=val1,key2=val2'
StringRef configList = A->getValue();
SmallVector<StringRef, 4> configVals;
configList.split(configVals, ",");
for (const auto &configVal : configVals) {
StringRef key, val;
std::tie(key, val) = configVal.split("=");
if (val.empty()) {
Diags.Report(SourceLocation(),
diag::err_analyzer_config_no_value) << configVal;
break;
}
if (val.contains('=')) {
Diags.Report(SourceLocation(),
diag::err_analyzer_config_multiple_values)
<< configVal;
break;
}
// TODO: Check checker options too, possibly in CheckerRegistry.
// Leave unknown non-checker configs unclaimed.
if (!key.contains(":") && Opts.isUnknownAnalyzerConfig(key)) {
if (Opts.ShouldEmitErrorsOnInvalidConfigValue)
Diags.Report(diag::err_analyzer_config_unknown) << key;
continue;
}
A->claim();
Opts.Config[key] = std::string(val);
}
}
if (Opts.ShouldEmitErrorsOnInvalidConfigValue)
parseAnalyzerConfigs(Opts, &Diags);
else
parseAnalyzerConfigs(Opts, nullptr);
llvm::raw_string_ostream os(Opts.FullCompilerInvocation);
for (unsigned i = 0; i < Args.getNumInputArgStrings(); ++i) {
if (i != 0)
os << " ";
os << Args.getArgString(i);
}
os.flush();
return Diags.getNumErrors() == NumErrorsBefore;
}
static StringRef getStringOption(AnalyzerOptions::ConfigTable &Config,
StringRef OptionName, StringRef DefaultVal) {
return Config.insert({OptionName, std::string(DefaultVal)}).first->second;
}
static void initOption(AnalyzerOptions::ConfigTable &Config,
DiagnosticsEngine *Diags,
StringRef &OptionField, StringRef Name,
StringRef DefaultVal) {
// String options may be known to invalid (e.g. if the expected string is a
// file name, but the file does not exist), those will have to be checked in
// parseConfigs.
OptionField = getStringOption(Config, Name, DefaultVal);
}
static void initOption(AnalyzerOptions::ConfigTable &Config,
DiagnosticsEngine *Diags,
bool &OptionField, StringRef Name, bool DefaultVal) {
auto PossiblyInvalidVal = llvm::StringSwitch<Optional<bool>>(
getStringOption(Config, Name, (DefaultVal ? "true" : "false")))
.Case("true", true)
.Case("false", false)
.Default(None);
if (!PossiblyInvalidVal) {
if (Diags)
Diags->Report(diag::err_analyzer_config_invalid_input)
<< Name << "a boolean";
else
OptionField = DefaultVal;
} else
OptionField = *PossiblyInvalidVal;
}
static void initOption(AnalyzerOptions::ConfigTable &Config,
DiagnosticsEngine *Diags,
unsigned &OptionField, StringRef Name,
unsigned DefaultVal) {
OptionField = DefaultVal;
bool HasFailed = getStringOption(Config, Name, std::to_string(DefaultVal))
[analyzer][NFC] Reimplement checker options TL;DR: * Add checker and package options to the TableGen files * Added a new class called CmdLineOption, and both Package and Checker recieved a list<CmdLineOption> field. * Added every existing checker and package option to Checkers.td. * The CheckerRegistry class * Received some comments to most of it's inline classes * Received the CmdLineOption and PackageInfo inline classes, a list of CmdLineOption was added to CheckerInfo and PackageInfo * Added addCheckerOption and addPackageOption * Added a new field called Packages, used in addPackageOptions, filled up in addPackage Detailed description: In the last couple months, a lot of effort was put into tightening the analyzer's command line interface. The main issue is that it's spectacularly easy to mess up a lenghty enough invocation of the analyzer, and the user was given no warnings or errors at all in that case. We can divide the effort of resolving this into several chapters: * Non-checker analyzer configurations: Gather every analyzer configuration into a dedicated file. Emit errors for non-existent configurations or incorrect values. Be able to list these configurations. Tighten AnalyzerOptions interface to disallow making such a mistake in the future. * Fix the "Checker Naming Bug" by reimplementing checker dependencies: When cplusplus.InnerPointer was enabled, it implicitly registered unix.Malloc, which implicitly registered some sort of a modeling checker from the CStringChecker family. This resulted in all of these checker objects recieving the name "cplusplus.InnerPointer", making AnalyzerOptions asking for the wrong checker options from the command line: cplusplus.InnerPointer:Optimisic istead of unix.Malloc:Optimistic. This was resolved by making CheckerRegistry responsible for checker dependency handling, instead of checkers themselves. * Checker options: (this patch included!) Same as the first item, but for checkers. (+ minor fixes here and there, and everything else that is yet to come) There were several issues regarding checker options, that non-checker configurations didn't suffer from: checker plugins are loaded runtime, and they could add new checkers and new options, meaning that unlike for non-checker configurations, we can't collect every checker option purely by generating code. Also, as seen from the "Checker Naming Bug" issue raised above, they are very rarely used in practice, and all sorts of skeletons fell out of the closet while working on this project. They were extremely problematic for users as well, purely because of how long they were. Consider the following monster of a checker option: alpha.cplusplus.UninitializedObject:CheckPointeeInitialization=false While we were able to verify whether the checker itself (the part before the colon) existed, any errors past that point were unreported, easily resulting in 7+ hours of analyses going to waste. This patch, similarly to how dependencies were reimplemented, uses TableGen to register checker options into Checkers.td, so that Checkers.inc now contains entries for both checker and package options. Using the preprocessor, Checkers.inc is converted into code in CheckerRegistry, adding every builtin (checkers and packages that have an entry in the Checkers.td file) checker and package option to the registry. The new addPackageOption and addCheckerOption functions expose the same functionality to statically-linked non-builtin and plugin checkers and packages as well. Emitting errors for incorrect user input, being able to list these options, and some other functionalies will land in later patches. Differential Revision: https://reviews.llvm.org/D57855 llvm-svn: 358752
2019-04-19 12:32:10 +00:00
.getAsInteger(0, OptionField);
if (Diags && HasFailed)
Diags->Report(diag::err_analyzer_config_invalid_input)
<< Name << "an unsigned";
}
static void parseAnalyzerConfigs(AnalyzerOptions &AnOpts,
DiagnosticsEngine *Diags) {
// TODO: There's no need to store the entire configtable, it'd be plenty
// enough to store checker options.
#define ANALYZER_OPTION(TYPE, NAME, CMDFLAG, DESC, DEFAULT_VAL) \
initOption(AnOpts.Config, Diags, AnOpts.NAME, CMDFLAG, DEFAULT_VAL);
#define ANALYZER_OPTION_DEPENDS_ON_USER_MODE(...)
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.def"
assert(AnOpts.UserMode == "shallow" || AnOpts.UserMode == "deep");
const bool InShallowMode = AnOpts.UserMode == "shallow";
#define ANALYZER_OPTION(...)
#define ANALYZER_OPTION_DEPENDS_ON_USER_MODE(TYPE, NAME, CMDFLAG, DESC, \
SHALLOW_VAL, DEEP_VAL) \
initOption(AnOpts.Config, Diags, AnOpts.NAME, CMDFLAG, \
InShallowMode ? SHALLOW_VAL : DEEP_VAL);
#include "clang/StaticAnalyzer/Core/AnalyzerOptions.def"
// At this point, AnalyzerOptions is configured. Let's validate some options.
// FIXME: Here we try to validate the silenced checkers or packages are valid.
// The current approach only validates the registered checkers which does not
// contain the runtime enabled checkers and optimally we would validate both.
if (!AnOpts.RawSilencedCheckersAndPackages.empty()) {
std::vector<StringRef> Checkers =
AnOpts.getRegisteredCheckers(/*IncludeExperimental=*/true);
std::vector<StringRef> Packages =
AnOpts.getRegisteredPackages(/*IncludeExperimental=*/true);
SmallVector<StringRef, 16> CheckersAndPackages;
AnOpts.RawSilencedCheckersAndPackages.split(CheckersAndPackages, ";");
for (const StringRef &CheckerOrPackage : CheckersAndPackages) {
if (Diags) {
bool IsChecker = CheckerOrPackage.contains('.');
2021-10-13 20:41:54 -07:00
bool IsValidName = IsChecker
? llvm::is_contained(Checkers, CheckerOrPackage)
: llvm::is_contained(Packages, CheckerOrPackage);
if (!IsValidName)
Diags->Report(diag::err_unknown_analyzer_checker_or_package)
<< CheckerOrPackage;
}
AnOpts.SilencedCheckersAndPackages.emplace_back(CheckerOrPackage);
}
}
if (!Diags)
return;
if (AnOpts.ShouldTrackConditionsDebug && !AnOpts.ShouldTrackConditions)
Diags->Report(diag::err_analyzer_config_invalid_input)
<< "track-conditions-debug" << "'track-conditions' to also be enabled";
if (!AnOpts.CTUDir.empty() && !llvm::sys::fs::is_directory(AnOpts.CTUDir))
Diags->Report(diag::err_analyzer_config_invalid_input) << "ctu-dir"
<< "a filename";
if (!AnOpts.ModelPath.empty() &&
!llvm::sys::fs::is_directory(AnOpts.ModelPath))
Diags->Report(diag::err_analyzer_config_invalid_input) << "model-path"
<< "a filename";
}
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
/// Generate a remark argument. This is an inverse of `ParseOptimizationRemark`.
static void
GenerateOptimizationRemark(SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA,
OptSpecifier OptEQ, StringRef Name,
const CodeGenOptions::OptRemark &Remark) {
if (Remark.hasValidPattern()) {
GenerateArg(Args, OptEQ, Remark.Pattern, SA);
} else if (Remark.Kind == CodeGenOptions::RK_Enabled) {
GenerateArg(Args, OPT_R_Joined, Name, SA);
} else if (Remark.Kind == CodeGenOptions::RK_Disabled) {
GenerateArg(Args, OPT_R_Joined, StringRef("no-") + Name, SA);
}
}
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
/// Parse a remark command line argument. It may be missing, disabled/enabled by
/// '-R[no-]group' or specified with a regular expression by '-Rgroup=regexp'.
/// On top of that, it can be disabled/enabled globally by '-R[no-]everything'.
static CodeGenOptions::OptRemark
ParseOptimizationRemark(DiagnosticsEngine &Diags, ArgList &Args,
OptSpecifier OptEQ, StringRef Name) {
CodeGenOptions::OptRemark Result;
auto InitializeResultPattern = [&Diags, &Args, &Result](const Arg *A,
StringRef Pattern) {
Result.Pattern = Pattern.str();
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
std::string RegexError;
Result.Regex = std::make_shared<llvm::Regex>(Result.Pattern);
if (!Result.Regex->isValid(RegexError)) {
Diags.Report(diag::err_drv_optimization_remark_pattern)
<< RegexError << A->getAsString(Args);
return false;
}
return true;
};
for (Arg *A : Args) {
if (A->getOption().matches(OPT_R_Joined)) {
StringRef Value = A->getValue();
if (Value == Name)
Result.Kind = CodeGenOptions::RK_Enabled;
else if (Value == "everything")
Result.Kind = CodeGenOptions::RK_EnabledEverything;
else if (Value.split('-') == std::make_pair(StringRef("no"), Name))
Result.Kind = CodeGenOptions::RK_Disabled;
else if (Value == "no-everything")
Result.Kind = CodeGenOptions::RK_DisabledEverything;
else
continue;
if (Result.Kind == CodeGenOptions::RK_Disabled ||
Result.Kind == CodeGenOptions::RK_DisabledEverything) {
Result.Pattern = "";
Result.Regex = nullptr;
} else {
InitializeResultPattern(A, ".*");
}
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
} else if (A->getOption().matches(OptEQ)) {
Result.Kind = CodeGenOptions::RK_WithPattern;
if (!InitializeResultPattern(A, A->getValue()))
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
return CodeGenOptions::OptRemark();
}
}
return Result;
}
static bool parseDiagnosticLevelMask(StringRef FlagName,
const std::vector<std::string> &Levels,
DiagnosticsEngine &Diags,
DiagnosticLevelMask &M) {
bool Success = true;
for (const auto &Level : Levels) {
DiagnosticLevelMask const PM =
llvm::StringSwitch<DiagnosticLevelMask>(Level)
.Case("note", DiagnosticLevelMask::Note)
.Case("remark", DiagnosticLevelMask::Remark)
.Case("warning", DiagnosticLevelMask::Warning)
.Case("error", DiagnosticLevelMask::Error)
.Default(DiagnosticLevelMask::None);
if (PM == DiagnosticLevelMask::None) {
Success = false;
Diags.Report(diag::err_drv_invalid_value) << FlagName << Level;
}
M = M | PM;
}
return Success;
}
static void parseSanitizerKinds(StringRef FlagName,
const std::vector<std::string> &Sanitizers,
DiagnosticsEngine &Diags, SanitizerSet &S) {
for (const auto &Sanitizer : Sanitizers) {
SanitizerMask K = parseSanitizerValue(Sanitizer, /*AllowGroups=*/false);
if (K == SanitizerMask())
Diags.Report(diag::err_drv_invalid_value) << FlagName << Sanitizer;
else
S.set(K, true);
}
}
static SmallVector<StringRef, 4> serializeSanitizerKinds(SanitizerSet S) {
SmallVector<StringRef, 4> Values;
serializeSanitizerSet(S, Values);
return Values;
}
static void parseXRayInstrumentationBundle(StringRef FlagName, StringRef Bundle,
ArgList &Args, DiagnosticsEngine &D,
XRayInstrSet &S) {
llvm::SmallVector<StringRef, 2> BundleParts;
llvm::SplitString(Bundle, BundleParts, ",");
for (const auto &B : BundleParts) {
auto Mask = parseXRayInstrValue(B);
if (Mask == XRayInstrKind::None)
if (B != "none")
D.Report(diag::err_drv_invalid_value) << FlagName << Bundle;
else
S.Mask = Mask;
else if (Mask == XRayInstrKind::All)
S.Mask = Mask;
else
S.set(Mask, true);
}
}
static std::string serializeXRayInstrumentationBundle(const XRayInstrSet &S) {
llvm::SmallVector<StringRef, 2> BundleParts;
serializeXRayInstrValue(S, BundleParts);
std::string Buffer;
llvm::raw_string_ostream OS(Buffer);
llvm::interleave(BundleParts, OS, [&OS](StringRef Part) { OS << Part; }, ",");
return Buffer;
}
// Set the profile kind using fprofile-instrument-use-path.
static void setPGOUseInstrumentor(CodeGenOptions &Opts,
const Twine &ProfileName) {
auto ReaderOrErr = llvm::IndexedInstrProfReader::create(ProfileName);
// In error, return silently and let Clang PGOUse report the error message.
if (auto E = ReaderOrErr.takeError()) {
llvm::consumeError(std::move(E));
Opts.setProfileUse(CodeGenOptions::ProfileClangInstr);
return;
}
std::unique_ptr<llvm::IndexedInstrProfReader> PGOReader =
std::move(ReaderOrErr.get());
if (PGOReader->isIRLevelProfile()) {
if (PGOReader->hasCSIRLevelProfile())
Opts.setProfileUse(CodeGenOptions::ProfileCSIRInstr);
else
Opts.setProfileUse(CodeGenOptions::ProfileIRInstr);
} else
Opts.setProfileUse(CodeGenOptions::ProfileClangInstr);
}
void CompilerInvocation::GenerateCodeGenArgs(
const CodeGenOptions &Opts, SmallVectorImpl<const char *> &Args,
StringAllocator SA, const llvm::Triple &T, const std::string &OutputFile,
const LangOptions *LangOpts) {
const CodeGenOptions &CodeGenOpts = Opts;
if (Opts.OptimizationLevel == 0)
GenerateArg(Args, OPT_O0, SA);
else
GenerateArg(Args, OPT_O, Twine(Opts.OptimizationLevel), SA);
#define CODEGEN_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef CODEGEN_OPTION_WITH_MARSHALLING
if (Opts.OptimizationLevel > 0) {
if (Opts.Inlining == CodeGenOptions::NormalInlining)
GenerateArg(Args, OPT_finline_functions, SA);
else if (Opts.Inlining == CodeGenOptions::OnlyHintInlining)
GenerateArg(Args, OPT_finline_hint_functions, SA);
else if (Opts.Inlining == CodeGenOptions::OnlyAlwaysInlining)
GenerateArg(Args, OPT_fno_inline, SA);
}
if (Opts.DirectAccessExternalData && LangOpts->PICLevel != 0)
GenerateArg(Args, OPT_fdirect_access_external_data, SA);
else if (!Opts.DirectAccessExternalData && LangOpts->PICLevel == 0)
GenerateArg(Args, OPT_fno_direct_access_external_data, SA);
Optional<StringRef> DebugInfoVal;
switch (Opts.DebugInfo) {
case codegenoptions::DebugLineTablesOnly:
DebugInfoVal = "line-tables-only";
break;
case codegenoptions::DebugDirectivesOnly:
DebugInfoVal = "line-directives-only";
break;
case codegenoptions::DebugInfoConstructor:
DebugInfoVal = "constructor";
break;
case codegenoptions::LimitedDebugInfo:
DebugInfoVal = "limited";
break;
case codegenoptions::FullDebugInfo:
DebugInfoVal = "standalone";
break;
case codegenoptions::UnusedTypeInfo:
DebugInfoVal = "unused-types";
break;
case codegenoptions::NoDebugInfo: // default value
DebugInfoVal = None;
break;
case codegenoptions::LocTrackingOnly: // implied value
DebugInfoVal = None;
break;
}
if (DebugInfoVal)
GenerateArg(Args, OPT_debug_info_kind_EQ, *DebugInfoVal, SA);
for (const auto &Prefix : Opts.DebugPrefixMap)
GenerateArg(Args, OPT_fdebug_prefix_map_EQ,
Prefix.first + "=" + Prefix.second, SA);
for (const auto &Prefix : Opts.CoveragePrefixMap)
GenerateArg(Args, OPT_fcoverage_prefix_map_EQ,
Prefix.first + "=" + Prefix.second, SA);
if (Opts.NewStructPathTBAA)
GenerateArg(Args, OPT_new_struct_path_tbaa, SA);
if (Opts.OptimizeSize == 1)
GenerateArg(Args, OPT_O, "s", SA);
else if (Opts.OptimizeSize == 2)
GenerateArg(Args, OPT_O, "z", SA);
// SimplifyLibCalls is set only in the absence of -fno-builtin and
// -ffreestanding. We'll consider that when generating them.
// NoBuiltinFuncs are generated by LangOptions.
if (Opts.UnrollLoops && Opts.OptimizationLevel <= 1)
GenerateArg(Args, OPT_funroll_loops, SA);
else if (!Opts.UnrollLoops && Opts.OptimizationLevel > 1)
GenerateArg(Args, OPT_fno_unroll_loops, SA);
if (!Opts.BinutilsVersion.empty())
GenerateArg(Args, OPT_fbinutils_version_EQ, Opts.BinutilsVersion, SA);
if (Opts.DebugNameTable ==
static_cast<unsigned>(llvm::DICompileUnit::DebugNameTableKind::GNU))
GenerateArg(Args, OPT_ggnu_pubnames, SA);
else if (Opts.DebugNameTable ==
static_cast<unsigned>(
llvm::DICompileUnit::DebugNameTableKind::Default))
GenerateArg(Args, OPT_gpubnames, SA);
auto TNK = Opts.getDebugSimpleTemplateNames();
if (TNK != codegenoptions::DebugTemplateNamesKind::Full) {
if (TNK == codegenoptions::DebugTemplateNamesKind::Simple)
GenerateArg(Args, OPT_gsimple_template_names_EQ, "simple", SA);
else if (TNK == codegenoptions::DebugTemplateNamesKind::Mangled)
GenerateArg(Args, OPT_gsimple_template_names_EQ, "mangled", SA);
}
// ProfileInstrumentUsePath is marshalled automatically, no need to generate
// it or PGOUseInstrumentor.
if (Opts.TimePasses) {
if (Opts.TimePassesPerRun)
GenerateArg(Args, OPT_ftime_report_EQ, "per-pass-run", SA);
else
GenerateArg(Args, OPT_ftime_report, SA);
}
if (Opts.PrepareForLTO && !Opts.PrepareForThinLTO)
GenerateArg(Args, OPT_flto_EQ, "full", SA);
if (Opts.PrepareForThinLTO)
GenerateArg(Args, OPT_flto_EQ, "thin", SA);
if (!Opts.ThinLTOIndexFile.empty())
GenerateArg(Args, OPT_fthinlto_index_EQ, Opts.ThinLTOIndexFile, SA);
if (Opts.SaveTempsFilePrefix == OutputFile)
GenerateArg(Args, OPT_save_temps_EQ, "obj", SA);
StringRef MemProfileBasename("memprof.profraw");
if (!Opts.MemoryProfileOutput.empty()) {
if (Opts.MemoryProfileOutput == MemProfileBasename) {
GenerateArg(Args, OPT_fmemory_profile, SA);
} else {
size_t ArgLength =
Opts.MemoryProfileOutput.size() - MemProfileBasename.size();
GenerateArg(Args, OPT_fmemory_profile_EQ,
Opts.MemoryProfileOutput.substr(0, ArgLength), SA);
}
}
if (memcmp(Opts.CoverageVersion, "408*", 4) != 0)
GenerateArg(Args, OPT_coverage_version_EQ,
StringRef(Opts.CoverageVersion, 4), SA);
// TODO: Check if we need to generate arguments stored in CmdArgs. (Namely
// '-fembed_bitcode', which does not map to any CompilerInvocation field and
// won't be generated.)
if (Opts.XRayInstrumentationBundle.Mask != XRayInstrKind::All) {
std::string InstrBundle =
serializeXRayInstrumentationBundle(Opts.XRayInstrumentationBundle);
if (!InstrBundle.empty())
GenerateArg(Args, OPT_fxray_instrumentation_bundle, InstrBundle, SA);
}
if (Opts.CFProtectionReturn && Opts.CFProtectionBranch)
GenerateArg(Args, OPT_fcf_protection_EQ, "full", SA);
else if (Opts.CFProtectionReturn)
GenerateArg(Args, OPT_fcf_protection_EQ, "return", SA);
else if (Opts.CFProtectionBranch)
GenerateArg(Args, OPT_fcf_protection_EQ, "branch", SA);
if (Opts.IBTSeal)
GenerateArg(Args, OPT_mibt_seal, SA);
[X86] initial -mfunction-return=thunk-extern support Adds support for: * `-mfunction-return=<value>` command line flag, and * `__attribute__((function_return("<value>")))` function attribute Where the supported <value>s are: * keep (disable) * thunk-extern (enable) thunk-extern enables clang to change ret instructions into jmps to an external symbol named __x86_return_thunk, implemented as a new MachineFunctionPass named "x86-return-thunks", keyed off the new IR attribute fn_ret_thunk_extern. The symbol __x86_return_thunk is expected to be provided by the runtime the compiled code is linked against and is not defined by the compiler. Enabling this option alone doesn't provide mitigations without corresponding definitions of __x86_return_thunk! This new MachineFunctionPass is very similar to "x86-lvi-ret". The <value>s "thunk" and "thunk-inline" are currently unsupported. It's not clear yet that they are necessary: whether the thunk pattern they would emit is beneficial or used anywhere. Should the <value>s "thunk" and "thunk-inline" become necessary, x86-return-thunks could probably be merged into x86-retpoline-thunks which has pre-existing machinery for emitting thunks (which could be used to implement the <value> "thunk"). Has been found to build+boot with corresponding Linux kernel patches. This helps the Linux kernel mitigate RETBLEED. * CVE-2022-23816 * CVE-2022-28693 * CVE-2022-29901 See also: * "RETBLEED: Arbitrary Speculative Code Execution with Return Instructions." * AMD SECURITY NOTICE AMD-SN-1037: AMD CPU Branch Type Confusion * TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION REVISION 1.0 2022-07-12 * Return Stack Buffer Underflow / Return Stack Buffer Underflow / CVE-2022-29901, CVE-2022-28693 / INTEL-SA-00702 SystemZ may eventually want to support "thunk-extern" and "thunk"; both options are used by the Linux kernel's CONFIG_EXPOLINE. This functionality has been available in GCC since the 8.1 release, and was backported to the 7.3 release. Many thanks for folks that provided discrete review off list due to the embargoed nature of this hardware vulnerability. Many Bothans died to bring us this information. Link: https://www.youtube.com/watch?v=IF6HbCKQHK8 Link: https://github.com/llvm/llvm-project/issues/54404 Link: https://gcc.gnu.org/legacy-ml/gcc-patches/2018-01/msg01197.html Link: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html Link: https://arstechnica.com/information-technology/2022/07/intel-and-amd-cpus-vulnerable-to-a-new-speculative-execution-attack/?comments=1 Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ce114c866860aa9eae3f50974efc68241186ba60 Link: https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00702.html Link: https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00707.html Reviewed By: aaron.ballman, craig.topper Differential Revision: https://reviews.llvm.org/D129572
2022-07-12 09:17:15 -07:00
if (Opts.FunctionReturnThunks)
GenerateArg(Args, OPT_mfunction_return_EQ, "thunk-extern", SA);
for (const auto &F : Opts.LinkBitcodeFiles) {
bool Builtint = F.LinkFlags == llvm::Linker::Flags::LinkOnlyNeeded &&
F.PropagateAttrs && F.Internalize;
GenerateArg(Args,
Builtint ? OPT_mlink_builtin_bitcode : OPT_mlink_bitcode_file,
F.Filename, SA);
}
// TODO: Consider removing marshalling annotations from f[no_]emulated_tls.
// That would make it easy to generate the option only **once** if it was
// explicitly set to non-default value.
if (Opts.ExplicitEmulatedTLS) {
GenerateArg(
Args, Opts.EmulatedTLS ? OPT_femulated_tls : OPT_fno_emulated_tls, SA);
}
if (Opts.FPDenormalMode != llvm::DenormalMode::getIEEE())
GenerateArg(Args, OPT_fdenormal_fp_math_EQ, Opts.FPDenormalMode.str(), SA);
if ((Opts.FPDenormalMode != Opts.FP32DenormalMode) ||
(Opts.FP32DenormalMode != llvm::DenormalMode::getIEEE()))
GenerateArg(Args, OPT_fdenormal_fp_math_f32_EQ, Opts.FP32DenormalMode.str(),
SA);
if (Opts.StructReturnConvention == CodeGenOptions::SRCK_OnStack) {
OptSpecifier Opt =
T.isPPC32() ? OPT_maix_struct_return : OPT_fpcc_struct_return;
GenerateArg(Args, Opt, SA);
} else if (Opts.StructReturnConvention == CodeGenOptions::SRCK_InRegs) {
OptSpecifier Opt =
T.isPPC32() ? OPT_msvr4_struct_return : OPT_freg_struct_return;
GenerateArg(Args, Opt, SA);
}
if (Opts.EnableAIXExtendedAltivecABI)
GenerateArg(Args, OPT_mabi_EQ_vec_extabi, SA);
if (!Opts.OptRecordPasses.empty())
GenerateArg(Args, OPT_opt_record_passes, Opts.OptRecordPasses, SA);
if (!Opts.OptRecordFormat.empty())
GenerateArg(Args, OPT_opt_record_format, Opts.OptRecordFormat, SA);
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
GenerateOptimizationRemark(Args, SA, OPT_Rpass_EQ, "pass",
Opts.OptimizationRemark);
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
GenerateOptimizationRemark(Args, SA, OPT_Rpass_missed_EQ, "pass-missed",
Opts.OptimizationRemarkMissed);
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
GenerateOptimizationRemark(Args, SA, OPT_Rpass_analysis_EQ, "pass-analysis",
Opts.OptimizationRemarkAnalysis);
GenerateArg(Args, OPT_fdiagnostics_hotness_threshold_EQ,
Opts.DiagnosticsHotnessThreshold
? Twine(*Opts.DiagnosticsHotnessThreshold)
: "auto",
SA);
GenerateArg(Args, OPT_fdiagnostics_misexpect_tolerance_EQ,
Twine(*Opts.DiagnosticsMisExpectTolerance), SA);
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.SanitizeRecover))
GenerateArg(Args, OPT_fsanitize_recover_EQ, Sanitizer, SA);
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.SanitizeTrap))
GenerateArg(Args, OPT_fsanitize_trap_EQ, Sanitizer, SA);
if (!Opts.EmitVersionIdentMetadata)
GenerateArg(Args, OPT_Qn, SA);
switch (Opts.FiniteLoops) {
case CodeGenOptions::FiniteLoopsKind::Language:
break;
case CodeGenOptions::FiniteLoopsKind::Always:
GenerateArg(Args, OPT_ffinite_loops, SA);
break;
case CodeGenOptions::FiniteLoopsKind::Never:
GenerateArg(Args, OPT_fno_finite_loops, SA);
break;
}
}
bool CompilerInvocation::ParseCodeGenArgs(CodeGenOptions &Opts, ArgList &Args,
InputKind IK,
DiagnosticsEngine &Diags,
const llvm::Triple &T,
const std::string &OutputFile,
const LangOptions &LangOptsRef) {
unsigned NumErrorsBefore = Diags.getNumErrors();
unsigned OptimizationLevel = getOptimizationLevel(Args, IK, Diags);
// TODO: This could be done in Driver
unsigned MaxOptLevel = 3;
if (OptimizationLevel > MaxOptLevel) {
// If the optimization level is not supported, fall back on the default
// optimization
Diags.Report(diag::warn_drv_optimization_value)
<< Args.getLastArg(OPT_O)->getAsString(Args) << "-O" << MaxOptLevel;
OptimizationLevel = MaxOptLevel;
}
Opts.OptimizationLevel = OptimizationLevel;
// The key paths of codegen options defined in Options.td start with
// "CodeGenOpts.". Let's provide the expected variable name and type.
CodeGenOptions &CodeGenOpts = Opts;
// Some codegen options depend on language options. Let's provide the expected
// variable name and type.
const LangOptions *LangOpts = &LangOptsRef;
#define CODEGEN_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef CODEGEN_OPTION_WITH_MARSHALLING
Cleanup the handling of noinline function attributes, -fno-inline, -fno-inline-functions, -O0, and optnone. These were really, really tangled together: - We used the noinline LLVM attribute for -fno-inline - But not for -fno-inline-functions (breaking LTO) - But we did use it for -finline-hint-functions (yay, LTO is happy!) - But we didn't for -O0 (LTO is sad yet again...) - We had weird structuring of CodeGenOpts with both an inlining enumeration and a boolean. They interacted in weird ways and needlessly. - A *lot* of set smashing went on with setting these, and then got worse when we considered optnone and other inlining-effecting attributes. - A bunch of inline affecting attributes were managed in a completely different place from -fno-inline. - Even with -fno-inline we failed to put the LLVM noinline attribute onto many generated function definitions because they didn't show up as AST-level functions. - If you passed -O0 but -finline-functions we would run the normal inliner pass in LLVM despite it being in the O0 pipeline, which really doesn't make much sense. - Lastly, we used things like '-fno-inline' to manipulate the pass pipeline which forced the pass pipeline to be much more parameterizable than it really needs to be. Instead we can *just* use the optimization level to select a pipeline and control the rest via attributes. Sadly, this causes a bunch of churn in tests because we don't run the optimizer in the tests and check the contents of attribute sets. It would be awesome if attribute sets were a bit more FileCheck friendly, but oh well. I think this is a significant improvement and should remove the semantic need to change what inliner pass we run in order to comply with the requested inlining semantics by relying completely on attributes. It also cleans up tho optnone and related handling a bit. One unfortunate aspect of this is that for generating alwaysinline routines like those in OpenMP we end up removing noinline and then adding alwaysinline. I tried a bunch of other approaches, but because we recompute function attributes from scratch and don't have a declaration here I couldn't find anything substantially cleaner than this. Differential Revision: https://reviews.llvm.org/D28053 llvm-svn: 290398
2016-12-23 01:24:49 +00:00
// At O0 we want to fully disable inlining outside of cases marked with
// 'alwaysinline' that are required for correctness.
if (Opts.OptimizationLevel == 0) {
Opts.setInlining(CodeGenOptions::OnlyAlwaysInlining);
} else if (const Arg *A = Args.getLastArg(options::OPT_finline_functions,
options::OPT_finline_hint_functions,
options::OPT_fno_inline_functions,
options::OPT_fno_inline)) {
// Explicit inlining flags can disable some or all inlining even at
// optimization levels above zero.
if (A->getOption().matches(options::OPT_finline_functions))
Opts.setInlining(CodeGenOptions::NormalInlining);
else if (A->getOption().matches(options::OPT_finline_hint_functions))
Opts.setInlining(CodeGenOptions::OnlyHintInlining);
else
Opts.setInlining(CodeGenOptions::OnlyAlwaysInlining);
} else {
Opts.setInlining(CodeGenOptions::NormalInlining);
}
Add -f[no-]direct-access-external-data to supersede -mpie-copy-relocations GCC r218397 "x86-64: Optimize access to globals in PIE with copy reloc" made -fpie code emit R_X86_64_PC32 to reference external data symbols by default. Clang adopted -mpie-copy-relocations D19996 as a flexible alternative. The name -mpie-copy-relocations can be improved [1] and does not capture the idea that this option can apply to -fno-pic and -fpic [2], so this patch introduces -f[no-]direct-access-external-data and makes -mpie-copy-relocations their aliases for compatibility. [1] For ``` extern int var; int get() { return var; } ``` if var is defined in another translation unit in the link unit, there is no copy relocation. [2] -fno-pic -fno-direct-access-external-data is useful to avoid copy relocations. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65888 If a shared object is linked with -Bsymbolic or --dynamic-list and exports a data symbol, normally the data symbol cannot be accessed by -fno-pic code (because by default an absolute relocation is produced which will lead to a copy relocation). -fno-direct-access-external-data can prevent copy relocations. -fpic -fdirect-access-external-data can avoid GOT indirection. This is like the undefined counterpart of -fno-semantic-interposition. However, the user should define var in another translation unit and link with -Bsymbolic or --dynamic-list, otherwise the linker will error in a -shared link. Generally the user has better tools for their goal but I want to mention that this combination is valid. On COFF, the behavior is like always -fdirect-access-external-data. `__declspec(dllimport)` is needed to enable indirect access. There is currently no plan to affect non-ELF behaviors or -fpic behaviors. -fno-pic -fno-direct-access-external-data will be implemented in the subsequent patch. GCC feature request https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98112 Reviewed By: tmsriram Differential Revision: https://reviews.llvm.org/D92633
2021-01-09 00:29:09 -08:00
// PIC defaults to -fno-direct-access-external-data while non-PIC defaults to
// -fdirect-access-external-data.
Opts.DirectAccessExternalData =
Args.hasArg(OPT_fdirect_access_external_data) ||
(!Args.hasArg(OPT_fno_direct_access_external_data) &&
LangOpts->PICLevel == 0);
if (Arg *A = Args.getLastArg(OPT_debug_info_kind_EQ)) {
unsigned Val =
llvm::StringSwitch<unsigned>(A->getValue())
.Case("line-tables-only", codegenoptions::DebugLineTablesOnly)
.Case("line-directives-only", codegenoptions::DebugDirectivesOnly)
.Case("constructor", codegenoptions::DebugInfoConstructor)
.Case("limited", codegenoptions::LimitedDebugInfo)
.Case("standalone", codegenoptions::FullDebugInfo)
.Case("unused-types", codegenoptions::UnusedTypeInfo)
.Default(~0U);
if (Val == ~0U)
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
<< A->getValue();
else
Opts.setDebugInfo(static_cast<codegenoptions::DebugInfoKind>(Val));
}
Add -f[no-]direct-access-external-data to supersede -mpie-copy-relocations GCC r218397 "x86-64: Optimize access to globals in PIE with copy reloc" made -fpie code emit R_X86_64_PC32 to reference external data symbols by default. Clang adopted -mpie-copy-relocations D19996 as a flexible alternative. The name -mpie-copy-relocations can be improved [1] and does not capture the idea that this option can apply to -fno-pic and -fpic [2], so this patch introduces -f[no-]direct-access-external-data and makes -mpie-copy-relocations their aliases for compatibility. [1] For ``` extern int var; int get() { return var; } ``` if var is defined in another translation unit in the link unit, there is no copy relocation. [2] -fno-pic -fno-direct-access-external-data is useful to avoid copy relocations. https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65888 If a shared object is linked with -Bsymbolic or --dynamic-list and exports a data symbol, normally the data symbol cannot be accessed by -fno-pic code (because by default an absolute relocation is produced which will lead to a copy relocation). -fno-direct-access-external-data can prevent copy relocations. -fpic -fdirect-access-external-data can avoid GOT indirection. This is like the undefined counterpart of -fno-semantic-interposition. However, the user should define var in another translation unit and link with -Bsymbolic or --dynamic-list, otherwise the linker will error in a -shared link. Generally the user has better tools for their goal but I want to mention that this combination is valid. On COFF, the behavior is like always -fdirect-access-external-data. `__declspec(dllimport)` is needed to enable indirect access. There is currently no plan to affect non-ELF behaviors or -fpic behaviors. -fno-pic -fno-direct-access-external-data will be implemented in the subsequent patch. GCC feature request https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98112 Reviewed By: tmsriram Differential Revision: https://reviews.llvm.org/D92633
2021-01-09 00:29:09 -08:00
// If -fuse-ctor-homing is set and limited debug info is already on, then use
// constructor homing, and vice versa for -fno-use-ctor-homing.
if (const Arg *A =
Args.getLastArg(OPT_fuse_ctor_homing, OPT_fno_use_ctor_homing)) {
if (A->getOption().matches(OPT_fuse_ctor_homing) &&
Opts.getDebugInfo() == codegenoptions::LimitedDebugInfo)
Opts.setDebugInfo(codegenoptions::DebugInfoConstructor);
if (A->getOption().matches(OPT_fno_use_ctor_homing) &&
Opts.getDebugInfo() == codegenoptions::DebugInfoConstructor)
Opts.setDebugInfo(codegenoptions::LimitedDebugInfo);
}
for (const auto &Arg : Args.getAllArgValues(OPT_fdebug_prefix_map_EQ)) {
auto Split = StringRef(Arg).split('=');
Opts.DebugPrefixMap.insert(
{std::string(Split.first), std::string(Split.second)});
}
for (const auto &Arg : Args.getAllArgValues(OPT_fcoverage_prefix_map_EQ)) {
auto Split = StringRef(Arg).split('=');
Opts.CoveragePrefixMap.insert(
{std::string(Split.first), std::string(Split.second)});
}
const llvm::Triple::ArchType DebugEntryValueArchs[] = {
llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::aarch64,
llvm::Triple::arm, llvm::Triple::armeb, llvm::Triple::mips,
llvm::Triple::mipsel, llvm::Triple::mips64, llvm::Triple::mips64el};
if (Opts.OptimizationLevel > 0 && Opts.hasReducedDebugInfo() &&
llvm::is_contained(DebugEntryValueArchs, T.getArch()))
Opts.EmitCallSiteInfo = true;
if (!Opts.EnableDIPreservationVerify && Opts.DIBugsReportFilePath.size()) {
Diags.Report(diag::warn_ignoring_verify_debuginfo_preserve_export)
<< Opts.DIBugsReportFilePath;
Opts.DIBugsReportFilePath = "";
}
Opts.NewStructPathTBAA = !Args.hasArg(OPT_no_struct_path_tbaa) &&
Args.hasArg(OPT_new_struct_path_tbaa);
Opts.OptimizeSize = getOptimizationLevelSize(Args);
Opts.SimplifyLibCalls = !LangOpts->NoBuiltin;
if (Opts.SimplifyLibCalls)
Opts.NoBuiltinFuncs = LangOpts->NoBuiltinFuncs;
Opts.UnrollLoops =
Args.hasFlag(OPT_funroll_loops, OPT_fno_unroll_loops,
(Opts.OptimizationLevel > 1));
Add -fbinutils-version= to gate ELF features on the specified binutils version There are two use cases. Assembler We have accrued some code gated on MCAsmInfo::useIntegratedAssembler(). Some features are supported by latest GNU as, but we have to use MCAsmInfo::useIntegratedAs() because the newer versions have not been widely adopted (e.g. SHF_LINK_ORDER 'o' and 'unique' linkage in 2.35, --compress-debug-sections= in 2.26). Linker We want to use features supported only by LLD or very new GNU ld, or don't want to work around older GNU ld. We currently can't represent that "we don't care about old GNU ld". You can find such workarounds in a few other places, e.g. Mips/MipsAsmprinter.cpp PowerPC/PPCTOCRegDeps.cpp X86/X86MCInstrLower.cpp AArch64 TLS workaround for R_AARCH64_TLSLD_MOVW_DTPREL_* (PR ld/18276), R_AARCH64_TLSLE_LDST8_TPREL_LO12 (https://bugs.llvm.org/show_bug.cgi?id=36727 https://sourceware.org/bugzilla/show_bug.cgi?id=22969) Mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER components (supported by LLD in D84001; GNU ld feature request https://sourceware.org/bugzilla/show_bug.cgi?id=16833 may take a while before available). This feature allows to garbage collect some unused sections (e.g. fragmented .gcc_except_table). This patch adds `-fbinutils-version=` to clang and `-binutils-version` to llc. It changes one codegen place in SHF_MERGE to demonstrate its usage. `-fbinutils-version=2.35` means the produced object file does not care about GNU ld<2.35 compatibility. When `-fno-integrated-as` is specified, the produced assembly can be consumed by GNU as>=2.35, but older versions may not work. `-fbinutils-version=none` means that we can use all ELF features, regardless of GNU as/ld support. Both clang and llc need `parseBinutilsVersion`. Such command line parsing is usually implemented in `llvm/lib/CodeGen/CommandFlags.cpp` (LLVMCodeGen), however, ClangCodeGen does not depend on LLVMCodeGen. So I add `parseBinutilsVersion` to `llvm/lib/Target/TargetMachine.cpp` (LLVMTarget). Differential Revision: https://reviews.llvm.org/D85474
2021-01-26 12:28:23 -08:00
Opts.BinutilsVersion =
std::string(Args.getLastArgValue(OPT_fbinutils_version_EQ));
Opts.DebugNameTable = static_cast<unsigned>(
Args.hasArg(OPT_ggnu_pubnames)
? llvm::DICompileUnit::DebugNameTableKind::GNU
: Args.hasArg(OPT_gpubnames)
? llvm::DICompileUnit::DebugNameTableKind::Default
: llvm::DICompileUnit::DebugNameTableKind::None);
if (const Arg *A = Args.getLastArg(OPT_gsimple_template_names_EQ)) {
StringRef Value = A->getValue();
if (Value != "simple" && Value != "mangled")
Diags.Report(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << A->getValue();
Opts.setDebugSimpleTemplateNames(
StringRef(A->getValue()) == "simple"
? codegenoptions::DebugTemplateNamesKind::Simple
: codegenoptions::DebugTemplateNamesKind::Mangled);
}
if (!Opts.ProfileInstrumentUsePath.empty())
setPGOUseInstrumentor(Opts, Opts.ProfileInstrumentUsePath);
if (const Arg *A = Args.getLastArg(OPT_ftime_report, OPT_ftime_report_EQ)) {
Opts.TimePasses = true;
// -ftime-report= is only for new pass manager.
if (A->getOption().getID() == OPT_ftime_report_EQ) {
StringRef Val = A->getValue();
if (Val == "per-pass")
Opts.TimePassesPerRun = false;
else if (Val == "per-pass-run")
Opts.TimePassesPerRun = true;
else
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
}
Opts.PrepareForLTO = false;
Opts.PrepareForThinLTO = false;
if (Arg *A = Args.getLastArg(OPT_flto_EQ)) {
Opts.PrepareForLTO = true;
StringRef S = A->getValue();
if (S == "thin")
Opts.PrepareForThinLTO = true;
else if (S != "full")
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << S;
}
if (Arg *A = Args.getLastArg(OPT_fthinlto_index_EQ)) {
if (IK.getLanguage() != Language::LLVM_IR)
Diags.Report(diag::err_drv_argument_only_allowed_with)
<< A->getAsString(Args) << "-x ir";
Opts.ThinLTOIndexFile =
std::string(Args.getLastArgValue(OPT_fthinlto_index_EQ));
}
if (Arg *A = Args.getLastArg(OPT_save_temps_EQ))
Opts.SaveTempsFilePrefix =
llvm::StringSwitch<std::string>(A->getValue())
.Case("obj", OutputFile)
.Default(llvm::sys::path::filename(OutputFile).str());
// The memory profile runtime appends the pid to make this name more unique.
const char *MemProfileBasename = "memprof.profraw";
if (Args.hasArg(OPT_fmemory_profile_EQ)) {
SmallString<128> Path(
std::string(Args.getLastArgValue(OPT_fmemory_profile_EQ)));
llvm::sys::path::append(Path, MemProfileBasename);
Opts.MemoryProfileOutput = std::string(Path);
} else if (Args.hasArg(OPT_fmemory_profile))
Opts.MemoryProfileOutput = MemProfileBasename;
memcpy(Opts.CoverageVersion, "408*", 4);
if (Opts.EmitGcovArcs || Opts.EmitGcovNotes) {
if (Args.hasArg(OPT_coverage_version_EQ)) {
StringRef CoverageVersion = Args.getLastArgValue(OPT_coverage_version_EQ);
if (CoverageVersion.size() != 4) {
Diags.Report(diag::err_drv_invalid_value)
<< Args.getLastArg(OPT_coverage_version_EQ)->getAsString(Args)
<< CoverageVersion;
} else {
memcpy(Opts.CoverageVersion, CoverageVersion.data(), 4);
}
}
}
// FIXME: For backend options that are not yet recorded as function
// attributes in the IR, keep track of them so we can embed them in a
// separate data section and use them when building the bitcode.
for (const auto &A : Args) {
// Do not encode output and input.
if (A->getOption().getID() == options::OPT_o ||
A->getOption().getID() == options::OPT_INPUT ||
A->getOption().getID() == options::OPT_x ||
A->getOption().getID() == options::OPT_fembed_bitcode ||
A->getOption().matches(options::OPT_W_Group))
continue;
ArgStringList ASL;
A->render(Args, ASL);
for (const auto &arg : ASL) {
StringRef ArgStr(arg);
Opts.CmdArgs.insert(Opts.CmdArgs.end(), ArgStr.begin(), ArgStr.end());
// using \00 to separate each commandline options.
Opts.CmdArgs.push_back('\0');
}
}
auto XRayInstrBundles =
Args.getAllArgValues(OPT_fxray_instrumentation_bundle);
if (XRayInstrBundles.empty())
Opts.XRayInstrumentationBundle.Mask = XRayInstrKind::All;
else
for (const auto &A : XRayInstrBundles)
parseXRayInstrumentationBundle("-fxray-instrumentation-bundle=", A, Args,
Diags, Opts.XRayInstrumentationBundle);
if (const Arg *A = Args.getLastArg(OPT_fcf_protection_EQ)) {
StringRef Name = A->getValue();
if (Name == "full") {
Opts.CFProtectionReturn = 1;
Opts.CFProtectionBranch = 1;
} else if (Name == "return")
Opts.CFProtectionReturn = 1;
else if (Name == "branch")
Opts.CFProtectionBranch = 1;
else if (Name != "none")
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Name;
}
[X86] initial -mfunction-return=thunk-extern support Adds support for: * `-mfunction-return=<value>` command line flag, and * `__attribute__((function_return("<value>")))` function attribute Where the supported <value>s are: * keep (disable) * thunk-extern (enable) thunk-extern enables clang to change ret instructions into jmps to an external symbol named __x86_return_thunk, implemented as a new MachineFunctionPass named "x86-return-thunks", keyed off the new IR attribute fn_ret_thunk_extern. The symbol __x86_return_thunk is expected to be provided by the runtime the compiled code is linked against and is not defined by the compiler. Enabling this option alone doesn't provide mitigations without corresponding definitions of __x86_return_thunk! This new MachineFunctionPass is very similar to "x86-lvi-ret". The <value>s "thunk" and "thunk-inline" are currently unsupported. It's not clear yet that they are necessary: whether the thunk pattern they would emit is beneficial or used anywhere. Should the <value>s "thunk" and "thunk-inline" become necessary, x86-return-thunks could probably be merged into x86-retpoline-thunks which has pre-existing machinery for emitting thunks (which could be used to implement the <value> "thunk"). Has been found to build+boot with corresponding Linux kernel patches. This helps the Linux kernel mitigate RETBLEED. * CVE-2022-23816 * CVE-2022-28693 * CVE-2022-29901 See also: * "RETBLEED: Arbitrary Speculative Code Execution with Return Instructions." * AMD SECURITY NOTICE AMD-SN-1037: AMD CPU Branch Type Confusion * TECHNICAL GUIDANCE FOR MITIGATING BRANCH TYPE CONFUSION REVISION 1.0 2022-07-12 * Return Stack Buffer Underflow / Return Stack Buffer Underflow / CVE-2022-29901, CVE-2022-28693 / INTEL-SA-00702 SystemZ may eventually want to support "thunk-extern" and "thunk"; both options are used by the Linux kernel's CONFIG_EXPOLINE. This functionality has been available in GCC since the 8.1 release, and was backported to the 7.3 release. Many thanks for folks that provided discrete review off list due to the embargoed nature of this hardware vulnerability. Many Bothans died to bring us this information. Link: https://www.youtube.com/watch?v=IF6HbCKQHK8 Link: https://github.com/llvm/llvm-project/issues/54404 Link: https://gcc.gnu.org/legacy-ml/gcc-patches/2018-01/msg01197.html Link: https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/return-stack-buffer-underflow.html Link: https://arstechnica.com/information-technology/2022/07/intel-and-amd-cpus-vulnerable-to-a-new-speculative-execution-attack/?comments=1 Link: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ce114c866860aa9eae3f50974efc68241186ba60 Link: https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00702.html Link: https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00707.html Reviewed By: aaron.ballman, craig.topper Differential Revision: https://reviews.llvm.org/D129572
2022-07-12 09:17:15 -07:00
if (const Arg *A = Args.getLastArg(OPT_mfunction_return_EQ)) {
auto Val = llvm::StringSwitch<llvm::FunctionReturnThunksKind>(A->getValue())
.Case("keep", llvm::FunctionReturnThunksKind::Keep)
.Case("thunk-extern", llvm::FunctionReturnThunksKind::Extern)
.Default(llvm::FunctionReturnThunksKind::Invalid);
// SystemZ might want to add support for "expolines."
if (!T.isX86())
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << T.getTriple();
else if (Val == llvm::FunctionReturnThunksKind::Invalid)
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else if (Val == llvm::FunctionReturnThunksKind::Extern &&
Args.getLastArgValue(OPT_mcmodel_EQ).equals("large"))
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args)
<< Args.getLastArg(OPT_mcmodel_EQ)->getAsString(Args);
else
Opts.FunctionReturnThunks = static_cast<unsigned>(Val);
}
[X86] Enable ibt-seal optimization when LTO is used in Kernel Intel's CET/IBT requires every indirect branch target to be an ENDBR instruction. Because of that, the compiler needs to correctly emit these instruction on function's prologues. Because this is a security feature, it is desirable that only actual indirect-branch-targeted functions are emitted with ENDBRs. While it is possible to identify address-taken functions through LTO, minimizing these ENDBR instructions remains a hard task for user-space binaries because exported functions may end being reachable through PLT entries, that will use an indirect branch for such. Because this cannot be determined during compilation-time, the compiler currently emits ENDBRs to every non-local-linkage function. Despite the challenge presented for user-space, the kernel landscape is different as no PLTs are used. With the intent of providing the most fit ENDBR emission for the kernel, kernel developers proposed an optimization named "ibt-seal" which replaces the ENDBRs for NOPs directly in the binary. The discussion of this feature can be seen in [1]. This diff brings the enablement of the flag -mibt-seal, which in combination with LTO enforces a different policy for ENDBR placement in when the code-model is set to "kernel". In this scenario, the compiler will only emit ENDBRs to address taken functions, ignoring non-address taken functions that are don't have local linkage. A comparison between an LTO-compiled kernel binaries without and with the -mibt-seal feature enabled shows that when -mibt-seal was used, the number of ENDBRs in the vmlinux.o binary patched by objtool decreased from 44383 to 33192, and that the number of superfluous ENDBR instructions nopped-out decreased from 11730 to 540. The 540 missed superfluous ENDBRs need to be investigated further, but hypotheses are: assembly code not being taken care of by the compiler, kernel exported symbols mechanisms creating bogus address taken situations or even these being removed due to other binary optimizations like kernel's static_calls. For now, I assume that the large drop in the number of ENDBR instructions already justifies the feature being merged. [1] - https://lkml.org/lkml/2021/11/22/591 Reviewed By: xiangzhangllvm Differential Revision: https://reviews.llvm.org/D116070
2022-01-21 09:31:21 +08:00
if (Opts.PrepareForLTO && Args.hasArg(OPT_mibt_seal))
Opts.IBTSeal = 1;
for (auto *A :
Args.filtered(OPT_mlink_bitcode_file, OPT_mlink_builtin_bitcode)) {
CodeGenOptions::BitcodeFileToLink F;
F.Filename = A->getValue();
if (A->getOption().matches(OPT_mlink_builtin_bitcode)) {
F.LinkFlags = llvm::Linker::Flags::LinkOnlyNeeded;
// When linking CUDA bitcode, propagate function attributes so that
// e.g. libdevice gets fast-math attrs if we're building with fast-math.
F.PropagateAttrs = true;
F.Internalize = true;
}
Opts.LinkBitcodeFiles.push_back(F);
}
if (Args.getLastArg(OPT_femulated_tls) ||
Args.getLastArg(OPT_fno_emulated_tls)) {
Opts.ExplicitEmulatedTLS = true;
}
if (Arg *A = Args.getLastArg(OPT_ftlsmodel_EQ)) {
if (T.isOSAIX()) {
StringRef Name = A->getValue();
if (Name != "global-dynamic")
Diags.Report(diag::err_aix_unsupported_tls_model) << Name;
}
}
if (Arg *A = Args.getLastArg(OPT_fdenormal_fp_math_EQ)) {
StringRef Val = A->getValue();
Opts.FPDenormalMode = llvm::parseDenormalFPAttribute(Val);
Opts.FP32DenormalMode = Opts.FPDenormalMode;
if (!Opts.FPDenormalMode.isValid())
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Val;
}
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-01 17:57:29 -07:00
if (Arg *A = Args.getLastArg(OPT_fdenormal_fp_math_f32_EQ)) {
StringRef Val = A->getValue();
Opts.FP32DenormalMode = llvm::parseDenormalFPAttribute(Val);
if (!Opts.FP32DenormalMode.isValid())
Consolidate internal denormal flushing controls Currently there are 4 different mechanisms for controlling denormal flushing behavior, and about as many equivalent frontend controls. - AMDGPU uses the fp32-denormals and fp64-f16-denormals subtarget features - NVPTX uses the nvptx-f32ftz attribute - ARM directly uses the denormal-fp-math attribute - Other targets indirectly use denormal-fp-math in one DAGCombine - cl-denorms-are-zero has a corresponding denorms-are-zero attribute AMDGPU wants a distinct control for f32 flushing from f16/f64, and as far as I can tell the same is true for NVPTX (based on the attribute name). Work on consolidating these into the denormal-fp-math attribute, and a new type specific denormal-fp-math-f32 variant. Only ARM seems to support the two different flush modes, so this is overkill for the other use cases. Ideally we would error on the unsupported positive-zero mode on other targets from somewhere. Move the logic for selecting the flush mode into the compiler driver, instead of handling it in cc1. denormal-fp-math/denormal-fp-math-f32 are now both cc1 flags, but denormal-fp-math-f32 is not yet exposed as a user flag. -cl-denorms-are-zero, -fcuda-flush-denormals-to-zero and -fno-cuda-flush-denormals-to-zero will be mapped to -fp-denormal-math-f32=ieee or preserve-sign rather than the old attributes. Stop emitting the denorms-are-zero attribute for the OpenCL flag. It has no in-tree users. The meaning would also be target dependent, such as the AMDGPU choice to treat this as only meaning allow flushing of f32 and not f16 or f64. The naming is also potentially confusing, since DAZ in other contexts refers to instructions implicitly treating input denormals as zero, not necessarily flushing output denormals to zero. This also does not attempt to change the behavior for the current attribute. The LangRef now states that the default is ieee behavior, but this is inaccurate for the current implementation. The clang handling is slightly hacky to avoid touching the existing denormal-fp-math uses. Fixing this will be left for a future patch. AMDGPU is still using the subtarget feature to control the denormal mode, but the new attribute are now emitted. A future change will switch this and remove the subtarget features.
2019-11-01 17:57:29 -07:00
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Val;
}
// X86_32 has -fppc-struct-return and -freg-struct-return.
// PPC32 has -maix-struct-return and -msvr4-struct-return.
if (Arg *A =
Args.getLastArg(OPT_fpcc_struct_return, OPT_freg_struct_return,
OPT_maix_struct_return, OPT_msvr4_struct_return)) {
// TODO: We might want to consider enabling these options on AIX in the
// future.
if (T.isOSAIX())
Diags.Report(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << T.str();
const Option &O = A->getOption();
if (O.matches(OPT_fpcc_struct_return) ||
O.matches(OPT_maix_struct_return)) {
Opts.setStructReturnConvention(CodeGenOptions::SRCK_OnStack);
} else {
assert(O.matches(OPT_freg_struct_return) ||
O.matches(OPT_msvr4_struct_return));
Opts.setStructReturnConvention(CodeGenOptions::SRCK_InRegs);
}
}
if (Arg *A =
Args.getLastArg(OPT_mabi_EQ_vec_default, OPT_mabi_EQ_vec_extabi)) {
if (!T.isOSAIX())
Diags.Report(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << T.str();
const Option &O = A->getOption();
Opts.EnableAIXExtendedAltivecABI = O.matches(OPT_mabi_EQ_vec_extabi);
}
bool NeedLocTracking = false;
if (!Opts.OptRecordFile.empty())
NeedLocTracking = true;
if (Arg *A = Args.getLastArg(OPT_opt_record_passes)) {
Opts.OptRecordPasses = A->getValue();
NeedLocTracking = true;
}
if (Arg *A = Args.getLastArg(OPT_opt_record_format)) {
Opts.OptRecordFormat = A->getValue();
NeedLocTracking = true;
}
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
Opts.OptimizationRemark =
ParseOptimizationRemark(Diags, Args, OPT_Rpass_EQ, "pass");
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
Opts.OptimizationRemarkMissed =
ParseOptimizationRemark(Diags, Args, OPT_Rpass_missed_EQ, "pass-missed");
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
Opts.OptimizationRemarkAnalysis = ParseOptimizationRemark(
Diags, Args, OPT_Rpass_analysis_EQ, "pass-analysis");
NeedLocTracking |= Opts.OptimizationRemark.hasValidPattern() ||
Opts.OptimizationRemarkMissed.hasValidPattern() ||
Opts.OptimizationRemarkAnalysis.hasValidPattern();
bool UsingSampleProfile = !Opts.SampleProfileFile.empty();
bool UsingProfile = UsingSampleProfile ||
(Opts.getProfileUse() != CodeGenOptions::ProfileNone);
if (Opts.DiagnosticsWithHotness && !UsingProfile &&
// An IR file will contain PGO as metadata
IK.getLanguage() != Language::LLVM_IR)
Diags.Report(diag::warn_drv_diagnostics_hotness_requires_pgo)
<< "-fdiagnostics-show-hotness";
// Parse remarks hotness threshold. Valid value is either integer or 'auto'.
if (auto *arg =
Args.getLastArg(options::OPT_fdiagnostics_hotness_threshold_EQ)) {
auto ResultOrErr =
llvm::remarks::parseHotnessThresholdOption(arg->getValue());
if (!ResultOrErr) {
Diags.Report(diag::err_drv_invalid_diagnotics_hotness_threshold)
<< "-fdiagnostics-hotness-threshold=";
} else {
Opts.DiagnosticsHotnessThreshold = *ResultOrErr;
if ((!Opts.DiagnosticsHotnessThreshold ||
Opts.DiagnosticsHotnessThreshold.value() > 0) &&
!UsingProfile)
Diags.Report(diag::warn_drv_diagnostics_hotness_requires_pgo)
<< "-fdiagnostics-hotness-threshold=";
}
}
if (auto *arg =
Args.getLastArg(options::OPT_fdiagnostics_misexpect_tolerance_EQ)) {
auto ResultOrErr = parseToleranceOption(arg->getValue());
if (!ResultOrErr) {
Diags.Report(diag::err_drv_invalid_diagnotics_misexpect_tolerance)
<< "-fdiagnostics-misexpect-tolerance=";
} else {
Opts.DiagnosticsMisExpectTolerance = *ResultOrErr;
if ((!Opts.DiagnosticsMisExpectTolerance ||
Opts.DiagnosticsMisExpectTolerance.value() > 0) &&
!UsingProfile)
Diags.Report(diag::warn_drv_diagnostics_misexpect_requires_pgo)
<< "-fdiagnostics-misexpect-tolerance=";
}
}
// If the user requested to use a sample profile for PGO, then the
// backend will need to track source location information so the profile
// can be incorporated into the IR.
if (UsingSampleProfile)
NeedLocTracking = true;
if (!Opts.StackUsageOutput.empty())
NeedLocTracking = true;
// If the user requested a flag that requires source locations available in
// the backend, make sure that the backend tracks source location information.
if (NeedLocTracking && Opts.getDebugInfo() == codegenoptions::NoDebugInfo)
Opts.setDebugInfo(codegenoptions::LocTrackingOnly);
// Parse -fsanitize-recover= arguments.
// FIXME: Report unrecoverable sanitizers incorrectly specified here.
parseSanitizerKinds("-fsanitize-recover=",
Args.getAllArgValues(OPT_fsanitize_recover_EQ), Diags,
Opts.SanitizeRecover);
parseSanitizerKinds("-fsanitize-trap=",
Args.getAllArgValues(OPT_fsanitize_trap_EQ), Diags,
Opts.SanitizeTrap);
Opts.EmitVersionIdentMetadata = Args.hasFlag(OPT_Qy, OPT_Qn, true);
if (Args.hasArg(options::OPT_ffinite_loops))
Opts.FiniteLoops = CodeGenOptions::FiniteLoopsKind::Always;
else if (Args.hasArg(options::OPT_fno_finite_loops))
Opts.FiniteLoops = CodeGenOptions::FiniteLoopsKind::Never;
Opts.EmitIEEENaNCompliantInsts = Args.hasFlag(
options::OPT_mamdgpu_ieee, options::OPT_mno_amdgpu_ieee, true);
if (!Opts.EmitIEEENaNCompliantInsts && !LangOptsRef.NoHonorNaNs)
Diags.Report(diag::err_drv_amdgpu_ieee_without_no_honor_nans);
return Diags.getNumErrors() == NumErrorsBefore;
}
static void
GenerateDependencyOutputArgs(const DependencyOutputOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA) {
const DependencyOutputOptions &DependencyOutputOpts = Opts;
#define DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING
if (Opts.ShowIncludesDest != ShowIncludesDestination::None)
GenerateArg(Args, OPT_show_includes, SA);
for (const auto &Dep : Opts.ExtraDeps) {
switch (Dep.second) {
case EDK_SanitizeIgnorelist:
// Sanitizer ignorelist arguments are generated from LanguageOptions.
continue;
case EDK_ModuleFile:
// Module file arguments are generated from FrontendOptions and
// HeaderSearchOptions.
continue;
case EDK_ProfileList:
// Profile list arguments are generated from LanguageOptions via the
// marshalling infrastructure.
continue;
case EDK_DepFileEntry:
GenerateArg(Args, OPT_fdepfile_entry, Dep.first, SA);
break;
}
}
}
static bool ParseDependencyOutputArgs(DependencyOutputOptions &Opts,
ArgList &Args, DiagnosticsEngine &Diags,
frontend::ActionKind Action,
bool ShowLineMarkers) {
unsigned NumErrorsBefore = Diags.getNumErrors();
DependencyOutputOptions &DependencyOutputOpts = Opts;
#define DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef DEPENDENCY_OUTPUT_OPTION_WITH_MARSHALLING
if (Args.hasArg(OPT_show_includes)) {
// Writing both /showIncludes and preprocessor output to stdout
// would produce interleaved output, so use stderr for /showIncludes.
// This behaves the same as cl.exe, when /E, /EP or /P are passed.
if (Action == frontend::PrintPreprocessedInput || !ShowLineMarkers)
Opts.ShowIncludesDest = ShowIncludesDestination::Stderr;
else
Opts.ShowIncludesDest = ShowIncludesDestination::Stdout;
} else {
Opts.ShowIncludesDest = ShowIncludesDestination::None;
}
// Add sanitizer ignorelists as extra dependencies.
// They won't be discovered by the regular preprocessor, so
// we let make / ninja to know about this implicit dependency.
if (!Args.hasArg(OPT_fno_sanitize_ignorelist)) {
for (const auto *A : Args.filtered(OPT_fsanitize_ignorelist_EQ)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ExtraDeps.emplace_back(std::string(Val), EDK_SanitizeIgnorelist);
}
if (Opts.IncludeSystemHeaders) {
for (const auto *A : Args.filtered(OPT_fsanitize_system_ignorelist_EQ)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ExtraDeps.emplace_back(std::string(Val), EDK_SanitizeIgnorelist);
}
}
}
// -fprofile-list= dependencies.
for (const auto &Filename : Args.getAllArgValues(OPT_fprofile_list_EQ))
Opts.ExtraDeps.emplace_back(Filename, EDK_ProfileList);
// Propagate the extra dependencies.
for (const auto *A : Args.filtered(OPT_fdepfile_entry))
Opts.ExtraDeps.emplace_back(A->getValue(), EDK_DepFileEntry);
// Only the -fmodule-file=<file> form.
for (const auto *A : Args.filtered(OPT_fmodule_file)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ExtraDeps.emplace_back(std::string(Val), EDK_ModuleFile);
}
return Diags.getNumErrors() == NumErrorsBefore;
}
static bool parseShowColorsArgs(const ArgList &Args, bool DefaultColor) {
// Color diagnostics default to auto ("on" if terminal supports) in the driver
// but default to off in cc1, needing an explicit OPT_fdiagnostics_color.
// Support both clang's -f[no-]color-diagnostics and gcc's
// -f[no-]diagnostics-colors[=never|always|auto].
enum {
Colors_On,
Colors_Off,
Colors_Auto
} ShowColors = DefaultColor ? Colors_Auto : Colors_Off;
for (auto *A : Args) {
const Option &O = A->getOption();
if (O.matches(options::OPT_fcolor_diagnostics)) {
ShowColors = Colors_On;
} else if (O.matches(options::OPT_fno_color_diagnostics)) {
ShowColors = Colors_Off;
} else if (O.matches(options::OPT_fdiagnostics_color_EQ)) {
StringRef Value(A->getValue());
if (Value == "always")
ShowColors = Colors_On;
else if (Value == "never")
ShowColors = Colors_Off;
else if (Value == "auto")
ShowColors = Colors_Auto;
}
}
return ShowColors == Colors_On ||
(ShowColors == Colors_Auto &&
llvm::sys::Process::StandardErrHasColors());
}
static bool checkVerifyPrefixes(const std::vector<std::string> &VerifyPrefixes,
DiagnosticsEngine &Diags) {
bool Success = true;
for (const auto &Prefix : VerifyPrefixes) {
// Every prefix must start with a letter and contain only alphanumeric
// characters, hyphens, and underscores.
auto BadChar = llvm::find_if(Prefix, [](char C) {
return !isAlphanumeric(C) && C != '-' && C != '_';
});
if (BadChar != Prefix.end() || !isLetter(Prefix[0])) {
Success = false;
Diags.Report(diag::err_drv_invalid_value) << "-verify=" << Prefix;
Diags.Report(diag::note_drv_verify_prefix_spelling);
}
}
return Success;
}
static void GenerateFileSystemArgs(const FileSystemOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA) {
const FileSystemOptions &FileSystemOpts = Opts;
#define FILE_SYSTEM_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef FILE_SYSTEM_OPTION_WITH_MARSHALLING
}
static bool ParseFileSystemArgs(FileSystemOptions &Opts, const ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
FileSystemOptions &FileSystemOpts = Opts;
#define FILE_SYSTEM_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef FILE_SYSTEM_OPTION_WITH_MARSHALLING
return Diags.getNumErrors() == NumErrorsBefore;
}
static void GenerateMigratorArgs(const MigratorOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA) {
const MigratorOptions &MigratorOpts = Opts;
#define MIGRATOR_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef MIGRATOR_OPTION_WITH_MARSHALLING
}
static bool ParseMigratorArgs(MigratorOptions &Opts, const ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
MigratorOptions &MigratorOpts = Opts;
#define MIGRATOR_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef MIGRATOR_OPTION_WITH_MARSHALLING
return Diags.getNumErrors() == NumErrorsBefore;
}
void CompilerInvocation::GenerateDiagnosticArgs(
const DiagnosticOptions &Opts, SmallVectorImpl<const char *> &Args,
StringAllocator SA, bool DefaultDiagColor) {
const DiagnosticOptions *DiagnosticOpts = &Opts;
#define DIAG_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef DIAG_OPTION_WITH_MARSHALLING
if (!Opts.DiagnosticSerializationFile.empty())
GenerateArg(Args, OPT_diagnostic_serialized_file,
Opts.DiagnosticSerializationFile, SA);
if (Opts.ShowColors)
GenerateArg(Args, OPT_fcolor_diagnostics, SA);
if (Opts.VerifyDiagnostics &&
llvm::is_contained(Opts.VerifyPrefixes, "expected"))
GenerateArg(Args, OPT_verify, SA);
for (const auto &Prefix : Opts.VerifyPrefixes)
if (Prefix != "expected")
GenerateArg(Args, OPT_verify_EQ, Prefix, SA);
DiagnosticLevelMask VIU = Opts.getVerifyIgnoreUnexpected();
if (VIU == DiagnosticLevelMask::None) {
// This is the default, don't generate anything.
} else if (VIU == DiagnosticLevelMask::All) {
GenerateArg(Args, OPT_verify_ignore_unexpected, SA);
} else {
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Note) != 0)
GenerateArg(Args, OPT_verify_ignore_unexpected_EQ, "note", SA);
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Remark) != 0)
GenerateArg(Args, OPT_verify_ignore_unexpected_EQ, "remark", SA);
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Warning) != 0)
GenerateArg(Args, OPT_verify_ignore_unexpected_EQ, "warning", SA);
if (static_cast<unsigned>(VIU & DiagnosticLevelMask::Error) != 0)
GenerateArg(Args, OPT_verify_ignore_unexpected_EQ, "error", SA);
}
for (const auto &Warning : Opts.Warnings) {
// This option is automatically generated from UndefPrefixes.
if (Warning == "undef-prefix")
continue;
Args.push_back(SA(StringRef("-W") + Warning));
}
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
for (const auto &Remark : Opts.Remarks) {
// These arguments are generated from OptimizationRemark fields of
// CodeGenOptions.
StringRef IgnoredRemarks[] = {"pass", "no-pass",
"pass-analysis", "no-pass-analysis",
"pass-missed", "no-pass-missed"};
if (llvm::is_contained(IgnoredRemarks, Remark))
continue;
Args.push_back(SA(StringRef("-R") + Remark));
[clang][cli] Store additional optimization remarks info After a revision of D96274 changed `DiagnosticOptions` to not store all remark arguments **as-written**, it is no longer possible to reconstruct the arguments accurately from the class. This is caused by the fact that for `-Rpass=regexp` and friends, `DiagnosticOptions` store only the group name `pass` and not `regexp`. This is the same representation used for the plain `-Rpass` argument. Note that each argument must be generated exactly once in `CompilerInvocation::generateCC1CommandLine`, otherwise each subsequent call would produce more arguments than the previous one. Currently this works out because of the way `RoundTrip` splits the responsibilities for certain arguments based on what arguments were queried during parsing. However, this invariant breaks when we move to single round-trip for the whole `CompilerInvocation`. This patch ensures that for one `-Rpass=regexp` argument, we don't generate two arguments (`-Rpass` from `DiagnosticOptions` and `-Rpass=regexp` from `CodeGenOptions`) by shifting the responsibility for handling both cases to `CodeGenOptions`. To distinguish between the cases correctly, additional information is stored in `CodeGenOptions`. The `CodeGenOptions` parser of `-Rpass[=regexp]` arguments also looks at `-Rno-pass` and `-R[no-]everything`, which is necessary for generating the correct argument regardless of the ordering of `CodeGenOptions`/`DiagnosticOptions` parsing/generation. Reviewed By: dexonsmith Differential Revision: https://reviews.llvm.org/D96847
2021-02-25 09:05:08 +01:00
}
}
std::unique_ptr<DiagnosticOptions>
clang::CreateAndPopulateDiagOpts(ArrayRef<const char *> Argv) {
auto DiagOpts = std::make_unique<DiagnosticOptions>();
unsigned MissingArgIndex, MissingArgCount;
InputArgList Args = getDriverOptTable().ParseArgs(
Argv.slice(1), MissingArgIndex, MissingArgCount);
// We ignore MissingArgCount and the return value of ParseDiagnosticArgs.
// Any errors that would be diagnosed here will also be diagnosed later,
// when the DiagnosticsEngine actually exists.
(void)ParseDiagnosticArgs(*DiagOpts, Args);
return DiagOpts;
}
bool clang::ParseDiagnosticArgs(DiagnosticOptions &Opts, ArgList &Args,
DiagnosticsEngine *Diags,
bool DefaultDiagColor) {
Optional<DiagnosticsEngine> IgnoringDiags;
if (!Diags) {
IgnoringDiags.emplace(new DiagnosticIDs(), new DiagnosticOptions(),
new IgnoringDiagConsumer());
Diags = &*IgnoringDiags;
}
unsigned NumErrorsBefore = Diags->getNumErrors();
[clang][cli] Specify KeyPath prefixes via TableGen classes It turns out we need to handle `LangOptions` separately from the rest of the options. `LangOptions` used to be conditionally parsed only when `!(DashX.getFormat() == InputKind::Precompiled || DashX.getLanguage() == Language::LLVM_IR)` and we need to restore this order (for more info, see D94682). We could do this similarly to how `DiagnosticOptions` are handled: via a counterpart to the `IsDiag` mix-in (e.g. `IsLang`). These mix-ins would prefix the option key path with the appropriate `CompilerInvocation::XxxOpts` member. However, this solution would be problematic, as we'd now have two kinds of options (`Lang` and `Diag`) with seemingly incomplete key paths in the same file. To understand what `CompilerInvocation` member an option affects, one would need to read the whole option definition and notice the `IsDiag` or `IsLang` class. Instead, this patch introduces more robust way to handle different kinds of options separately: via the `KeyPathAndMacroPrefix` class. We have one specialization of that class per `CompilerInvocation` member (e.g. `LangOpts`, `DiagnosticOpts`, etc.). Now, instead of specifying a key path with `"LangOpts->UndefPrefixes"`, we use `LangOpts<"UndefPrefixes">`. This keeps the readability intact (you don't have to look for the `IsLang` mix-in, the key path is complete on its own) and allows us to specify a custom macro prefix within `LangOpts`. Reviewed By: Bigcheese Differential Revision: https://reviews.llvm.org/D94676
2021-01-13 12:50:19 +01:00
// The key paths of diagnostic options defined in Options.td start with
// "DiagnosticOpts->". Let's provide the expected variable name and type.
DiagnosticOptions *DiagnosticOpts = &Opts;
#define DIAG_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, *Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef DIAG_OPTION_WITH_MARSHALLING
llvm::sys::Process::UseANSIEscapeCodes(Opts.UseANSIEscapeCodes);
if (Arg *A =
Args.getLastArg(OPT_diagnostic_serialized_file, OPT__serialize_diags))
Opts.DiagnosticSerializationFile = A->getValue();
Opts.ShowColors = parseShowColorsArgs(Args, DefaultDiagColor);
Opts.VerifyDiagnostics = Args.hasArg(OPT_verify) || Args.hasArg(OPT_verify_EQ);
Opts.VerifyPrefixes = Args.getAllArgValues(OPT_verify_EQ);
if (Args.hasArg(OPT_verify))
Opts.VerifyPrefixes.push_back("expected");
// Keep VerifyPrefixes in its original order for the sake of diagnostics, and
// then sort it to prepare for fast lookup using std::binary_search.
if (!checkVerifyPrefixes(Opts.VerifyPrefixes, *Diags))
Opts.VerifyDiagnostics = false;
else
llvm::sort(Opts.VerifyPrefixes);
DiagnosticLevelMask DiagMask = DiagnosticLevelMask::None;
parseDiagnosticLevelMask(
"-verify-ignore-unexpected=",
Args.getAllArgValues(OPT_verify_ignore_unexpected_EQ), *Diags, DiagMask);
if (Args.hasArg(OPT_verify_ignore_unexpected))
DiagMask = DiagnosticLevelMask::All;
Opts.setVerifyIgnoreUnexpected(DiagMask);
if (Opts.TabStop == 0 || Opts.TabStop > DiagnosticOptions::MaxTabStop) {
Opts.TabStop = DiagnosticOptions::DefaultTabStop;
Diags->Report(diag::warn_ignoring_ftabstop_value)
<< Opts.TabStop << DiagnosticOptions::DefaultTabStop;
}
addDiagnosticArgs(Args, OPT_W_Group, OPT_W_value_Group, Opts.Warnings);
addDiagnosticArgs(Args, OPT_R_Group, OPT_R_value_Group, Opts.Remarks);
return Diags->getNumErrors() == NumErrorsBefore;
}
/// Parse the argument to the -ftest-module-file-extension
/// command-line argument.
///
/// \returns true on error, false on success.
static bool parseTestModuleFileExtensionArg(StringRef Arg,
std::string &BlockName,
unsigned &MajorVersion,
unsigned &MinorVersion,
bool &Hashed,
std::string &UserInfo) {
SmallVector<StringRef, 5> Args;
Arg.split(Args, ':', 5);
if (Args.size() < 5)
return true;
BlockName = std::string(Args[0]);
if (Args[1].getAsInteger(10, MajorVersion)) return true;
if (Args[2].getAsInteger(10, MinorVersion)) return true;
if (Args[3].getAsInteger(2, Hashed)) return true;
if (Args.size() > 4)
UserInfo = std::string(Args[4]);
return false;
}
/// Return a table that associates command line option specifiers with the
/// frontend action. Note: The pair {frontend::PluginAction, OPT_plugin} is
/// intentionally missing, as this case is handled separately from other
/// frontend options.
static const auto &getFrontendActionTable() {
static const std::pair<frontend::ActionKind, unsigned> Table[] = {
{frontend::ASTDeclList, OPT_ast_list},
{frontend::ASTDump, OPT_ast_dump_all_EQ},
{frontend::ASTDump, OPT_ast_dump_all},
{frontend::ASTDump, OPT_ast_dump_EQ},
{frontend::ASTDump, OPT_ast_dump},
{frontend::ASTDump, OPT_ast_dump_lookups},
{frontend::ASTDump, OPT_ast_dump_decl_types},
{frontend::ASTPrint, OPT_ast_print},
{frontend::ASTView, OPT_ast_view},
{frontend::DumpCompilerOptions, OPT_compiler_options_dump},
{frontend::DumpRawTokens, OPT_dump_raw_tokens},
{frontend::DumpTokens, OPT_dump_tokens},
{frontend::EmitAssembly, OPT_S},
{frontend::EmitBC, OPT_emit_llvm_bc},
{frontend::EmitHTML, OPT_emit_html},
{frontend::EmitLLVM, OPT_emit_llvm},
{frontend::EmitLLVMOnly, OPT_emit_llvm_only},
{frontend::EmitCodeGenOnly, OPT_emit_codegen_only},
{frontend::EmitObj, OPT_emit_obj},
{frontend::ExtractAPI, OPT_extract_api},
{frontend::FixIt, OPT_fixit_EQ},
{frontend::FixIt, OPT_fixit},
{frontend::GenerateModule, OPT_emit_module},
{frontend::GenerateModuleInterface, OPT_emit_module_interface},
{frontend::GenerateHeaderModule, OPT_emit_header_module},
{frontend::GenerateHeaderUnit, OPT_emit_header_unit},
{frontend::GeneratePCH, OPT_emit_pch},
{frontend::GenerateInterfaceStubs, OPT_emit_interface_stubs},
{frontend::InitOnly, OPT_init_only},
{frontend::ParseSyntaxOnly, OPT_fsyntax_only},
{frontend::ModuleFileInfo, OPT_module_file_info},
{frontend::VerifyPCH, OPT_verify_pch},
{frontend::PrintPreamble, OPT_print_preamble},
{frontend::PrintPreprocessedInput, OPT_E},
{frontend::TemplightDump, OPT_templight_dump},
{frontend::RewriteMacros, OPT_rewrite_macros},
{frontend::RewriteObjC, OPT_rewrite_objc},
{frontend::RewriteTest, OPT_rewrite_test},
{frontend::RunAnalysis, OPT_analyze},
{frontend::MigrateSource, OPT_migrate},
{frontend::RunPreprocessorOnly, OPT_Eonly},
{frontend::PrintDependencyDirectivesSourceMinimizerOutput,
OPT_print_dependency_directives_minimized_source},
};
return Table;
}
/// Maps command line option to frontend action.
static Optional<frontend::ActionKind> getFrontendAction(OptSpecifier &Opt) {
for (const auto &ActionOpt : getFrontendActionTable())
if (ActionOpt.second == Opt.getID())
return ActionOpt.first;
return None;
}
/// Maps frontend action to command line option.
static Optional<OptSpecifier>
getProgramActionOpt(frontend::ActionKind ProgramAction) {
for (const auto &ActionOpt : getFrontendActionTable())
if (ActionOpt.first == ProgramAction)
return OptSpecifier(ActionOpt.second);
return None;
}
static void GenerateFrontendArgs(const FrontendOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA,
bool IsHeader) {
const FrontendOptions &FrontendOpts = Opts;
#define FRONTEND_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef FRONTEND_OPTION_WITH_MARSHALLING
Optional<OptSpecifier> ProgramActionOpt =
getProgramActionOpt(Opts.ProgramAction);
// Generating a simple flag covers most frontend actions.
std::function<void()> GenerateProgramAction = [&]() {
GenerateArg(Args, *ProgramActionOpt, SA);
};
if (!ProgramActionOpt) {
// PluginAction is the only program action handled separately.
assert(Opts.ProgramAction == frontend::PluginAction &&
"Frontend action without option.");
GenerateProgramAction = [&]() {
GenerateArg(Args, OPT_plugin, Opts.ActionName, SA);
};
}
// FIXME: Simplify the complex 'AST dump' command line.
if (Opts.ProgramAction == frontend::ASTDump) {
GenerateProgramAction = [&]() {
// ASTDumpLookups, ASTDumpDeclTypes and ASTDumpFilter are generated via
// marshalling infrastructure.
if (Opts.ASTDumpFormat != ADOF_Default) {
StringRef Format;
switch (Opts.ASTDumpFormat) {
case ADOF_Default:
llvm_unreachable("Default AST dump format.");
case ADOF_JSON:
Format = "json";
break;
}
if (Opts.ASTDumpAll)
GenerateArg(Args, OPT_ast_dump_all_EQ, Format, SA);
if (Opts.ASTDumpDecls)
GenerateArg(Args, OPT_ast_dump_EQ, Format, SA);
} else {
if (Opts.ASTDumpAll)
GenerateArg(Args, OPT_ast_dump_all, SA);
if (Opts.ASTDumpDecls)
GenerateArg(Args, OPT_ast_dump, SA);
}
};
}
if (Opts.ProgramAction == frontend::FixIt && !Opts.FixItSuffix.empty()) {
GenerateProgramAction = [&]() {
GenerateArg(Args, OPT_fixit_EQ, Opts.FixItSuffix, SA);
};
}
GenerateProgramAction();
for (const auto &PluginArgs : Opts.PluginArgs) {
Option Opt = getDriverOptTable().getOption(OPT_plugin_arg);
const char *Spelling =
SA(Opt.getPrefix() + Opt.getName() + PluginArgs.first);
for (const auto &PluginArg : PluginArgs.second)
denormalizeString(Args, Spelling, SA, Opt.getKind(), 0, PluginArg);
}
for (const auto &Ext : Opts.ModuleFileExtensions)
if (auto *TestExt = dyn_cast_or_null<TestModuleFileExtension>(Ext.get()))
GenerateArg(Args, OPT_ftest_module_file_extension_EQ, TestExt->str(), SA);
if (!Opts.CodeCompletionAt.FileName.empty())
GenerateArg(Args, OPT_code_completion_at, Opts.CodeCompletionAt.ToString(),
SA);
for (const auto &Plugin : Opts.Plugins)
GenerateArg(Args, OPT_load, Plugin, SA);
// ASTDumpDecls and ASTDumpAll already handled with ProgramAction.
for (const auto &ModuleFile : Opts.ModuleFiles)
GenerateArg(Args, OPT_fmodule_file, ModuleFile, SA);
if (Opts.AuxTargetCPU)
GenerateArg(Args, OPT_aux_target_cpu, *Opts.AuxTargetCPU, SA);
if (Opts.AuxTargetFeatures)
for (const auto &Feature : *Opts.AuxTargetFeatures)
GenerateArg(Args, OPT_aux_target_feature, Feature, SA);
{
StringRef Preprocessed = Opts.DashX.isPreprocessed() ? "-cpp-output" : "";
StringRef ModuleMap =
Opts.DashX.getFormat() == InputKind::ModuleMap ? "-module-map" : "";
StringRef HeaderUnit = "";
switch (Opts.DashX.getHeaderUnitKind()) {
case InputKind::HeaderUnit_None:
break;
case InputKind::HeaderUnit_User:
HeaderUnit = "-user";
break;
case InputKind::HeaderUnit_System:
HeaderUnit = "-system";
break;
case InputKind::HeaderUnit_Abs:
HeaderUnit = "-header-unit";
break;
}
StringRef Header = IsHeader ? "-header" : "";
StringRef Lang;
switch (Opts.DashX.getLanguage()) {
case Language::C:
Lang = "c";
break;
case Language::OpenCL:
Lang = "cl";
break;
case Language::OpenCLCXX:
Lang = "clcpp";
break;
case Language::CUDA:
Lang = "cuda";
break;
case Language::HIP:
Lang = "hip";
break;
case Language::CXX:
Lang = "c++";
break;
case Language::ObjC:
Lang = "objective-c";
break;
case Language::ObjCXX:
Lang = "objective-c++";
break;
case Language::RenderScript:
Lang = "renderscript";
break;
case Language::Asm:
Lang = "assembler-with-cpp";
break;
case Language::Unknown:
assert(Opts.DashX.getFormat() == InputKind::Precompiled &&
"Generating -x argument for unknown language (not precompiled).");
Lang = "ast";
break;
case Language::LLVM_IR:
Lang = "ir";
break;
case Language::HLSL:
Lang = "hlsl";
break;
}
GenerateArg(Args, OPT_x,
Lang + HeaderUnit + Header + ModuleMap + Preprocessed, SA);
}
// OPT_INPUT has a unique class, generate it directly.
for (const auto &Input : Opts.Inputs)
Args.push_back(SA(Input.getFile()));
}
static bool ParseFrontendArgs(FrontendOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags, bool &IsHeaderFile) {
unsigned NumErrorsBefore = Diags.getNumErrors();
FrontendOptions &FrontendOpts = Opts;
#define FRONTEND_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef FRONTEND_OPTION_WITH_MARSHALLING
Opts.ProgramAction = frontend::ParseSyntaxOnly;
if (const Arg *A = Args.getLastArg(OPT_Action_Group)) {
OptSpecifier Opt = OptSpecifier(A->getOption().getID());
Optional<frontend::ActionKind> ProgramAction = getFrontendAction(Opt);
assert(ProgramAction && "Option specifier not in Action_Group.");
if (ProgramAction == frontend::ASTDump &&
(Opt == OPT_ast_dump_all_EQ || Opt == OPT_ast_dump_EQ)) {
unsigned Val = llvm::StringSwitch<unsigned>(A->getValue())
.CaseLower("default", ADOF_Default)
.CaseLower("json", ADOF_JSON)
.Default(std::numeric_limits<unsigned>::max());
if (Val != std::numeric_limits<unsigned>::max())
Opts.ASTDumpFormat = static_cast<ASTDumpOutputFormat>(Val);
else {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
Opts.ASTDumpFormat = ADOF_Default;
}
}
if (ProgramAction == frontend::FixIt && Opt == OPT_fixit_EQ)
Opts.FixItSuffix = A->getValue();
if (ProgramAction == frontend::GenerateInterfaceStubs) {
StringRef ArgStr =
Args.hasArg(OPT_interface_stub_version_EQ)
? Args.getLastArgValue(OPT_interface_stub_version_EQ)
: "ifs-v1";
if (ArgStr == "experimental-yaml-elf-v1" ||
ArgStr == "experimental-ifs-v1" || ArgStr == "experimental-ifs-v2" ||
ArgStr == "experimental-tapi-elf-v1") {
std::string ErrorMessage =
"Invalid interface stub format: " + ArgStr.str() +
" is deprecated.";
Diags.Report(diag::err_drv_invalid_value)
<< "Must specify a valid interface stub format type, ie: "
"-interface-stub-version=ifs-v1"
<< ErrorMessage;
ProgramAction = frontend::ParseSyntaxOnly;
} else if (!ArgStr.startswith("ifs-")) {
std::string ErrorMessage =
"Invalid interface stub format: " + ArgStr.str() + ".";
[clang-ifs] Clang Interface Stubs, first version (second landing attempt). This change reverts r363649; effectively re-landing r363626. At this point clang::Index::CodegenNameGeneratorImpl has been refactored into clang::AST::ASTNameGenerator. This makes it so that the previous circular link dependency no longer exists, fixing the previous share lib (-DBUILD_SHARED_LIBS=ON) build issue which was the reason for r363649. Clang interface stubs (previously referred to as clang-ifsos) is a new frontend action in clang that allows the generation of stub files that contain mangled name info that can be used to produce a stub library. These stub libraries can be useful for breaking up build dependencies and controlling access to a library's internal symbols. Generation of these stubs can be invoked by: clang -fvisibility=<visibility> -emit-interface-stubs \ -interface-stub-version=<interface format> Notice that -fvisibility (along with use of visibility attributes) can be used to control what symbols get generated. Currently the interface format is experimental but there are a wide range of possibilities here. Currently clang-ifs produces .ifs files that can be thought of as analogous to object (.o) files, but just for the mangled symbol info. In a subsequent patch I intend to add support for merging the .ifs files into one .ifs/.ifso file that can be the input to something like llvm-elfabi to produce something like a .so file or .dll (but without any of the code, just symbols). Differential Revision: https://reviews.llvm.org/D60974 llvm-svn: 363948
2019-06-20 16:59:48 +00:00
Diags.Report(diag::err_drv_invalid_value)
<< "Must specify a valid interface stub format type, ie: "
"-interface-stub-version=ifs-v1"
<< ErrorMessage;
ProgramAction = frontend::ParseSyntaxOnly;
}
}
Opts.ProgramAction = *ProgramAction;
}
if (const Arg* A = Args.getLastArg(OPT_plugin)) {
Opts.Plugins.emplace_back(A->getValue(0));
Opts.ProgramAction = frontend::PluginAction;
Opts.ActionName = A->getValue();
}
for (const auto *AA : Args.filtered(OPT_plugin_arg))
Opts.PluginArgs[AA->getValue(0)].emplace_back(AA->getValue(1));
for (const std::string &Arg :
Args.getAllArgValues(OPT_ftest_module_file_extension_EQ)) {
std::string BlockName;
unsigned MajorVersion;
unsigned MinorVersion;
bool Hashed;
std::string UserInfo;
if (parseTestModuleFileExtensionArg(Arg, BlockName, MajorVersion,
MinorVersion, Hashed, UserInfo)) {
Diags.Report(diag::err_test_module_file_extension_format) << Arg;
continue;
}
// Add the testing module file extension.
Opts.ModuleFileExtensions.push_back(
std::make_shared<TestModuleFileExtension>(
BlockName, MajorVersion, MinorVersion, Hashed, UserInfo));
}
if (const Arg *A = Args.getLastArg(OPT_code_completion_at)) {
Opts.CodeCompletionAt =
ParsedSourceLocation::FromString(A->getValue());
if (Opts.CodeCompletionAt.FileName.empty())
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
Opts.Plugins = Args.getAllArgValues(OPT_load);
Opts.ASTDumpDecls = Args.hasArg(OPT_ast_dump, OPT_ast_dump_EQ);
Opts.ASTDumpAll = Args.hasArg(OPT_ast_dump_all, OPT_ast_dump_all_EQ);
// Only the -fmodule-file=<file> form.
for (const auto *A : Args.filtered(OPT_fmodule_file)) {
StringRef Val = A->getValue();
if (!Val.contains('='))
Opts.ModuleFiles.push_back(std::string(Val));
}
if (Opts.ProgramAction != frontend::GenerateModule && Opts.IsSystemModule)
Diags.Report(diag::err_drv_argument_only_allowed_with) << "-fsystem-module"
<< "-emit-module";
if (Args.hasArg(OPT_aux_target_cpu))
Opts.AuxTargetCPU = std::string(Args.getLastArgValue(OPT_aux_target_cpu));
if (Args.hasArg(OPT_aux_target_feature))
Opts.AuxTargetFeatures = Args.getAllArgValues(OPT_aux_target_feature);
if (Opts.ARCMTAction != FrontendOptions::ARCMT_None &&
Opts.ObjCMTAction != FrontendOptions::ObjCMT_None) {
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< "ARC migration" << "ObjC migration";
}
InputKind DashX(Language::Unknown);
if (const Arg *A = Args.getLastArg(OPT_x)) {
StringRef XValue = A->getValue();
// Parse suffixes:
// '<lang>(-[{header-unit,user,system}-]header|[-module-map][-cpp-output])'.
// FIXME: Supporting '<lang>-header-cpp-output' would be useful.
bool Preprocessed = XValue.consume_back("-cpp-output");
bool ModuleMap = XValue.consume_back("-module-map");
// Detect and consume the header indicator.
bool IsHeader =
XValue != "precompiled-header" && XValue.consume_back("-header");
// If we have c++-{user,system}-header, that indicates a header unit input
// likewise, if the user put -fmodule-header together with a header with an
// absolute path (header-unit-header).
InputKind::HeaderUnitKind HUK = InputKind::HeaderUnit_None;
if (IsHeader || Preprocessed) {
if (XValue.consume_back("-header-unit"))
HUK = InputKind::HeaderUnit_Abs;
else if (XValue.consume_back("-system"))
HUK = InputKind::HeaderUnit_System;
else if (XValue.consume_back("-user"))
HUK = InputKind::HeaderUnit_User;
}
// The value set by this processing is an un-preprocessed source which is
// not intended to be a module map or header unit.
IsHeaderFile = IsHeader && !Preprocessed && !ModuleMap &&
HUK == InputKind::HeaderUnit_None;
// Principal languages.
DashX = llvm::StringSwitch<InputKind>(XValue)
.Case("c", Language::C)
.Case("cl", Language::OpenCL)
.Case("clcpp", Language::OpenCLCXX)
.Case("cuda", Language::CUDA)
.Case("hip", Language::HIP)
.Case("c++", Language::CXX)
.Case("objective-c", Language::ObjC)
.Case("objective-c++", Language::ObjCXX)
.Case("renderscript", Language::RenderScript)
.Case("hlsl", Language::HLSL)
.Default(Language::Unknown);
// "objc[++]-cpp-output" is an acceptable synonym for
// "objective-c[++]-cpp-output".
if (DashX.isUnknown() && Preprocessed && !IsHeaderFile && !ModuleMap &&
HUK == InputKind::HeaderUnit_None)
DashX = llvm::StringSwitch<InputKind>(XValue)
.Case("objc", Language::ObjC)
.Case("objc++", Language::ObjCXX)
.Default(Language::Unknown);
// Some special cases cannot be combined with suffixes.
if (DashX.isUnknown() && !Preprocessed && !IsHeaderFile && !ModuleMap &&
HUK == InputKind::HeaderUnit_None)
DashX = llvm::StringSwitch<InputKind>(XValue)
.Case("cpp-output", InputKind(Language::C).getPreprocessed())
.Case("assembler-with-cpp", Language::Asm)
.Cases("ast", "pcm", "precompiled-header",
InputKind(Language::Unknown, InputKind::Precompiled))
.Case("ir", Language::LLVM_IR)
.Default(Language::Unknown);
if (DashX.isUnknown())
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
if (Preprocessed)
DashX = DashX.getPreprocessed();
// A regular header is considered mutually exclusive with a header unit.
if (HUK != InputKind::HeaderUnit_None) {
DashX = DashX.withHeaderUnit(HUK);
IsHeaderFile = true;
} else if (IsHeaderFile)
DashX = DashX.getHeader();
if (ModuleMap)
DashX = DashX.withFormat(InputKind::ModuleMap);
}
// '-' is the default input if none is given.
std::vector<std::string> Inputs = Args.getAllArgValues(OPT_INPUT);
Opts.Inputs.clear();
if (Inputs.empty())
Inputs.push_back("-");
if (DashX.getHeaderUnitKind() != InputKind::HeaderUnit_None &&
Inputs.size() > 1)
Diags.Report(diag::err_drv_header_unit_extra_inputs) << Inputs[1];
for (unsigned i = 0, e = Inputs.size(); i != e; ++i) {
InputKind IK = DashX;
if (IK.isUnknown()) {
IK = FrontendOptions::getInputKindForExtension(
StringRef(Inputs[i]).rsplit('.').second);
// FIXME: Warn on this?
if (IK.isUnknown())
IK = Language::C;
// FIXME: Remove this hack.
if (i == 0)
DashX = IK;
}
bool IsSystem = false;
// The -emit-module action implicitly takes a module map.
if (Opts.ProgramAction == frontend::GenerateModule &&
IK.getFormat() == InputKind::Source) {
IK = IK.withFormat(InputKind::ModuleMap);
IsSystem = Opts.IsSystemModule;
}
Opts.Inputs.emplace_back(std::move(Inputs[i]), IK, IsSystem);
}
Opts.DashX = DashX;
return Diags.getNumErrors() == NumErrorsBefore;
}
std::string CompilerInvocation::GetResourcesPath(const char *Argv0,
void *MainAddr) {
std::string ClangExecutable =
llvm::sys::fs::getMainExecutable(Argv0, MainAddr);
return Driver::GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
}
static void GenerateHeaderSearchArgs(HeaderSearchOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA) {
const HeaderSearchOptions *HeaderSearchOpts = &Opts;
#define HEADER_SEARCH_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef HEADER_SEARCH_OPTION_WITH_MARSHALLING
if (Opts.UseLibcxx)
GenerateArg(Args, OPT_stdlib_EQ, "libc++", SA);
if (!Opts.ModuleCachePath.empty())
GenerateArg(Args, OPT_fmodules_cache_path, Opts.ModuleCachePath, SA);
for (const auto &File : Opts.PrebuiltModuleFiles)
GenerateArg(Args, OPT_fmodule_file, File.first + "=" + File.second, SA);
for (const auto &Path : Opts.PrebuiltModulePaths)
GenerateArg(Args, OPT_fprebuilt_module_path, Path, SA);
for (const auto &Macro : Opts.ModulesIgnoreMacros)
GenerateArg(Args, OPT_fmodules_ignore_macro, Macro.val(), SA);
auto Matches = [](const HeaderSearchOptions::Entry &Entry,
llvm::ArrayRef<frontend::IncludeDirGroup> Groups,
llvm::Optional<bool> IsFramework,
llvm::Optional<bool> IgnoreSysRoot) {
2021-10-13 20:41:54 -07:00
return llvm::is_contained(Groups, Entry.Group) &&
(!IsFramework || (Entry.IsFramework == *IsFramework)) &&
(!IgnoreSysRoot || (Entry.IgnoreSysRoot == *IgnoreSysRoot));
};
auto It = Opts.UserEntries.begin();
auto End = Opts.UserEntries.end();
// Add -I..., -F..., and -index-header-map options in order.
for (; It < End &&
Matches(*It, {frontend::IndexHeaderMap, frontend::Angled}, None, true);
++It) {
OptSpecifier Opt = [It, Matches]() {
if (Matches(*It, frontend::IndexHeaderMap, true, true))
return OPT_F;
if (Matches(*It, frontend::IndexHeaderMap, false, true))
return OPT_I;
if (Matches(*It, frontend::Angled, true, true))
return OPT_F;
if (Matches(*It, frontend::Angled, false, true))
return OPT_I;
llvm_unreachable("Unexpected HeaderSearchOptions::Entry.");
}();
if (It->Group == frontend::IndexHeaderMap)
GenerateArg(Args, OPT_index_header_map, SA);
GenerateArg(Args, Opt, It->Path, SA);
};
// Note: some paths that came from "[-iprefix=xx] -iwithprefixbefore=yy" may
// have already been generated as "-I[xx]yy". If that's the case, their
// position on command line was such that this has no semantic impact on
// include paths.
for (; It < End &&
Matches(*It, {frontend::After, frontend::Angled}, false, true);
++It) {
OptSpecifier Opt =
It->Group == frontend::After ? OPT_iwithprefix : OPT_iwithprefixbefore;
GenerateArg(Args, Opt, It->Path, SA);
}
// Note: Some paths that came from "-idirafter=xxyy" may have already been
// generated as "-iwithprefix=xxyy". If that's the case, their position on
// command line was such that this has no semantic impact on include paths.
for (; It < End && Matches(*It, {frontend::After}, false, true); ++It)
GenerateArg(Args, OPT_idirafter, It->Path, SA);
for (; It < End && Matches(*It, {frontend::Quoted}, false, true); ++It)
GenerateArg(Args, OPT_iquote, It->Path, SA);
for (; It < End && Matches(*It, {frontend::System}, false, None); ++It)
GenerateArg(Args, It->IgnoreSysRoot ? OPT_isystem : OPT_iwithsysroot,
It->Path, SA);
for (; It < End && Matches(*It, {frontend::System}, true, true); ++It)
GenerateArg(Args, OPT_iframework, It->Path, SA);
for (; It < End && Matches(*It, {frontend::System}, true, false); ++It)
GenerateArg(Args, OPT_iframeworkwithsysroot, It->Path, SA);
// Add the paths for the various language specific isystem flags.
for (; It < End && Matches(*It, {frontend::CSystem}, false, true); ++It)
GenerateArg(Args, OPT_c_isystem, It->Path, SA);
for (; It < End && Matches(*It, {frontend::CXXSystem}, false, true); ++It)
GenerateArg(Args, OPT_cxx_isystem, It->Path, SA);
for (; It < End && Matches(*It, {frontend::ObjCSystem}, false, true); ++It)
GenerateArg(Args, OPT_objc_isystem, It->Path, SA);
for (; It < End && Matches(*It, {frontend::ObjCXXSystem}, false, true); ++It)
GenerateArg(Args, OPT_objcxx_isystem, It->Path, SA);
// Add the internal paths from a driver that detects standard include paths.
// Note: Some paths that came from "-internal-isystem" arguments may have
// already been generated as "-isystem". If that's the case, their position on
// command line was such that this has no semantic impact on include paths.
for (; It < End &&
Matches(*It, {frontend::System, frontend::ExternCSystem}, false, true);
++It) {
OptSpecifier Opt = It->Group == frontend::System
? OPT_internal_isystem
: OPT_internal_externc_isystem;
GenerateArg(Args, Opt, It->Path, SA);
}
assert(It == End && "Unhandled HeaderSearchOption::Entry.");
// Add the path prefixes which are implicitly treated as being system headers.
for (const auto &P : Opts.SystemHeaderPrefixes) {
OptSpecifier Opt = P.IsSystemHeader ? OPT_system_header_prefix
: OPT_no_system_header_prefix;
GenerateArg(Args, Opt, P.Prefix, SA);
}
for (const std::string &F : Opts.VFSOverlayFiles)
GenerateArg(Args, OPT_ivfsoverlay, F, SA);
}
static bool ParseHeaderSearchArgs(HeaderSearchOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags,
const std::string &WorkingDir) {
unsigned NumErrorsBefore = Diags.getNumErrors();
HeaderSearchOptions *HeaderSearchOpts = &Opts;
#define HEADER_SEARCH_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef HEADER_SEARCH_OPTION_WITH_MARSHALLING
if (const Arg *A = Args.getLastArg(OPT_stdlib_EQ))
Opts.UseLibcxx = (strcmp(A->getValue(), "libc++") == 0);
// Canonicalize -fmodules-cache-path before storing it.
SmallString<128> P(Args.getLastArgValue(OPT_fmodules_cache_path));
if (!(P.empty() || llvm::sys::path::is_absolute(P))) {
if (WorkingDir.empty())
llvm::sys::fs::make_absolute(P);
else
llvm::sys::fs::make_absolute(WorkingDir, P);
}
llvm::sys::path::remove_dots(P);
Opts.ModuleCachePath = std::string(P.str());
// Only the -fmodule-file=<name>=<file> form.
for (const auto *A : Args.filtered(OPT_fmodule_file)) {
StringRef Val = A->getValue();
if (Val.contains('=')) {
auto Split = Val.split('=');
Opts.PrebuiltModuleFiles.insert(
{std::string(Split.first), std::string(Split.second)});
}
}
for (const auto *A : Args.filtered(OPT_fprebuilt_module_path))
Opts.AddPrebuiltModulePath(A->getValue());
for (const auto *A : Args.filtered(OPT_fmodules_ignore_macro)) {
StringRef MacroDef = A->getValue();
Opts.ModulesIgnoreMacros.insert(
llvm::CachedHashString(MacroDef.split('=').first));
}
// Add -I..., -F..., and -index-header-map options in order.
bool IsIndexHeaderMap = false;
bool IsSysrootSpecified =
Args.hasArg(OPT__sysroot_EQ) || Args.hasArg(OPT_isysroot);
for (const auto *A : Args.filtered(OPT_I, OPT_F, OPT_index_header_map)) {
if (A->getOption().matches(OPT_index_header_map)) {
// -index-header-map applies to the next -I or -F.
IsIndexHeaderMap = true;
continue;
}
frontend::IncludeDirGroup Group =
IsIndexHeaderMap ? frontend::IndexHeaderMap : frontend::Angled;
bool IsFramework = A->getOption().matches(OPT_F);
std::string Path = A->getValue();
if (IsSysrootSpecified && !IsFramework && A->getValue()[0] == '=') {
SmallString<32> Buffer;
llvm::sys::path::append(Buffer, Opts.Sysroot,
llvm::StringRef(A->getValue()).substr(1));
Path = std::string(Buffer.str());
}
Opts.AddPath(Path, Group, IsFramework,
/*IgnoreSysroot*/ true);
IsIndexHeaderMap = false;
}
// Add -iprefix/-iwithprefix/-iwithprefixbefore options.
StringRef Prefix = ""; // FIXME: This isn't the correct default prefix.
for (const auto *A :
Args.filtered(OPT_iprefix, OPT_iwithprefix, OPT_iwithprefixbefore)) {
if (A->getOption().matches(OPT_iprefix))
Prefix = A->getValue();
else if (A->getOption().matches(OPT_iwithprefix))
Opts.AddPath(Prefix.str() + A->getValue(), frontend::After, false, true);
else
Opts.AddPath(Prefix.str() + A->getValue(), frontend::Angled, false, true);
}
for (const auto *A : Args.filtered(OPT_idirafter))
Opts.AddPath(A->getValue(), frontend::After, false, true);
for (const auto *A : Args.filtered(OPT_iquote))
Opts.AddPath(A->getValue(), frontend::Quoted, false, true);
for (const auto *A : Args.filtered(OPT_isystem, OPT_iwithsysroot))
Opts.AddPath(A->getValue(), frontend::System, false,
!A->getOption().matches(OPT_iwithsysroot));
for (const auto *A : Args.filtered(OPT_iframework))
Opts.AddPath(A->getValue(), frontend::System, true, true);
for (const auto *A : Args.filtered(OPT_iframeworkwithsysroot))
Opts.AddPath(A->getValue(), frontend::System, /*IsFramework=*/true,
/*IgnoreSysRoot=*/false);
// Add the paths for the various language specific isystem flags.
for (const auto *A : Args.filtered(OPT_c_isystem))
Opts.AddPath(A->getValue(), frontend::CSystem, false, true);
for (const auto *A : Args.filtered(OPT_cxx_isystem))
Opts.AddPath(A->getValue(), frontend::CXXSystem, false, true);
for (const auto *A : Args.filtered(OPT_objc_isystem))
Opts.AddPath(A->getValue(), frontend::ObjCSystem, false,true);
for (const auto *A : Args.filtered(OPT_objcxx_isystem))
Opts.AddPath(A->getValue(), frontend::ObjCXXSystem, false, true);
// Add the internal paths from a driver that detects standard include paths.
for (const auto *A :
Args.filtered(OPT_internal_isystem, OPT_internal_externc_isystem)) {
frontend::IncludeDirGroup Group = frontend::System;
if (A->getOption().matches(OPT_internal_externc_isystem))
Group = frontend::ExternCSystem;
Opts.AddPath(A->getValue(), Group, false, true);
}
// Add the path prefixes which are implicitly treated as being system headers.
for (const auto *A :
Args.filtered(OPT_system_header_prefix, OPT_no_system_header_prefix))
Opts.AddSystemHeaderPrefix(
A->getValue(), A->getOption().matches(OPT_system_header_prefix));
for (const auto *A : Args.filtered(OPT_ivfsoverlay))
Opts.AddVFSOverlayFile(A->getValue());
return Diags.getNumErrors() == NumErrorsBefore;
}
/// Check if input file kind and language standard are compatible.
static bool IsInputCompatibleWithStandard(InputKind IK,
const LangStandard &S) {
switch (IK.getLanguage()) {
case Language::Unknown:
case Language::LLVM_IR:
llvm_unreachable("should not parse language flags for this input");
case Language::C:
case Language::ObjC:
case Language::RenderScript:
return S.getLanguage() == Language::C;
case Language::OpenCL:
return S.getLanguage() == Language::OpenCL ||
S.getLanguage() == Language::OpenCLCXX;
case Language::OpenCLCXX:
return S.getLanguage() == Language::OpenCLCXX;
case Language::CXX:
case Language::ObjCXX:
return S.getLanguage() == Language::CXX;
case Language::CUDA:
// FIXME: What -std= values should be permitted for CUDA compilations?
return S.getLanguage() == Language::CUDA ||
S.getLanguage() == Language::CXX;
case Language::HIP:
return S.getLanguage() == Language::CXX || S.getLanguage() == Language::HIP;
case Language::Asm:
// Accept (and ignore) all -std= values.
// FIXME: The -std= value is not ignored; it affects the tokenization
// and preprocessing rules if we're preprocessing this asm input.
return true;
case Language::HLSL:
return S.getLanguage() == Language::HLSL;
}
llvm_unreachable("unexpected input language");
}
/// Get language name for given input kind.
static StringRef GetInputKindName(InputKind IK) {
switch (IK.getLanguage()) {
case Language::C:
return "C";
case Language::ObjC:
return "Objective-C";
case Language::CXX:
return "C++";
case Language::ObjCXX:
return "Objective-C++";
case Language::OpenCL:
return "OpenCL";
case Language::OpenCLCXX:
return "C++ for OpenCL";
case Language::CUDA:
return "CUDA";
case Language::RenderScript:
return "RenderScript";
case Language::HIP:
return "HIP";
case Language::Asm:
return "Asm";
case Language::LLVM_IR:
return "LLVM IR";
case Language::HLSL:
return "HLSL";
case Language::Unknown:
break;
}
llvm_unreachable("unknown input language");
}
void CompilerInvocation::GenerateLangArgs(const LangOptions &Opts,
SmallVectorImpl<const char *> &Args,
StringAllocator SA,
const llvm::Triple &T, InputKind IK) {
if (IK.getFormat() == InputKind::Precompiled ||
IK.getLanguage() == Language::LLVM_IR) {
if (Opts.ObjCAutoRefCount)
GenerateArg(Args, OPT_fobjc_arc, SA);
if (Opts.PICLevel != 0)
GenerateArg(Args, OPT_pic_level, Twine(Opts.PICLevel), SA);
if (Opts.PIE)
GenerateArg(Args, OPT_pic_is_pie, SA);
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.Sanitize))
GenerateArg(Args, OPT_fsanitize_EQ, Sanitizer, SA);
return;
}
OptSpecifier StdOpt;
switch (Opts.LangStd) {
case LangStandard::lang_opencl10:
case LangStandard::lang_opencl11:
case LangStandard::lang_opencl12:
case LangStandard::lang_opencl20:
case LangStandard::lang_opencl30:
case LangStandard::lang_openclcpp10:
case LangStandard::lang_openclcpp2021:
StdOpt = OPT_cl_std_EQ;
break;
default:
StdOpt = OPT_std_EQ;
break;
}
auto LangStandard = LangStandard::getLangStandardForKind(Opts.LangStd);
GenerateArg(Args, StdOpt, LangStandard.getName(), SA);
if (Opts.IncludeDefaultHeader)
GenerateArg(Args, OPT_finclude_default_header, SA);
if (Opts.DeclareOpenCLBuiltins)
GenerateArg(Args, OPT_fdeclare_opencl_builtins, SA);
const LangOptions *LangOpts = &Opts;
#define LANG_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef LANG_OPTION_WITH_MARSHALLING
// The '-fcf-protection=' option is generated by CodeGenOpts generator.
if (Opts.ObjC) {
GenerateArg(Args, OPT_fobjc_runtime_EQ, Opts.ObjCRuntime.getAsString(), SA);
if (Opts.GC == LangOptions::GCOnly)
GenerateArg(Args, OPT_fobjc_gc_only, SA);
else if (Opts.GC == LangOptions::HybridGC)
GenerateArg(Args, OPT_fobjc_gc, SA);
else if (Opts.ObjCAutoRefCount == 1)
GenerateArg(Args, OPT_fobjc_arc, SA);
if (Opts.ObjCWeakRuntime)
GenerateArg(Args, OPT_fobjc_runtime_has_weak, SA);
if (Opts.ObjCWeak)
GenerateArg(Args, OPT_fobjc_weak, SA);
if (Opts.ObjCSubscriptingLegacyRuntime)
GenerateArg(Args, OPT_fobjc_subscripting_legacy_runtime, SA);
}
if (Opts.GNUCVersion != 0) {
unsigned Major = Opts.GNUCVersion / 100 / 100;
unsigned Minor = (Opts.GNUCVersion / 100) % 100;
unsigned Patch = Opts.GNUCVersion % 100;
GenerateArg(Args, OPT_fgnuc_version_EQ,
Twine(Major) + "." + Twine(Minor) + "." + Twine(Patch), SA);
}
if (Opts.IgnoreXCOFFVisibility)
GenerateArg(Args, OPT_mignore_xcoff_visibility, SA);
if (Opts.SignedOverflowBehavior == LangOptions::SOB_Trapping) {
GenerateArg(Args, OPT_ftrapv, SA);
GenerateArg(Args, OPT_ftrapv_handler, Opts.OverflowHandler, SA);
} else if (Opts.SignedOverflowBehavior == LangOptions::SOB_Defined) {
GenerateArg(Args, OPT_fwrapv, SA);
}
if (Opts.MSCompatibilityVersion != 0) {
unsigned Major = Opts.MSCompatibilityVersion / 10000000;
unsigned Minor = (Opts.MSCompatibilityVersion / 100000) % 100;
unsigned Subminor = Opts.MSCompatibilityVersion % 100000;
GenerateArg(Args, OPT_fms_compatibility_version,
Twine(Major) + "." + Twine(Minor) + "." + Twine(Subminor), SA);
}
if ((!Opts.GNUMode && !Opts.MSVCCompat && !Opts.CPlusPlus17) || T.isOSzOS()) {
if (!Opts.Trigraphs)
GenerateArg(Args, OPT_fno_trigraphs, SA);
} else {
if (Opts.Trigraphs)
GenerateArg(Args, OPT_ftrigraphs, SA);
}
if (Opts.Blocks && !(Opts.OpenCL && Opts.OpenCLVersion == 200))
GenerateArg(Args, OPT_fblocks, SA);
if (Opts.ConvergentFunctions &&
!(Opts.OpenCL || (Opts.CUDA && Opts.CUDAIsDevice) || Opts.SYCLIsDevice))
GenerateArg(Args, OPT_fconvergent_functions, SA);
if (Opts.NoBuiltin && !Opts.Freestanding)
GenerateArg(Args, OPT_fno_builtin, SA);
if (!Opts.NoBuiltin)
for (const auto &Func : Opts.NoBuiltinFuncs)
GenerateArg(Args, OPT_fno_builtin_, Func, SA);
if (Opts.LongDoubleSize == 128)
GenerateArg(Args, OPT_mlong_double_128, SA);
else if (Opts.LongDoubleSize == 64)
GenerateArg(Args, OPT_mlong_double_64, SA);
else if (Opts.LongDoubleSize == 80)
GenerateArg(Args, OPT_mlong_double_80, SA);
// Not generating '-mrtd', it's just an alias for '-fdefault-calling-conv='.
// OpenMP was requested via '-fopenmp', not implied by '-fopenmp-simd' or
// '-fopenmp-targets='.
if (Opts.OpenMP && !Opts.OpenMPSimd) {
GenerateArg(Args, OPT_fopenmp, SA);
if (Opts.OpenMP != 50)
GenerateArg(Args, OPT_fopenmp_version_EQ, Twine(Opts.OpenMP), SA);
if (!Opts.OpenMPUseTLS)
GenerateArg(Args, OPT_fnoopenmp_use_tls, SA);
if (Opts.OpenMPIsDevice)
GenerateArg(Args, OPT_fopenmp_is_device, SA);
if (Opts.OpenMPIRBuilder)
GenerateArg(Args, OPT_fopenmp_enable_irbuilder, SA);
}
if (Opts.OpenMPSimd) {
GenerateArg(Args, OPT_fopenmp_simd, SA);
if (Opts.OpenMP != 50)
GenerateArg(Args, OPT_fopenmp_version_EQ, Twine(Opts.OpenMP), SA);
}
if (Opts.OpenMPThreadSubscription)
GenerateArg(Args, OPT_fopenmp_assume_threads_oversubscription, SA);
if (Opts.OpenMPTeamSubscription)
GenerateArg(Args, OPT_fopenmp_assume_teams_oversubscription, SA);
if (Opts.OpenMPTargetDebug != 0)
GenerateArg(Args, OPT_fopenmp_target_debug_EQ,
Twine(Opts.OpenMPTargetDebug), SA);
if (Opts.OpenMPCUDANumSMs != 0)
GenerateArg(Args, OPT_fopenmp_cuda_number_of_sm_EQ,
Twine(Opts.OpenMPCUDANumSMs), SA);
if (Opts.OpenMPCUDABlocksPerSM != 0)
GenerateArg(Args, OPT_fopenmp_cuda_blocks_per_sm_EQ,
Twine(Opts.OpenMPCUDABlocksPerSM), SA);
if (Opts.OpenMPCUDAReductionBufNum != 1024)
GenerateArg(Args, OPT_fopenmp_cuda_teams_reduction_recs_num_EQ,
Twine(Opts.OpenMPCUDAReductionBufNum), SA);
if (!Opts.OMPTargetTriples.empty()) {
std::string Targets;
llvm::raw_string_ostream OS(Targets);
llvm::interleave(
Opts.OMPTargetTriples, OS,
[&OS](const llvm::Triple &T) { OS << T.str(); }, ",");
GenerateArg(Args, OPT_fopenmp_targets_EQ, OS.str(), SA);
}
if (!Opts.OMPHostIRFile.empty())
GenerateArg(Args, OPT_fopenmp_host_ir_file_path, Opts.OMPHostIRFile, SA);
if (Opts.OpenMPCUDAMode)
GenerateArg(Args, OPT_fopenmp_cuda_mode, SA);
if (Opts.OpenMPCUDAForceFullRuntime)
GenerateArg(Args, OPT_fopenmp_cuda_force_full_runtime, SA);
// The arguments used to set Optimize, OptimizeSize and NoInlineDefine are
// generated from CodeGenOptions.
if (Opts.DefaultFPContractMode == LangOptions::FPM_Fast)
GenerateArg(Args, OPT_ffp_contract, "fast", SA);
else if (Opts.DefaultFPContractMode == LangOptions::FPM_On)
GenerateArg(Args, OPT_ffp_contract, "on", SA);
else if (Opts.DefaultFPContractMode == LangOptions::FPM_Off)
GenerateArg(Args, OPT_ffp_contract, "off", SA);
else if (Opts.DefaultFPContractMode == LangOptions::FPM_FastHonorPragmas)
GenerateArg(Args, OPT_ffp_contract, "fast-honor-pragmas", SA);
for (StringRef Sanitizer : serializeSanitizerKinds(Opts.Sanitize))
GenerateArg(Args, OPT_fsanitize_EQ, Sanitizer, SA);
// Conflating '-fsanitize-system-ignorelist' and '-fsanitize-ignorelist'.
for (const std::string &F : Opts.NoSanitizeFiles)
GenerateArg(Args, OPT_fsanitize_ignorelist_EQ, F, SA);
if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver3_8)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "3.8", SA);
else if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver4)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "4.0", SA);
else if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver6)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "6.0", SA);
else if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver7)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "7.0", SA);
else if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver9)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "9.0", SA);
else if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver11)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "11.0", SA);
else if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver12)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "12.0", SA);
else if (Opts.getClangABICompat() == LangOptions::ClangABI::Ver14)
GenerateArg(Args, OPT_fclang_abi_compat_EQ, "14.0", SA);
if (Opts.getSignReturnAddressScope() ==
LangOptions::SignReturnAddressScopeKind::All)
GenerateArg(Args, OPT_msign_return_address_EQ, "all", SA);
else if (Opts.getSignReturnAddressScope() ==
LangOptions::SignReturnAddressScopeKind::NonLeaf)
GenerateArg(Args, OPT_msign_return_address_EQ, "non-leaf", SA);
if (Opts.getSignReturnAddressKey() ==
LangOptions::SignReturnAddressKeyKind::BKey)
GenerateArg(Args, OPT_msign_return_address_key_EQ, "b_key", SA);
if (Opts.CXXABI)
GenerateArg(Args, OPT_fcxx_abi_EQ, TargetCXXABI::getSpelling(*Opts.CXXABI),
SA);
if (Opts.RelativeCXXABIVTables)
GenerateArg(Args, OPT_fexperimental_relative_cxx_abi_vtables, SA);
else
GenerateArg(Args, OPT_fno_experimental_relative_cxx_abi_vtables, SA);
if (Opts.UseTargetPathSeparator)
GenerateArg(Args, OPT_ffile_reproducible, SA);
else
GenerateArg(Args, OPT_fno_file_reproducible, SA);
for (const auto &MP : Opts.MacroPrefixMap)
GenerateArg(Args, OPT_fmacro_prefix_map_EQ, MP.first + "=" + MP.second, SA);
if (!Opts.RandstructSeed.empty())
GenerateArg(Args, OPT_frandomize_layout_seed_EQ, Opts.RandstructSeed, SA);
}
bool CompilerInvocation::ParseLangArgs(LangOptions &Opts, ArgList &Args,
InputKind IK, const llvm::Triple &T,
std::vector<std::string> &Includes,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
if (IK.getFormat() == InputKind::Precompiled ||
IK.getLanguage() == Language::LLVM_IR) {
// ObjCAAutoRefCount and Sanitize LangOpts are used to setup the
// PassManager in BackendUtil.cpp. They need to be initialized no matter
// what the input type is.
if (Args.hasArg(OPT_fobjc_arc))
Opts.ObjCAutoRefCount = 1;
// PICLevel and PIELevel are needed during code generation and this should
// be set regardless of the input type.
Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags);
Opts.PIE = Args.hasArg(OPT_pic_is_pie);
parseSanitizerKinds("-fsanitize=", Args.getAllArgValues(OPT_fsanitize_EQ),
Diags, Opts.Sanitize);
return Diags.getNumErrors() == NumErrorsBefore;
}
// Other LangOpts are only initialized when the input is not AST or LLVM IR.
// FIXME: Should we really be parsing this for an Language::Asm input?
// FIXME: Cleanup per-file based stuff.
LangStandard::Kind LangStd = LangStandard::lang_unspecified;
if (const Arg *A = Args.getLastArg(OPT_std_EQ)) {
LangStd = LangStandard::getLangKind(A->getValue());
if (LangStd == LangStandard::lang_unspecified) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
// Report supported standards with short description.
for (unsigned KindValue = 0;
KindValue != LangStandard::lang_unspecified;
++KindValue) {
const LangStandard &Std = LangStandard::getLangStandardForKind(
static_cast<LangStandard::Kind>(KindValue));
if (IsInputCompatibleWithStandard(IK, Std)) {
auto Diag = Diags.Report(diag::note_drv_use_standard);
Diag << Std.getName() << Std.getDescription();
unsigned NumAliases = 0;
#define LANGSTANDARD(id, name, lang, desc, features)
#define LANGSTANDARD_ALIAS(id, alias) \
if (KindValue == LangStandard::lang_##id) ++NumAliases;
#define LANGSTANDARD_ALIAS_DEPR(id, alias)
#include "clang/Basic/LangStandards.def"
Diag << NumAliases;
#define LANGSTANDARD(id, name, lang, desc, features)
#define LANGSTANDARD_ALIAS(id, alias) \
if (KindValue == LangStandard::lang_##id) Diag << alias;
#define LANGSTANDARD_ALIAS_DEPR(id, alias)
#include "clang/Basic/LangStandards.def"
}
}
} else {
// Valid standard, check to make sure language and standard are
// compatible.
const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
if (!IsInputCompatibleWithStandard(IK, Std)) {
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args) << GetInputKindName(IK);
}
}
}
// -cl-std only applies for OpenCL language standards.
// Override the -std option in this case.
2010-12-04 01:51:40 +00:00
if (const Arg *A = Args.getLastArg(OPT_cl_std_EQ)) {
LangStandard::Kind OpenCLLangStd
= llvm::StringSwitch<LangStandard::Kind>(A->getValue())
.Cases("cl", "CL", LangStandard::lang_opencl10)
.Cases("cl1.0", "CL1.0", LangStandard::lang_opencl10)
.Cases("cl1.1", "CL1.1", LangStandard::lang_opencl11)
.Cases("cl1.2", "CL1.2", LangStandard::lang_opencl12)
.Cases("cl2.0", "CL2.0", LangStandard::lang_opencl20)
.Cases("cl3.0", "CL3.0", LangStandard::lang_opencl30)
.Cases("clc++", "CLC++", LangStandard::lang_openclcpp10)
.Cases("clc++1.0", "CLC++1.0", LangStandard::lang_openclcpp10)
.Cases("clc++2021", "CLC++2021", LangStandard::lang_openclcpp2021)
.Default(LangStandard::lang_unspecified);
if (OpenCLLangStd == LangStandard::lang_unspecified) {
2010-12-04 01:51:40 +00:00
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
2010-12-04 01:51:40 +00:00
}
else
LangStd = OpenCLLangStd;
2010-12-04 01:51:40 +00:00
}
// These need to be parsed now. They are used to set OpenCL defaults.
Opts.IncludeDefaultHeader = Args.hasArg(OPT_finclude_default_header);
Opts.DeclareOpenCLBuiltins = Args.hasArg(OPT_fdeclare_opencl_builtins);
LangOptions::setLangDefaults(Opts, IK.getLanguage(), T, Includes, LangStd);
// The key paths of codegen options defined in Options.td start with
// "LangOpts->". Let's provide the expected variable name and type.
LangOptions *LangOpts = &Opts;
#define LANG_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef LANG_OPTION_WITH_MARSHALLING
if (const Arg *A = Args.getLastArg(OPT_fcf_protection_EQ)) {
StringRef Name = A->getValue();
if (Name == "full" || Name == "branch") {
Opts.CFProtectionBranch = 1;
}
}
if ((Args.hasArg(OPT_fsycl_is_device) || Args.hasArg(OPT_fsycl_is_host)) &&
!Args.hasArg(OPT_sycl_std_EQ)) {
// If the user supplied -fsycl-is-device or -fsycl-is-host, but failed to
// provide -sycl-std=, we want to default it to whatever the default SYCL
// version is. I could not find a way to express this with the options
// tablegen because we still want this value to be SYCL_None when the user
// is not in device or host mode.
Opts.setSYCLVersion(LangOptions::SYCL_Default);
}
if (Opts.ObjC) {
if (Arg *arg = Args.getLastArg(OPT_fobjc_runtime_EQ)) {
StringRef value = arg->getValue();
if (Opts.ObjCRuntime.tryParse(value))
Diags.Report(diag::err_drv_unknown_objc_runtime) << value;
}
if (Args.hasArg(OPT_fobjc_gc_only))
Opts.setGC(LangOptions::GCOnly);
else if (Args.hasArg(OPT_fobjc_gc))
Opts.setGC(LangOptions::HybridGC);
else if (Args.hasArg(OPT_fobjc_arc)) {
Opts.ObjCAutoRefCount = 1;
if (!Opts.ObjCRuntime.allowsARC())
Diags.Report(diag::err_arc_unsupported_on_runtime);
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-22 18:38:17 +00:00
}
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-22 18:38:17 +00:00
// ObjCWeakRuntime tracks whether the runtime supports __weak, not
// whether the feature is actually enabled. This is predominantly
// determined by -fobjc-runtime, but we allow it to be overridden
// from the command line for testing purposes.
if (Args.hasArg(OPT_fobjc_runtime_has_weak))
Opts.ObjCWeakRuntime = 1;
else
Opts.ObjCWeakRuntime = Opts.ObjCRuntime.allowsWeak();
// ObjCWeak determines whether __weak is actually enabled.
// Note that we allow -fno-objc-weak to disable this even in ARC mode.
if (auto weakArg = Args.getLastArg(OPT_fobjc_weak, OPT_fno_objc_weak)) {
if (!weakArg->getOption().matches(OPT_fobjc_weak)) {
assert(!Opts.ObjCWeak);
} else if (Opts.getGC() != LangOptions::NonGC) {
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-22 18:38:17 +00:00
Diags.Report(diag::err_objc_weak_with_gc);
} else if (!Opts.ObjCWeakRuntime) {
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-22 18:38:17 +00:00
Diags.Report(diag::err_objc_weak_unsupported);
} else {
Opts.ObjCWeak = 1;
Define weak and __weak to mean ARC-style weak references, even in MRC. Previously, __weak was silently accepted and ignored in MRC mode. That makes this a potentially source-breaking change that we have to roll out cautiously. Accordingly, for the time being, actual support for __weak references in MRC is experimental, and the compiler will reject attempts to actually form such references. The intent is to eventually enable the feature by default in all non-GC modes. (It is, of course, incompatible with ObjC GC's interpretation of __weak.) If you like, you can enable this feature with -Xclang -fobjc-weak but like any -Xclang option, this option may be removed at any point, e.g. if/when it is eventually enabled by default. This patch also enables the use of the ARC __unsafe_unretained qualifier in MRC. Unlike __weak, this is being enabled immediately. Since variables are essentially __unsafe_unretained by default in MRC, the only practical uses are (1) communication and (2) changing the default behavior of by-value block capture. As an implementation matter, this means that the ObjC ownership qualifiers may appear in any ObjC language mode, and so this patch removes a number of checks for getLangOpts().ObjCAutoRefCount that were guarding the processing of these qualifiers. I don't expect this to be a significant drain on performance; it may even be faster to just check for these qualifiers directly on a type (since it's probably in a register anyway) than to do N dependent loads to grab the LangOptions. rdar://9674298 llvm-svn: 251041
2015-10-22 18:38:17 +00:00
}
} else if (Opts.ObjCAutoRefCount) {
Opts.ObjCWeak = Opts.ObjCWeakRuntime;
}
if (Args.hasArg(OPT_fobjc_subscripting_legacy_runtime))
Opts.ObjCSubscriptingLegacyRuntime =
(Opts.ObjCRuntime.getKind() == ObjCRuntime::FragileMacOSX);
}
if (Arg *A = Args.getLastArg(options::OPT_fgnuc_version_EQ)) {
// Check that the version has 1 to 3 components and the minor and patch
// versions fit in two decimal digits.
VersionTuple GNUCVer;
bool Invalid = GNUCVer.tryParse(A->getValue());
unsigned Major = GNUCVer.getMajor();
unsigned Minor = GNUCVer.getMinor().value_or(0);
unsigned Patch = GNUCVer.getSubminor().value_or(0);
if (Invalid || GNUCVer.getBuild() || Minor >= 100 || Patch >= 100) {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
Opts.GNUCVersion = Major * 100 * 100 + Minor * 100 + Patch;
}
if (T.isOSAIX() && (Args.hasArg(OPT_mignore_xcoff_visibility)))
Opts.IgnoreXCOFFVisibility = 1;
if (Args.hasArg(OPT_ftrapv)) {
2010-10-21 03:16:25 +00:00
Opts.setSignedOverflowBehavior(LangOptions::SOB_Trapping);
// Set the handler, if one is specified.
Opts.OverflowHandler =
std::string(Args.getLastArgValue(OPT_ftrapv_handler));
}
else if (Args.hasArg(OPT_fwrapv))
2010-10-21 03:16:25 +00:00
Opts.setSignedOverflowBehavior(LangOptions::SOB_Defined);
Opts.MSCompatibilityVersion = 0;
if (const Arg *A = Args.getLastArg(OPT_fms_compatibility_version)) {
VersionTuple VT;
if (VT.tryParse(A->getValue()))
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
<< A->getValue();
Opts.MSCompatibilityVersion = VT.getMajor() * 10000000 +
VT.getMinor().value_or(0) * 100000 +
VT.getSubminor().value_or(0);
}
// Mimicking gcc's behavior, trigraphs are only enabled if -trigraphs
// is specified, or -std is set to a conforming mode.
// Trigraphs are disabled by default in c++1z onwards.
// For z/OS, trigraphs are enabled by default (without regard to the above).
Opts.Trigraphs =
(!Opts.GNUMode && !Opts.MSVCCompat && !Opts.CPlusPlus17) || T.isOSzOS();
Opts.Trigraphs =
Args.hasFlag(OPT_ftrigraphs, OPT_fno_trigraphs, Opts.Trigraphs);
Opts.Blocks = Args.hasArg(OPT_fblocks) || (Opts.OpenCL
&& Opts.OpenCLVersion == 200);
Opts.ConvergentFunctions = Opts.OpenCL || (Opts.CUDA && Opts.CUDAIsDevice) ||
Opts.SYCLIsDevice ||
Args.hasArg(OPT_fconvergent_functions);
Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding;
if (!Opts.NoBuiltin)
getAllNoBuiltinFuncValues(Args, Opts.NoBuiltinFuncs);
if (Arg *A = Args.getLastArg(options::OPT_LongDouble_Group)) {
if (A->getOption().matches(options::OPT_mlong_double_64))
Opts.LongDoubleSize = 64;
else if (A->getOption().matches(options::OPT_mlong_double_80))
Opts.LongDoubleSize = 80;
else if (A->getOption().matches(options::OPT_mlong_double_128))
Opts.LongDoubleSize = 128;
else
Opts.LongDoubleSize = 0;
}
if (Opts.FastRelaxedMath)
Opts.setDefaultFPContractMode(LangOptions::FPM_Fast);
llvm::sort(Opts.ModuleFeatures);
// -mrtd option
if (Arg *A = Args.getLastArg(OPT_mrtd)) {
if (Opts.getDefaultCallingConv() != LangOptions::DCC_None)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << "-fdefault-calling-conv";
else {
if (T.getArch() != llvm::Triple::x86)
Diags.Report(diag::err_drv_argument_not_allowed_with)
<< A->getSpelling() << T.getTriple();
else
Opts.setDefaultCallingConv(LangOptions::DCC_StdCall);
}
}
// Check if -fopenmp is specified and set default version to 5.0.
Opts.OpenMP = Args.hasArg(OPT_fopenmp) ? 50 : 0;
// Check if -fopenmp-simd is specified.
bool IsSimdSpecified =
Args.hasFlag(options::OPT_fopenmp_simd, options::OPT_fno_openmp_simd,
/*Default=*/false);
Opts.OpenMPSimd = !Opts.OpenMP && IsSimdSpecified;
Opts.OpenMPUseTLS =
Opts.OpenMP && !Args.hasArg(options::OPT_fnoopenmp_use_tls);
Opts.OpenMPIsDevice =
Opts.OpenMP && Args.hasArg(options::OPT_fopenmp_is_device);
Opts.OpenMPIRBuilder =
Opts.OpenMP && Args.hasArg(options::OPT_fopenmp_enable_irbuilder);
bool IsTargetSpecified =
Opts.OpenMPIsDevice || Args.hasArg(options::OPT_fopenmp_targets_EQ);
Opts.ConvergentFunctions = Opts.ConvergentFunctions || Opts.OpenMPIsDevice;
if (Opts.OpenMP || Opts.OpenMPSimd) {
if (int Version = getLastArgIntValue(
Args, OPT_fopenmp_version_EQ,
(IsSimdSpecified || IsTargetSpecified) ? 50 : Opts.OpenMP, Diags))
Opts.OpenMP = Version;
// Provide diagnostic when a given target is not expected to be an OpenMP
// device or host.
if (!Opts.OpenMPIsDevice) {
switch (T.getArch()) {
default:
break;
// Add unsupported host targets here:
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
Diags.Report(diag::err_drv_omp_host_target_not_supported) << T.str();
break;
}
}
}
// Set the flag to prevent the implementation from emitting device exception
// handling code for those requiring so.
if ((Opts.OpenMPIsDevice && (T.isNVPTX() || T.isAMDGCN())) ||
Opts.OpenCLCPlusPlus) {
Opts.Exceptions = 0;
Opts.CXXExceptions = 0;
}
if (Opts.OpenMPIsDevice && T.isNVPTX()) {
Opts.OpenMPCUDANumSMs =
getLastArgIntValue(Args, options::OPT_fopenmp_cuda_number_of_sm_EQ,
Opts.OpenMPCUDANumSMs, Diags);
Opts.OpenMPCUDABlocksPerSM =
getLastArgIntValue(Args, options::OPT_fopenmp_cuda_blocks_per_sm_EQ,
Opts.OpenMPCUDABlocksPerSM, Diags);
Opts.OpenMPCUDAReductionBufNum = getLastArgIntValue(
Args, options::OPT_fopenmp_cuda_teams_reduction_recs_num_EQ,
Opts.OpenMPCUDAReductionBufNum, Diags);
}
// Set the value of the debugging flag used in the new offloading device RTL.
// Set either by a specific value or to a default if not specified.
if (Opts.OpenMPIsDevice && (Args.hasArg(OPT_fopenmp_target_debug) ||
Args.hasArg(OPT_fopenmp_target_debug_EQ))) {
Opts.OpenMPTargetDebug = getLastArgIntValue(
Args, OPT_fopenmp_target_debug_EQ, Opts.OpenMPTargetDebug, Diags);
if (!Opts.OpenMPTargetDebug && Args.hasArg(OPT_fopenmp_target_debug))
Opts.OpenMPTargetDebug = 1;
}
if (Opts.OpenMPIsDevice) {
if (Args.hasArg(OPT_fopenmp_assume_teams_oversubscription))
Opts.OpenMPTeamSubscription = true;
if (Args.hasArg(OPT_fopenmp_assume_threads_oversubscription))
Opts.OpenMPThreadSubscription = true;
}
// Get the OpenMP target triples if any.
if (Arg *A = Args.getLastArg(options::OPT_fopenmp_targets_EQ)) {
enum ArchPtrSize { Arch16Bit, Arch32Bit, Arch64Bit };
auto getArchPtrSize = [](const llvm::Triple &T) {
if (T.isArch16Bit())
return Arch16Bit;
if (T.isArch32Bit())
return Arch32Bit;
assert(T.isArch64Bit() && "Expected 64-bit architecture");
return Arch64Bit;
};
for (unsigned i = 0; i < A->getNumValues(); ++i) {
llvm::Triple TT(A->getValue(i));
if (TT.getArch() == llvm::Triple::UnknownArch ||
!(TT.getArch() == llvm::Triple::aarch64 || TT.isPPC() ||
TT.getArch() == llvm::Triple::nvptx ||
TT.getArch() == llvm::Triple::nvptx64 ||
TT.getArch() == llvm::Triple::amdgcn ||
TT.getArch() == llvm::Triple::x86 ||
TT.getArch() == llvm::Triple::x86_64))
Diags.Report(diag::err_drv_invalid_omp_target) << A->getValue(i);
else if (getArchPtrSize(T) != getArchPtrSize(TT))
Diags.Report(diag::err_drv_incompatible_omp_arch)
<< A->getValue(i) << T.str();
else
Opts.OMPTargetTriples.push_back(TT);
}
}
// Get OpenMP host file path if any and report if a non existent file is
// found
if (Arg *A = Args.getLastArg(options::OPT_fopenmp_host_ir_file_path)) {
Opts.OMPHostIRFile = A->getValue();
if (!llvm::sys::fs::exists(Opts.OMPHostIRFile))
Diags.Report(diag::err_drv_omp_host_ir_file_not_found)
<< Opts.OMPHostIRFile;
}
// Set CUDA mode for OpenMP target NVPTX/AMDGCN if specified in options
Opts.OpenMPCUDAMode = Opts.OpenMPIsDevice && (T.isNVPTX() || T.isAMDGCN()) &&
Args.hasArg(options::OPT_fopenmp_cuda_mode);
// Set CUDA mode for OpenMP target NVPTX/AMDGCN if specified in options
Opts.OpenMPCUDAForceFullRuntime =
Opts.OpenMPIsDevice && (T.isNVPTX() || T.isAMDGCN()) &&
Args.hasArg(options::OPT_fopenmp_cuda_force_full_runtime);
// FIXME: Eliminate this dependency.
unsigned Opt = getOptimizationLevel(Args, IK, Diags),
OptSize = getOptimizationLevelSize(Args);
Opts.Optimize = Opt != 0;
Opts.OptimizeSize = OptSize != 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
Cleanup the handling of noinline function attributes, -fno-inline, -fno-inline-functions, -O0, and optnone. These were really, really tangled together: - We used the noinline LLVM attribute for -fno-inline - But not for -fno-inline-functions (breaking LTO) - But we did use it for -finline-hint-functions (yay, LTO is happy!) - But we didn't for -O0 (LTO is sad yet again...) - We had weird structuring of CodeGenOpts with both an inlining enumeration and a boolean. They interacted in weird ways and needlessly. - A *lot* of set smashing went on with setting these, and then got worse when we considered optnone and other inlining-effecting attributes. - A bunch of inline affecting attributes were managed in a completely different place from -fno-inline. - Even with -fno-inline we failed to put the LLVM noinline attribute onto many generated function definitions because they didn't show up as AST-level functions. - If you passed -O0 but -finline-functions we would run the normal inliner pass in LLVM despite it being in the O0 pipeline, which really doesn't make much sense. - Lastly, we used things like '-fno-inline' to manipulate the pass pipeline which forced the pass pipeline to be much more parameterizable than it really needs to be. Instead we can *just* use the optimization level to select a pipeline and control the rest via attributes. Sadly, this causes a bunch of churn in tests because we don't run the optimizer in the tests and check the contents of attribute sets. It would be awesome if attribute sets were a bit more FileCheck friendly, but oh well. I think this is a significant improvement and should remove the semantic need to change what inliner pass we run in order to comply with the requested inlining semantics by relying completely on attributes. It also cleans up tho optnone and related handling a bit. One unfortunate aspect of this is that for generating alwaysinline routines like those in OpenMP we end up removing noinline and then adding alwaysinline. I tried a bunch of other approaches, but because we recompute function attributes from scratch and don't have a declaration here I couldn't find anything substantially cleaner than this. Differential Revision: https://reviews.llvm.org/D28053 llvm-svn: 290398
2016-12-23 01:24:49 +00:00
Opts.NoInlineDefine = !Opts.Optimize;
if (Arg *InlineArg = Args.getLastArg(
options::OPT_finline_functions, options::OPT_finline_hint_functions,
options::OPT_fno_inline_functions, options::OPT_fno_inline))
if (InlineArg->getOption().matches(options::OPT_fno_inline))
Opts.NoInlineDefine = true;
Use FPContractModeKind universally FPContractModeKind is the codegen option flag which is already ternary (off, on, fast). This makes it universally the type for the contractable info across the front-end: * In FPOptions (i.e. in the Sema + in the expression nodes). * In LangOpts::DefaultFPContractMode which is the option that initializes FPOptions in the Sema. Another way to look at this change is that before fp-contractable on/off were the only states handled to the front-end: * For "on", FMA folding was performed by the front-end * For "fast", we simply forwarded the flag to TargetOptions to handle it in LLVM Now off/on/fast are all exposed because for fast we will generate fast-math-flags during CodeGen. This is toward moving fp-contraction=fast from an LLVM TargetOption to a FastMathFlag in order to fix PR25721. --- This is a recommit of r299027 with an adjustment to the test CodeGenCUDA/fp-contract.cu. The test assumed that even though -ffp-contract=on is passed FE-based folding of FMA won't happen. This is obviously wrong since the user is asking for this explicitly with the option. CUDA is different that -ffp-contract=fast is on by default. The test used to "work" because contract=fast and contract=on were maintained separately and we didn't fold in the FE because contract=fast was on due to the target-default. This patch consolidates the contract=on/fast/off state into a ternary state hence the change in behavior. --- Differential Revision: https://reviews.llvm.org/D31167 llvm-svn: 299033
2017-03-29 21:54:24 +00:00
if (Arg *A = Args.getLastArg(OPT_ffp_contract)) {
StringRef Val = A->getValue();
if (Val == "fast")
Opts.setDefaultFPContractMode(LangOptions::FPM_Fast);
Use FPContractModeKind universally FPContractModeKind is the codegen option flag which is already ternary (off, on, fast). This makes it universally the type for the contractable info across the front-end: * In FPOptions (i.e. in the Sema + in the expression nodes). * In LangOpts::DefaultFPContractMode which is the option that initializes FPOptions in the Sema. Another way to look at this change is that before fp-contractable on/off were the only states handled to the front-end: * For "on", FMA folding was performed by the front-end * For "fast", we simply forwarded the flag to TargetOptions to handle it in LLVM Now off/on/fast are all exposed because for fast we will generate fast-math-flags during CodeGen. This is toward moving fp-contraction=fast from an LLVM TargetOption to a FastMathFlag in order to fix PR25721. --- This is a recommit of r299027 with an adjustment to the test CodeGenCUDA/fp-contract.cu. The test assumed that even though -ffp-contract=on is passed FE-based folding of FMA won't happen. This is obviously wrong since the user is asking for this explicitly with the option. CUDA is different that -ffp-contract=fast is on by default. The test used to "work" because contract=fast and contract=on were maintained separately and we didn't fold in the FE because contract=fast was on due to the target-default. This patch consolidates the contract=on/fast/off state into a ternary state hence the change in behavior. --- Differential Revision: https://reviews.llvm.org/D31167 llvm-svn: 299033
2017-03-29 21:54:24 +00:00
else if (Val == "on")
Opts.setDefaultFPContractMode(LangOptions::FPM_On);
Use FPContractModeKind universally FPContractModeKind is the codegen option flag which is already ternary (off, on, fast). This makes it universally the type for the contractable info across the front-end: * In FPOptions (i.e. in the Sema + in the expression nodes). * In LangOpts::DefaultFPContractMode which is the option that initializes FPOptions in the Sema. Another way to look at this change is that before fp-contractable on/off were the only states handled to the front-end: * For "on", FMA folding was performed by the front-end * For "fast", we simply forwarded the flag to TargetOptions to handle it in LLVM Now off/on/fast are all exposed because for fast we will generate fast-math-flags during CodeGen. This is toward moving fp-contraction=fast from an LLVM TargetOption to a FastMathFlag in order to fix PR25721. --- This is a recommit of r299027 with an adjustment to the test CodeGenCUDA/fp-contract.cu. The test assumed that even though -ffp-contract=on is passed FE-based folding of FMA won't happen. This is obviously wrong since the user is asking for this explicitly with the option. CUDA is different that -ffp-contract=fast is on by default. The test used to "work" because contract=fast and contract=on were maintained separately and we didn't fold in the FE because contract=fast was on due to the target-default. This patch consolidates the contract=on/fast/off state into a ternary state hence the change in behavior. --- Differential Revision: https://reviews.llvm.org/D31167 llvm-svn: 299033
2017-03-29 21:54:24 +00:00
else if (Val == "off")
Opts.setDefaultFPContractMode(LangOptions::FPM_Off);
[HIP] Fix regressions due to fp contract change Recently HIP toolchain made a change to use clang instead of opt/llc to do compilation (https://reviews.llvm.org/D81861). The intention is to make HIP toolchain canonical like other toolchains. However, this change introduced an unintentional change regarding backend fp fuse option, which caused regressions in some HIP applications. Basically before the change, HIP toolchain used clang to generate bitcode, then use opt/llc to optimize bitcode and generate ISA. As such, the amdgpu backend takes the default fp fuse mode which is 'Standard'. This mode respect contract flag of fmul/fadd instructions and do not fuse fmul/fadd instructions without contract flag. However, after the change, HIP toolchain now use clang to generate IR, do optimization, and generate ISA as one process. Now amdgpu backend fp fuse option is determined by -ffp-contract option, which is 'fast' by default. And this -ffp-contract=fast language option is translated to 'Fast' fp fuse option in backend. Suddenly backend starts to fuse fmul/fadd instructions without contract flag. This causes wrong result for some device library functions, e.g. tan(-1e20), which should return 0.8446, now returns -0.933. What is worse is that since backend with 'Fast' fp fuse option does not respect contract flag, there is no way to use #pragma clang fp contract directive to enforce fp contract requirements. This patch fixes the regression by introducing a new value 'fast-honor-pragmas' for -ffp-contract and use it for HIP by default. 'fast-honor-pragmas' is equivalent to 'fast' in frontend but let the backend to use 'Standard' fp fuse option. 'fast-honor-pragmas' is useful since 'Fast' fp fuse option in backend does not honor contract flag, it is of little use to HIP applications since all code with #pragma STDC FP_CONTRACT or any IR from a source compiled with -ffp-contract=on is broken. Differential Revision: https://reviews.llvm.org/D90174
2020-10-23 16:24:48 -04:00
else if (Val == "fast-honor-pragmas")
Opts.setDefaultFPContractMode(LangOptions::FPM_FastHonorPragmas);
Use FPContractModeKind universally FPContractModeKind is the codegen option flag which is already ternary (off, on, fast). This makes it universally the type for the contractable info across the front-end: * In FPOptions (i.e. in the Sema + in the expression nodes). * In LangOpts::DefaultFPContractMode which is the option that initializes FPOptions in the Sema. Another way to look at this change is that before fp-contractable on/off were the only states handled to the front-end: * For "on", FMA folding was performed by the front-end * For "fast", we simply forwarded the flag to TargetOptions to handle it in LLVM Now off/on/fast are all exposed because for fast we will generate fast-math-flags during CodeGen. This is toward moving fp-contraction=fast from an LLVM TargetOption to a FastMathFlag in order to fix PR25721. --- This is a recommit of r299027 with an adjustment to the test CodeGenCUDA/fp-contract.cu. The test assumed that even though -ffp-contract=on is passed FE-based folding of FMA won't happen. This is obviously wrong since the user is asking for this explicitly with the option. CUDA is different that -ffp-contract=fast is on by default. The test used to "work" because contract=fast and contract=on were maintained separately and we didn't fold in the FE because contract=fast was on due to the target-default. This patch consolidates the contract=on/fast/off state into a ternary state hence the change in behavior. --- Differential Revision: https://reviews.llvm.org/D31167 llvm-svn: 299033
2017-03-29 21:54:24 +00:00
else
Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) << Val;
}
// Parse -fsanitize= arguments.
parseSanitizerKinds("-fsanitize=", Args.getAllArgValues(OPT_fsanitize_EQ),
Diags, Opts.Sanitize);
Opts.NoSanitizeFiles = Args.getAllArgValues(OPT_fsanitize_ignorelist_EQ);
std::vector<std::string> systemIgnorelists =
Args.getAllArgValues(OPT_fsanitize_system_ignorelist_EQ);
Opts.NoSanitizeFiles.insert(Opts.NoSanitizeFiles.end(),
systemIgnorelists.begin(),
systemIgnorelists.end());
if (Arg *A = Args.getLastArg(OPT_fclang_abi_compat_EQ)) {
Opts.setClangABICompat(LangOptions::ClangABI::Latest);
StringRef Ver = A->getValue();
std::pair<StringRef, StringRef> VerParts = Ver.split('.');
unsigned Major, Minor = 0;
// Check the version number is valid: either 3.x (0 <= x <= 9) or
// y or y.0 (4 <= y <= current version).
if (!VerParts.first.startswith("0") &&
!VerParts.first.getAsInteger(10, Major) &&
3 <= Major && Major <= CLANG_VERSION_MAJOR &&
(Major == 3 ? VerParts.second.size() == 1 &&
!VerParts.second.getAsInteger(10, Minor)
: VerParts.first.size() == Ver.size() ||
VerParts.second == "0")) {
// Got a valid version number.
if (Major == 3 && Minor <= 8)
Opts.setClangABICompat(LangOptions::ClangABI::Ver3_8);
else if (Major <= 4)
Opts.setClangABICompat(LangOptions::ClangABI::Ver4);
else if (Major <= 6)
Opts.setClangABICompat(LangOptions::ClangABI::Ver6);
else if (Major <= 7)
Opts.setClangABICompat(LangOptions::ClangABI::Ver7);
else if (Major <= 9)
Opts.setClangABICompat(LangOptions::ClangABI::Ver9);
else if (Major <= 11)
Opts.setClangABICompat(LangOptions::ClangABI::Ver11);
else if (Major <= 12)
Opts.setClangABICompat(LangOptions::ClangABI::Ver12);
else if (Major <= 14)
Opts.setClangABICompat(LangOptions::ClangABI::Ver14);
} else if (Ver != "latest") {
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
}
if (Arg *A = Args.getLastArg(OPT_msign_return_address_EQ)) {
StringRef SignScope = A->getValue();
if (SignScope.equals_insensitive("none"))
Opts.setSignReturnAddressScope(
LangOptions::SignReturnAddressScopeKind::None);
else if (SignScope.equals_insensitive("all"))
Opts.setSignReturnAddressScope(
LangOptions::SignReturnAddressScopeKind::All);
else if (SignScope.equals_insensitive("non-leaf"))
Opts.setSignReturnAddressScope(
LangOptions::SignReturnAddressScopeKind::NonLeaf);
else
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << SignScope;
if (Arg *A = Args.getLastArg(OPT_msign_return_address_key_EQ)) {
StringRef SignKey = A->getValue();
if (!SignScope.empty() && !SignKey.empty()) {
if (SignKey.equals_insensitive("a_key"))
Opts.setSignReturnAddressKey(
LangOptions::SignReturnAddressKeyKind::AKey);
else if (SignKey.equals_insensitive("b_key"))
Opts.setSignReturnAddressKey(
LangOptions::SignReturnAddressKeyKind::BKey);
else
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << SignKey;
}
}
}
// The value can be empty, which indicates the system default should be used.
StringRef CXXABI = Args.getLastArgValue(OPT_fcxx_abi_EQ);
if (!CXXABI.empty()) {
if (!TargetCXXABI::isABI(CXXABI)) {
Diags.Report(diag::err_invalid_cxx_abi) << CXXABI;
} else {
auto Kind = TargetCXXABI::getKind(CXXABI);
if (!TargetCXXABI::isSupportedCXXABI(T, Kind))
Diags.Report(diag::err_unsupported_cxx_abi) << CXXABI << T.str();
else
Opts.CXXABI = Kind;
}
}
Opts.RelativeCXXABIVTables =
Args.hasFlag(options::OPT_fexperimental_relative_cxx_abi_vtables,
options::OPT_fno_experimental_relative_cxx_abi_vtables,
TargetCXXABI::usesRelativeVTables(T));
for (const auto &A : Args.getAllArgValues(OPT_fmacro_prefix_map_EQ)) {
auto Split = StringRef(A).split('=');
Opts.MacroPrefixMap.insert(
{std::string(Split.first), std::string(Split.second)});
}
Opts.UseTargetPathSeparator =
!Args.getLastArg(OPT_fno_file_reproducible) &&
(Args.getLastArg(OPT_ffile_compilation_dir_EQ) ||
Args.getLastArg(OPT_fmacro_prefix_map_EQ) ||
Args.getLastArg(OPT_ffile_reproducible));
// Error if -mvscale-min is unbounded.
if (Arg *A = Args.getLastArg(options::OPT_mvscale_min_EQ)) {
unsigned VScaleMin;
if (StringRef(A->getValue()).getAsInteger(10, VScaleMin) || VScaleMin == 0)
Diags.Report(diag::err_cc1_unbounded_vscale_min);
}
if (const Arg *A = Args.getLastArg(OPT_frandomize_layout_seed_file_EQ)) {
std::ifstream SeedFile(A->getValue(0));
if (!SeedFile.is_open())
Diags.Report(diag::err_drv_cannot_open_randomize_layout_seed_file)
<< A->getValue(0);
std::getline(SeedFile, Opts.RandstructSeed);
}
if (const Arg *A = Args.getLastArg(OPT_frandomize_layout_seed_EQ))
Opts.RandstructSeed = A->getValue(0);
return Diags.getNumErrors() == NumErrorsBefore;
}
static bool isStrictlyPreprocessorAction(frontend::ActionKind Action) {
switch (Action) {
case frontend::ASTDeclList:
case frontend::ASTDump:
case frontend::ASTPrint:
case frontend::ASTView:
case frontend::EmitAssembly:
case frontend::EmitBC:
case frontend::EmitHTML:
case frontend::EmitLLVM:
case frontend::EmitLLVMOnly:
case frontend::EmitCodeGenOnly:
case frontend::EmitObj:
case frontend::ExtractAPI:
case frontend::FixIt:
case frontend::GenerateModule:
case frontend::GenerateModuleInterface:
case frontend::GenerateHeaderModule:
case frontend::GenerateHeaderUnit:
case frontend::GeneratePCH:
case frontend::GenerateInterfaceStubs:
case frontend::ParseSyntaxOnly:
case frontend::ModuleFileInfo:
case frontend::VerifyPCH:
case frontend::PluginAction:
case frontend::RewriteObjC:
case frontend::RewriteTest:
case frontend::RunAnalysis:
case frontend::TemplightDump:
case frontend::MigrateSource:
return false;
case frontend::DumpCompilerOptions:
case frontend::DumpRawTokens:
case frontend::DumpTokens:
case frontend::InitOnly:
case frontend::PrintPreamble:
case frontend::PrintPreprocessedInput:
case frontend::RewriteMacros:
case frontend::RunPreprocessorOnly:
case frontend::PrintDependencyDirectivesSourceMinimizerOutput:
return true;
}
llvm_unreachable("invalid frontend action");
}
static void GeneratePreprocessorArgs(PreprocessorOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA,
const LangOptions &LangOpts,
const FrontendOptions &FrontendOpts,
const CodeGenOptions &CodeGenOpts) {
PreprocessorOptions *PreprocessorOpts = &Opts;
#define PREPROCESSOR_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OPTION_WITH_MARSHALLING
if (Opts.PCHWithHdrStop && !Opts.PCHWithHdrStopCreate)
GenerateArg(Args, OPT_pch_through_hdrstop_use, SA);
for (const auto &D : Opts.DeserializedPCHDeclsToErrorOn)
GenerateArg(Args, OPT_error_on_deserialized_pch_decl, D, SA);
if (Opts.PrecompiledPreambleBytes != std::make_pair(0u, false))
GenerateArg(Args, OPT_preamble_bytes_EQ,
Twine(Opts.PrecompiledPreambleBytes.first) + "," +
(Opts.PrecompiledPreambleBytes.second ? "1" : "0"),
SA);
for (const auto &M : Opts.Macros) {
// Don't generate __CET__ macro definitions. They are implied by the
// -fcf-protection option that is generated elsewhere.
if (M.first == "__CET__=1" && !M.second &&
!CodeGenOpts.CFProtectionReturn && CodeGenOpts.CFProtectionBranch)
continue;
if (M.first == "__CET__=2" && !M.second && CodeGenOpts.CFProtectionReturn &&
!CodeGenOpts.CFProtectionBranch)
continue;
if (M.first == "__CET__=3" && !M.second && CodeGenOpts.CFProtectionReturn &&
CodeGenOpts.CFProtectionBranch)
continue;
GenerateArg(Args, M.second ? OPT_U : OPT_D, M.first, SA);
}
for (const auto &I : Opts.Includes) {
// Don't generate OpenCL includes. They are implied by other flags that are
// generated elsewhere.
if (LangOpts.OpenCL && LangOpts.IncludeDefaultHeader &&
((LangOpts.DeclareOpenCLBuiltins && I == "opencl-c-base.h") ||
I == "opencl-c.h"))
continue;
// Don't generate HLSL includes. They are implied by other flags that are
// generated elsewhere.
if (LangOpts.HLSL && I == "hlsl.h")
continue;
GenerateArg(Args, OPT_include, I, SA);
}
for (const auto &CI : Opts.ChainedIncludes)
GenerateArg(Args, OPT_chain_include, CI, SA);
for (const auto &RF : Opts.RemappedFiles)
GenerateArg(Args, OPT_remap_file, RF.first + ";" + RF.second, SA);
// Don't handle LexEditorPlaceholders. It is implied by the action that is
// generated elsewhere.
}
static bool ParsePreprocessorArgs(PreprocessorOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags,
frontend::ActionKind Action,
const FrontendOptions &FrontendOpts) {
unsigned NumErrorsBefore = Diags.getNumErrors();
PreprocessorOptions *PreprocessorOpts = &Opts;
#define PREPROCESSOR_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OPTION_WITH_MARSHALLING
Opts.PCHWithHdrStop = Args.hasArg(OPT_pch_through_hdrstop_create) ||
Args.hasArg(OPT_pch_through_hdrstop_use);
for (const auto *A : Args.filtered(OPT_error_on_deserialized_pch_decl))
Opts.DeserializedPCHDeclsToErrorOn.insert(A->getValue());
if (const Arg *A = Args.getLastArg(OPT_preamble_bytes_EQ)) {
StringRef Value(A->getValue());
size_t Comma = Value.find(',');
unsigned Bytes = 0;
unsigned EndOfLine = 0;
2010-10-21 03:16:25 +00:00
if (Comma == StringRef::npos ||
Value.substr(0, Comma).getAsInteger(10, Bytes) ||
Value.substr(Comma + 1).getAsInteger(10, EndOfLine))
Diags.Report(diag::err_drv_preamble_format);
else {
Opts.PrecompiledPreambleBytes.first = Bytes;
Opts.PrecompiledPreambleBytes.second = (EndOfLine != 0);
}
}
2010-10-21 03:16:25 +00:00
// Add the __CET__ macro if a CFProtection option is set.
if (const Arg *A = Args.getLastArg(OPT_fcf_protection_EQ)) {
StringRef Name = A->getValue();
if (Name == "branch")
Opts.addMacroDef("__CET__=1");
else if (Name == "return")
Opts.addMacroDef("__CET__=2");
else if (Name == "full")
Opts.addMacroDef("__CET__=3");
}
// Add macros from the command line.
for (const auto *A : Args.filtered(OPT_D, OPT_U)) {
if (A->getOption().matches(OPT_D))
Opts.addMacroDef(A->getValue());
else
Opts.addMacroUndef(A->getValue());
}
// Add the ordered list of -includes.
for (const auto *A : Args.filtered(OPT_include))
Opts.Includes.emplace_back(A->getValue());
for (const auto *A : Args.filtered(OPT_chain_include))
Opts.ChainedIncludes.emplace_back(A->getValue());
for (const auto *A : Args.filtered(OPT_remap_file)) {
std::pair<StringRef, StringRef> Split = StringRef(A->getValue()).split(';');
if (Split.second.empty()) {
Diags.Report(diag::err_drv_invalid_remap_file) << A->getAsString(Args);
continue;
}
Opts.addRemappedFile(Split.first, Split.second);
}
// Always avoid lexing editor placeholders when we're just running the
// preprocessor as we never want to emit the
// "editor placeholder in source file" error in PP only mode.
if (isStrictlyPreprocessorAction(Action))
Opts.LexEditorPlaceholders = false;
return Diags.getNumErrors() == NumErrorsBefore;
}
static void GeneratePreprocessorOutputArgs(
const PreprocessorOutputOptions &Opts, SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA, frontend::ActionKind Action) {
const PreprocessorOutputOptions &PreprocessorOutputOpts = Opts;
#define PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING
bool Generate_dM = isStrictlyPreprocessorAction(Action) && !Opts.ShowCPP;
if (Generate_dM)
GenerateArg(Args, OPT_dM, SA);
if (!Generate_dM && Opts.ShowMacros)
GenerateArg(Args, OPT_dD, SA);
if (Opts.DirectivesOnly)
GenerateArg(Args, OPT_fdirectives_only, SA);
}
static bool ParsePreprocessorOutputArgs(PreprocessorOutputOptions &Opts,
ArgList &Args, DiagnosticsEngine &Diags,
frontend::ActionKind Action) {
unsigned NumErrorsBefore = Diags.getNumErrors();
PreprocessorOutputOptions &PreprocessorOutputOpts = Opts;
#define PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef PREPROCESSOR_OUTPUT_OPTION_WITH_MARSHALLING
Opts.ShowCPP = isStrictlyPreprocessorAction(Action) && !Args.hasArg(OPT_dM);
Opts.ShowMacros = Args.hasArg(OPT_dM) || Args.hasArg(OPT_dD);
Opts.DirectivesOnly = Args.hasArg(OPT_fdirectives_only);
return Diags.getNumErrors() == NumErrorsBefore;
}
static void GenerateTargetArgs(const TargetOptions &Opts,
SmallVectorImpl<const char *> &Args,
CompilerInvocation::StringAllocator SA) {
const TargetOptions *TargetOpts = &Opts;
#define TARGET_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
GENERATE_OPTION_WITH_MARSHALLING( \
Args, SA, KIND, FLAGS, SPELLING, ALWAYS_EMIT, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, DENORMALIZER, EXTRACTOR, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef TARGET_OPTION_WITH_MARSHALLING
if (!Opts.SDKVersion.empty())
GenerateArg(Args, OPT_target_sdk_version_EQ, Opts.SDKVersion.getAsString(),
SA);
if (!Opts.DarwinTargetVariantSDKVersion.empty())
GenerateArg(Args, OPT_darwin_target_variant_sdk_version_EQ,
Opts.DarwinTargetVariantSDKVersion.getAsString(), SA);
}
static bool ParseTargetArgs(TargetOptions &Opts, ArgList &Args,
DiagnosticsEngine &Diags) {
unsigned NumErrorsBefore = Diags.getNumErrors();
TargetOptions *TargetOpts = &Opts;
#define TARGET_OPTION_WITH_MARSHALLING( \
PREFIX_TYPE, NAME, ID, KIND, GROUP, ALIAS, ALIASARGS, FLAGS, PARAM, \
HELPTEXT, METAVAR, VALUES, SPELLING, SHOULD_PARSE, ALWAYS_EMIT, KEYPATH, \
DEFAULT_VALUE, IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, DENORMALIZER, \
MERGER, EXTRACTOR, TABLE_INDEX) \
PARSE_OPTION_WITH_MARSHALLING( \
Args, Diags, ID, FLAGS, PARAM, SHOULD_PARSE, KEYPATH, DEFAULT_VALUE, \
IMPLIED_CHECK, IMPLIED_VALUE, NORMALIZER, MERGER, TABLE_INDEX)
#include "clang/Driver/Options.inc"
#undef TARGET_OPTION_WITH_MARSHALLING
if (Arg *A = Args.getLastArg(options::OPT_target_sdk_version_EQ)) {
llvm::VersionTuple Version;
if (Version.tryParse(A->getValue()))
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else
Opts.SDKVersion = Version;
}
if (Arg *A =
Args.getLastArg(options::OPT_darwin_target_variant_sdk_version_EQ)) {
llvm::VersionTuple Version;
if (Version.tryParse(A->getValue()))
Diags.Report(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else
Opts.DarwinTargetVariantSDKVersion = Version;
}
return Diags.getNumErrors() == NumErrorsBefore;
}
bool CompilerInvocation::CreateFromArgsImpl(
CompilerInvocation &Res, ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags, const char *Argv0) {
unsigned NumErrorsBefore = Diags.getNumErrors();
// Parse the arguments.
const OptTable &Opts = getDriverOptTable();
const unsigned IncludedFlagsBitmask = options::CC1Option;
unsigned MissingArgIndex, MissingArgCount;
InputArgList Args = Opts.ParseArgs(CommandLineArgs, MissingArgIndex,
MissingArgCount, IncludedFlagsBitmask);
LangOptions &LangOpts = *Res.getLangOpts();
// Check for missing argument error.
if (MissingArgCount)
Diags.Report(diag::err_drv_missing_argument)
<< Args.getArgString(MissingArgIndex) << MissingArgCount;
// Issue errors on unknown arguments.
for (const auto *A : Args.filtered(OPT_UNKNOWN)) {
auto ArgString = A->getAsString(Args);
std::string Nearest;
if (Opts.findNearest(ArgString, Nearest, IncludedFlagsBitmask) > 1)
Diags.Report(diag::err_drv_unknown_argument) << ArgString;
else
Diags.Report(diag::err_drv_unknown_argument_with_suggestion)
<< ArgString << Nearest;
}
ParseFileSystemArgs(Res.getFileSystemOpts(), Args, Diags);
ParseMigratorArgs(Res.getMigratorOpts(), Args, Diags);
ParseAnalyzerArgs(*Res.getAnalyzerOpts(), Args, Diags);
ParseDiagnosticArgs(Res.getDiagnosticOpts(), Args, &Diags,
/*DefaultDiagColor=*/false);
ParseFrontendArgs(Res.getFrontendOpts(), Args, Diags, LangOpts.IsHeaderFile);
// FIXME: We shouldn't have to pass the DashX option around here
InputKind DashX = Res.getFrontendOpts().DashX;
ParseTargetArgs(Res.getTargetOpts(), Args, Diags);
llvm::Triple T(Res.getTargetOpts().Triple);
ParseHeaderSearchArgs(Res.getHeaderSearchOpts(), Args, Diags,
Res.getFileSystemOpts().WorkingDir);
ParseLangArgs(LangOpts, Args, DashX, T, Res.getPreprocessorOpts().Includes,
Diags);
if (Res.getFrontendOpts().ProgramAction == frontend::RewriteObjC)
LangOpts.ObjCExceptions = 1;
for (auto Warning : Res.getDiagnosticOpts().Warnings) {
if (Warning == "misexpect" &&
!Diags.isIgnored(diag::warn_profile_data_misexpect, SourceLocation())) {
Res.getCodeGenOpts().MisExpect = true;
}
}
if (LangOpts.CUDA) {
// During CUDA device-side compilation, the aux triple is the
// triple used for host compilation.
if (LangOpts.CUDAIsDevice)
Res.getTargetOpts().HostTriple = Res.getFrontendOpts().AuxTriple;
}
// Set the triple of the host for OpenMP device compile.
if (LangOpts.OpenMPIsDevice)
Res.getTargetOpts().HostTriple = Res.getFrontendOpts().AuxTriple;
ParseCodeGenArgs(Res.getCodeGenOpts(), Args, DashX, Diags, T,
Res.getFrontendOpts().OutputFile, LangOpts);
// FIXME: Override value name discarding when asan or msan is used because the
// backend passes depend on the name of the alloca in order to print out
// names.
Res.getCodeGenOpts().DiscardValueNames &=
!LangOpts.Sanitize.has(SanitizerKind::Address) &&
!LangOpts.Sanitize.has(SanitizerKind::KernelAddress) &&
!LangOpts.Sanitize.has(SanitizerKind::Memory) &&
!LangOpts.Sanitize.has(SanitizerKind::KernelMemory);
ParsePreprocessorArgs(Res.getPreprocessorOpts(), Args, Diags,
Res.getFrontendOpts().ProgramAction,
Res.getFrontendOpts());
ParsePreprocessorOutputArgs(Res.getPreprocessorOutputOpts(), Args, Diags,
Res.getFrontendOpts().ProgramAction);
2016-07-28 19:26:30 +00:00
ParseDependencyOutputArgs(Res.getDependencyOutputOpts(), Args, Diags,
Res.getFrontendOpts().ProgramAction,
Res.getPreprocessorOutputOpts().ShowLineMarkers);
if (!Res.getDependencyOutputOpts().OutputFile.empty() &&
Res.getDependencyOutputOpts().Targets.empty())
Diags.Report(diag::err_fe_dependency_file_requires_MT);
// If sanitizer is enabled, disable OPT_ffine_grained_bitfield_accesses.
if (Res.getCodeGenOpts().FineGrainedBitfieldAccesses &&
!Res.getLangOpts()->Sanitize.empty()) {
Res.getCodeGenOpts().FineGrainedBitfieldAccesses = false;
Diags.Report(diag::warn_drv_fine_grained_bitfield_accesses_ignored);
}
// Store the command-line for using in the CodeView backend.
Res.getCodeGenOpts().Argv0 = Argv0;
append_range(Res.getCodeGenOpts().CommandLineArgs, CommandLineArgs);
FixupInvocation(Res, Diags, Args, DashX);
return Diags.getNumErrors() == NumErrorsBefore;
}
bool CompilerInvocation::CreateFromArgs(CompilerInvocation &Invocation,
ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags,
const char *Argv0) {
CompilerInvocation DummyInvocation;
return RoundTrip(
[](CompilerInvocation &Invocation, ArrayRef<const char *> CommandLineArgs,
DiagnosticsEngine &Diags, const char *Argv0) {
return CreateFromArgsImpl(Invocation, CommandLineArgs, Diags, Argv0);
},
[](CompilerInvocation &Invocation, SmallVectorImpl<const char *> &Args,
StringAllocator SA) { Invocation.generateCC1CommandLine(Args, SA); },
Invocation, DummyInvocation, CommandLineArgs, Diags, Argv0);
}
std::string CompilerInvocation::getModuleHash() const {
// FIXME: Consider using SHA1 instead of MD5.
llvm::HashBuilder<llvm::MD5, llvm::support::endianness::native> HBuilder;
// Note: For QoI reasons, the things we use as a hash here should all be
// dumped via the -module-info flag.
// Start the signature with the compiler version.
HBuilder.add(getClangFullRepositoryVersion());
// Also include the serialization version, in case LLVM_APPEND_VC_REV is off
// and getClangFullRepositoryVersion() doesn't include git revision.
HBuilder.add(serialization::VERSION_MAJOR, serialization::VERSION_MINOR);
// Extend the signature with the language options
#define LANGOPT(Name, Bits, Default, Description) HBuilder.add(LangOpts->Name);
#define ENUM_LANGOPT(Name, Type, Bits, Default, Description) \
HBuilder.add(static_cast<unsigned>(LangOpts->get##Name()));
#define BENIGN_LANGOPT(Name, Bits, Default, Description)
#define BENIGN_ENUM_LANGOPT(Name, Type, Bits, Default, Description)
#include "clang/Basic/LangOptions.def"
HBuilder.addRange(LangOpts->ModuleFeatures);
HBuilder.add(LangOpts->ObjCRuntime);
HBuilder.addRange(LangOpts->CommentOpts.BlockCommandNames);
// Extend the signature with the target options.
HBuilder.add(TargetOpts->Triple, TargetOpts->CPU, TargetOpts->TuneCPU,
TargetOpts->ABI);
HBuilder.addRange(TargetOpts->FeaturesAsWritten);
// Extend the signature with preprocessor options.
const PreprocessorOptions &ppOpts = getPreprocessorOpts();
HBuilder.add(ppOpts.UsePredefines, ppOpts.DetailedRecord);
const HeaderSearchOptions &hsOpts = getHeaderSearchOpts();
for (const auto &Macro : getPreprocessorOpts().Macros) {
// If we're supposed to ignore this macro for the purposes of modules,
// don't put it into the hash.
if (!hsOpts.ModulesIgnoreMacros.empty()) {
// Check whether we're ignoring this macro.
StringRef MacroDef = Macro.first;
if (hsOpts.ModulesIgnoreMacros.count(
llvm::CachedHashString(MacroDef.split('=').first)))
continue;
}
HBuilder.add(Macro);
}
// Extend the signature with the sysroot and other header search options.
HBuilder.add(hsOpts.Sysroot, hsOpts.ModuleFormat, hsOpts.UseDebugInfo,
hsOpts.UseBuiltinIncludes, hsOpts.UseStandardSystemIncludes,
hsOpts.UseStandardCXXIncludes, hsOpts.UseLibcxx,
hsOpts.ModulesValidateDiagnosticOptions);
HBuilder.add(hsOpts.ResourceDir);
if (hsOpts.ModulesStrictContextHash) {
HBuilder.addRange(hsOpts.SystemHeaderPrefixes);
HBuilder.addRange(hsOpts.UserEntries);
const DiagnosticOptions &diagOpts = getDiagnosticOpts();
#define DIAGOPT(Name, Bits, Default) HBuilder.add(diagOpts.Name);
#define ENUM_DIAGOPT(Name, Type, Bits, Default) \
HBuilder.add(diagOpts.get##Name());
#include "clang/Basic/DiagnosticOptions.def"
#undef DIAGOPT
#undef ENUM_DIAGOPT
}
// Extend the signature with the user build path.
HBuilder.add(hsOpts.ModuleUserBuildPath);
// Extend the signature with the module file extensions.
for (const auto &ext : getFrontendOpts().ModuleFileExtensions)
ext->hashExtension(HBuilder);
// When compiling with -gmodules, also hash -fdebug-prefix-map as it
// affects the debug info in the PCM.
if (getCodeGenOpts().DebugTypeExtRefs)
HBuilder.addRange(getCodeGenOpts().DebugPrefixMap);
// Extend the signature with the enabled sanitizers, if at least one is
// enabled. Sanitizers which cannot affect AST generation aren't hashed.
SanitizerSet SanHash = LangOpts->Sanitize;
SanHash.clear(getPPTransparentSanitizers());
if (!SanHash.empty())
HBuilder.add(SanHash.Mask);
llvm::MD5::MD5Result Result;
HBuilder.getHasher().final(Result);
uint64_t Hash = Result.high() ^ Result.low();
return toString(llvm::APInt(64, Hash), 36, /*Signed=*/false);
}
void CompilerInvocation::generateCC1CommandLine(
SmallVectorImpl<const char *> &Args, StringAllocator SA) const {
llvm::Triple T(TargetOpts->Triple);
GenerateFileSystemArgs(FileSystemOpts, Args, SA);
GenerateMigratorArgs(MigratorOpts, Args, SA);
GenerateAnalyzerArgs(*AnalyzerOpts, Args, SA);
GenerateDiagnosticArgs(*DiagnosticOpts, Args, SA, false);
GenerateFrontendArgs(FrontendOpts, Args, SA, LangOpts->IsHeaderFile);
GenerateTargetArgs(*TargetOpts, Args, SA);
GenerateHeaderSearchArgs(*HeaderSearchOpts, Args, SA);
GenerateLangArgs(*LangOpts, Args, SA, T, FrontendOpts.DashX);
GenerateCodeGenArgs(CodeGenOpts, Args, SA, T, FrontendOpts.OutputFile,
&*LangOpts);
GeneratePreprocessorArgs(*PreprocessorOpts, Args, SA, *LangOpts, FrontendOpts,
CodeGenOpts);
GeneratePreprocessorOutputArgs(PreprocessorOutputOpts, Args, SA,
FrontendOpts.ProgramAction);
GenerateDependencyOutputArgs(DependencyOutputOpts, Args, SA);
}
IntrusiveRefCntPtr<llvm::vfs::FileSystem>
clang::createVFSFromCompilerInvocation(const CompilerInvocation &CI,
DiagnosticsEngine &Diags) {
return createVFSFromCompilerInvocation(CI, Diags,
llvm::vfs::getRealFileSystem());
}
IntrusiveRefCntPtr<llvm::vfs::FileSystem>
clang::createVFSFromCompilerInvocation(
const CompilerInvocation &CI, DiagnosticsEngine &Diags,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> BaseFS) {
if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty())
return BaseFS;
IntrusiveRefCntPtr<llvm::vfs::FileSystem> Result = BaseFS;
// earlier vfs files are on the bottom
for (const auto &File : CI.getHeaderSearchOpts().VFSOverlayFiles) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer =
Result->getBufferForFile(File);
if (!Buffer) {
Diags.Report(diag::err_missing_vfs_overlay_file) << File;
continue;
}
IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS = llvm::vfs::getVFSFromYAML(
std::move(Buffer.get()), /*DiagHandler*/ nullptr, File,
/*DiagContext*/ nullptr, Result);
if (!FS) {
Diags.Report(diag::err_invalid_vfs_overlay) << File;
continue;
}
Result = FS;
}
return Result;
}